15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
How can we prove that two regular expressions are equivalent?

How can we prove that two DFAs (or two NFAs) are equivalent?

How can we prove that two regular languages are equivalent?

(Does this question make sense?)
How can we prove that two DFAs (or two NFAs) are equivalent?
MINIMIZING DFAs

THURSDAY Jan 23
IS THIS MINIMAL?
IS THIS MINIMAL?
THEOREM

For every regular language L, there exists a UNIQUE (up to re-labeling of the states) minimal DFA M such that $L = L(M)$
THEOREM

For every regular language L, there exists a **UNIQUE** (up to re-labeling of the states) minimal DFA M such that $L = L(M)$

Minimal means wrt number of states

Given a specification for L, via DFA, NFA or regex, this theorem is constructive.
NOT TRUE FOR NFAs
NOT TRUE FOR RegExp
EXTENDING δ

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$ extend δ to $\hat{\delta} : Q \times \Sigma^* \rightarrow Q$ as follows:

$\hat{\delta}(q, \epsilon) = q$

$\hat{\delta}(q, \sigma) = \delta(q, \sigma)$

$\hat{\delta}(q, \sigma_1 \ldots \sigma_{k+1}) = \delta(\hat{\delta}(q, \sigma_1 \ldots \sigma_k), \sigma_{k+1})$

Note: $\hat{\delta}(q_0, w) \in F \iff M$ accepts w

String $w \in \Sigma^*$ distinguishes states p and q iff $\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \notin F$
EXTENDING δ

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$ extend δ to $\hat{\delta}: Q \times \Sigma^* \rightarrow Q$ as follows:

\[
\hat{\delta}(q, \varepsilon) = q \\
\hat{\delta}(q, \sigma) = \delta(q, \sigma) \\
\hat{\delta}(q, \sigma_1 \ldots \sigma_{k+1}) = \delta(\hat{\delta}(q, \sigma_1 \ldots \sigma_k), \sigma_{k+1})
\]

Note: $\hat{\delta}(q_0, w) \in F \iff M$ accepts w

String $w \in \Sigma^*$ distinguishes states p and q iff exactly ONE of $\hat{\delta}(p, w), \hat{\delta}(q, w)$ is a final state
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q \in Q$

DEFINITION:

p is *distinguishable* from q
iff
there is a $w \in \Sigma^*$ that distinguishes p and q
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q \in Q$

DEFINITION:

p is **distinguishable** from q iff there is a $w \in \Sigma^*$ that distinguishes p and q

p is **indistinguishable** from q iff p is not distinguishable from q

p is **not** distinguishable from q iff for all $w \in \Sigma^*$, $\delta(p, w) \in F \iff \delta(q, w) \in F$
\(\varepsilon \) distinguishes accept from non-accept states
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Define relation \sim :

$p \sim q$ iff p is indistinguishable from q

$p \nabla q$ iff p is distinguishable from q

Proposition: \sim is an equivalence relation
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Define relation \sim:

$p \sim q$ iff p is indistinguishable from q

$p \nparallel q$ iff p is distinguishable from q

Proposition: \sim is an equivalence relation

$p \sim p$ (reflexive)

$p \sim q \Rightarrow q \sim p$ (symmetric)

$p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive)

Proof (of transitivity): for all w, we have:

$\hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F \Leftrightarrow \hat{\delta}(r, w) \in F$
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

so \sim partitions the set of states of M into disjoint equivalence classes

Proposition: \sim is an equivalence relation

$p \sim p$ (reflexive)

$p \sim q \Rightarrow q \sim p$ (symmetric)

$p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive)

Proof (of transitivity): for all w, we have:

$\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F \iff \hat{\delta}(r, w) \in F$
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

so \sim partitions the set of states of M into disjoint equivalence classes

Proposition: \sim is an equivalence relation

\[[q] = \{ p \mid p \sim q \} \]
Algorithm MINIMIZE

Input: DFA M

Output: DFA M_{MIN} such that:

$M \equiv M_{\text{MIN}}$ (that is, $L(M) = L(M_{\text{MIN}})$)

M_{MIN} has no inaccessible states

M_{MIN} is irreducible

all states of M_{MIN} are pairwise distinguishable
Algorithm MINIMIZE

Input: DFA M

Output: DFA M_{MIN} such that:

$M \equiv M_{\text{MIN}}$ (that is, $L(M) = L(M_{\text{MIN}})$)

M_{MIN} has no inaccessible states

M_{MIN} is irreducible

all states of M_{MIN} are pairwise distinguishable

Theorem: M_{MIN} is the unique minimum DFA equivalent to M
NOTE: Theorem not true for NFAs

What does this say about Regexs?
Intuition: States of M_{MIN} will be blocks of equivalent states of M.

We’ll find these equivalent states with a “Table-Filling” Algorithm.
TABLE-FILLING ALGORITHM

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: (1) $D_M = \{ (p,q) \mid p,q \in Q \text{ and } p \sim q \}$

(2) $E_M = \{ [q] \mid q \in Q \}$
TABLE-FILLING ALGORITHM

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output:
1. $D_M = \{ (p,q) \mid p,q \in Q \text{ and } p \sim q \}$
2. $E_M = \{ [q] \mid q \in Q \}$

IDEA:

- We know how to find those pairs of states that ϵ distinguishes...
- Use this and recursion to find those pairs distinguishable with longer strings
- Pairs left over will be indistinguishable
TABLE-FILLING ALGORITHM

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output:

1. $D_M = \{ (p,q) \mid p,q \in Q \text{ and } p \sim q \}$
2. $E_M = \{ [q] \mid q \in Q \}$

Base Case: p accepts and q rejects $\Rightarrow p \sim q$
Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: (1) $D_M = \{ (p,q) \mid p,q \in Q \text{ and } p \sim q \}$
(2) $E_M = \{ [q] \mid q \in Q \}$

Base Case: p accepts and q rejects $\Rightarrow p \sim q$

Recursion: if there is $\sigma \in \Sigma$ and states p', q' satisfying

\[\delta (p, \sigma) = p' \]
\[\dagger \Rightarrow p \dagger q \]
\[\delta (q, \sigma) = q' \]

Repeat until no more new D's
The diagram represents a finite automaton with states labeled \(q_0, q_1, q_2, q_3 \). The transitions are indicated by arrows labeled with input symbols (0 or 1). The automaton starts in state \(q_0 \) and can transition to \(q_1 \), \(q_2 \), or \(q_3 \) based on the input. The states \(q_0, q_1, q_2, q_3 \) are also represented in a matrix, with \(D \) indicating a specific transition pattern.
Claim: If \(p, q \) are distinguished by Table-Filling algorithm (ie pair labelled by \(D \)), then \(p \not\equiv q \)

Proof: By induction on the stage of the algorithm

Claim: If \(p, q \) are not distinguished by Table-Filling algorithm, then \(p \sim q \)

Proof (by contradiction):
Claim: If p, q are distinguished by Table-Filling algorithm (ie pair labelled by D), then $p \not\sim q$

Proof: By induction on the stage of the algorithm

If (p, q) is marked D at the start, then one’s in F and one isn’t, so ε distinguishes p and q
Claim: If \(p, q \) are distinguished by Table-Filling algorithm (ie pair labelled by D), then \(p \not\sim q \)

Proof: By induction on the stage of the algorithm

If \((p, q) \) is marked D at the start, then one’s is in F and one isn’t, so \(\varepsilon \) distinguishes \(p \) and \(q \)

Suppose \((p, q) \) is marked D at stage \(n+1 \)

Then there are states \(p', q' \), string \(w \in \Sigma^* \) and \(\sigma \in \Sigma \) such that:

1. \((p', q') \) are marked D \(\Rightarrow p' \not\sim q' \) (by induction)
 \[\Rightarrow \hat{\delta}(p', w) \in F \text{ and } \hat{\delta}(q', w) \notin F \]
2. \(p' = \delta(p, \sigma) \) and \(q' = \delta(q, \sigma) \)

The string \(\sigma w \) distinguishes \(p \) and \(q \)!
Claim: If \(p, q \) are not distinguished by Table-Filling algorithm, then \(p \sim q \)

Proof (by contradiction):
Claim: If \(p, q \) are not distinguished by Table-Filling algorithm, then \(p \sim q \)

Proof (by contradiction):
Suppose the pair \((p, q) \) is not marked \(\text{D} \) by the algorithm, yet \(p \not\sim q \) (a “bad pair”)

Suppose \((p, q)\) is a bad pair with the shortest \(w \).

\[\hat{\delta}(p, w) \in F \text{ and } \hat{\delta}(q, w) \notin F \] (Why is \(|w| > 0\) ?)

So, \(w = \sigma w' \), where \(\sigma \in \Sigma \)
Claim: If \(p, q \) are not distinguished by Table-Filling algorithm, then \(p \sim q \)

Proof (by contradiction):

Suppose the pair \((p, q)\) is not marked \(D \) by the algorithm, yet \(p \not\sim q \) (a “bad pair”)

Suppose \((p, q)\) is a bad pair with the shortest \(w \).

\[
\hat{\delta}(p, w) \in F \quad \text{and} \quad \hat{\delta}(q, w) \not\in F \quad (\text{Why is } |w| > 0 ?)
\]

So, \(w = \sigma w' \), where \(\sigma \in \Sigma \)

Let \(p' = \delta(p, \sigma) \) and \(q' = \delta(q, \sigma) \)

Then \((p', q')\) cannot be marked \(D \) (Why?)

But \((p', q')\) is distinguished by \(w' \)!

So \((p', q')\) is also a bad pair, but with a SHORTER \(w' \)!

Contradiction!
Algorithm MINIMIZE

Input: DFA M

Output: DFA M_{MIN}

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:
$E_M = \{ [q] \mid q \text{ is an accessible state of } M \}$
Algorithm MINIMIZE

Input: DFA \(M \)

Output: DFA \(M_{\text{MIN}} \)

1. Remove all inaccessible states from \(M \)

2. Apply Table-Filling algorithm to get:
 \(E_M = \{ [q] \mid q \text{ is an accessible state of } M \} \)

Define: \(M_{\text{MIN}} = (Q_{\text{MIN}}, \Sigma, \delta_{\text{MIN}}, q_{0 \text{MIN}}, F_{\text{MIN}}) \)

\(Q_{\text{MIN}} = E_M, \quad q_{0 \text{MIN}} = [q_0], \quad F_{\text{MIN}} = \{ [q] \mid q \in F \} \)

\(\delta_{\text{MIN}}([q], \sigma) = [\delta(q, \sigma)] \)

Must show \(\delta_{\text{MIN}} \) is well defined!
Algorithm MINIMIZE

Input: DFA M

Output: DFA M_{MIN}

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get: $E_M = \{ [q] \mid q \text{ is an accessible state of } M \}$

Define: $M_{\text{MIN}} = (Q_{\text{MIN}}, \Sigma, \delta_{\text{MIN}}, q_{0\text{MIN}}, F_{\text{MIN}})$

$Q_{\text{MIN}} = E_M$, $q_{0\text{MIN}} = [q_0]$, $F_{\text{MIN}} = \{ [q] \mid q \in F \}$

$\delta_{\text{MIN}}([q], \sigma) = [\ ^\wedge \delta(q, \sigma)]$

Claim: $\delta_{\text{MIN}}([q], w) = [\ ^\wedge \delta(q, w)]$, $w \in \Sigma^*$
Algorithm MINIMIZE

Input: DFA M

Output: DFA M_{MIN}

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get: $E_M = \{ [q] \mid q \text{ is an accessible state of } M \}$

Define: $M_{\text{MIN}} = (Q_{\text{MIN}}, \Sigma, \delta_{\text{MIN}}, q_{0\text{MIN}}, F_{\text{MIN}})$

$Q_{\text{MIN}} = E_M, \quad q_{0\text{MIN}} = [q_0], \quad F_{\text{MIN}} = \{ [q] \mid q \in F \}$

$\delta_{\text{MIN}}([q], \sigma) = [\delta(q, \sigma)]$

So: $\stackrel{\wedge}{\delta}_{\text{MIN}}([q_0], w) = [\stackrel{\wedge}{\delta}(q_0, w)], w \in \Sigma^*$
Algorithm MINIMIZE

Input: DFA M

Output: DFA M_{MIN}

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:
$E_M = \{ [q] \mid q \text{ is an accessible state of } M \}$

Define: $M_{\text{MIN}} = (Q_{\text{MIN}}, \Sigma, \delta_{\text{MIN}}, q_{0\text{MIN}}, F_{\text{MIN}})$

$Q_{\text{MIN}} = E_M$, $q_{0\text{MIN}} = [q_0]$, $F_{\text{MIN}} = \{ [q] \mid q \in F \}$

$\delta_{\text{MIN}}([q], \sigma) = [\delta(q, \sigma)]$

Follows: $M_{\text{MIN}} \equiv M$
MINIMIZE

Diagram:

- States: q₀, q₁, q₂
- Transitions:
 - q₀ → q₁ on input 0
 - q₀ → q₂ on input 1
 - q₁ → q₀ on input 0
 - q₂ → q₂ on input 1
 - q₂ → q₁ on input 1
 - q₁ → q₁ on input 1
PROPOSITION. Suppose $M' \equiv M$ and M' has no inaccessible states and is irreducible.

Then, there exists a 1-1 onto correspondence between M_{MIN} and M' (preserving transitions), i.e., M_{MIN} and M' are “Isomorphic.”
PROPOSITION. Suppose $M' \equiv M$ and M' has no inaccessible states and is irreducible.

Then, there exists a 1-1 onto correspondence between M_{MIN} and M' (preserving transitions).

i.e., M_{MIN} and M' are "Isomorphic"

COR: M_{MIN} is unique minimal DFA $\equiv M$
PROPOSITION. Suppose $M' \equiv M$ and M' has no inaccessible states and is irreducible.

Then, there exists a 1-1 onto correspondence between M_{MIN} and M' (preserving transitions).

i.e., M_{MIN} and M' are “Isomorphic”

COR: M_{MIN} is unique minimal DFA $\equiv M$

Proof of Prop: We will construct a map recursively.

Base Case: $q_{0_{\text{MIN}}} \rightarrow q'_{0}$

Recursive Step: If $p \rightarrow p'$

Then $q \rightarrow q'$
PROPOSITION. Suppose $M' \equiv M$ and M' has no inaccessible states and is irreducible

Then, there exists a 1-1 onto correspondence between M_{MIN} and M' (preserving transitions)

i.e., M_{MIN} and M' are "Isomorphic"

COR: M_{MIN} is unique minimal DFA $\equiv M$

Proof of Prop: We will construct a map recursively

Base Case: $q_{0_{\text{MIN}}} \rightarrow q_{0'}$

Recursive Step: If $p \rightarrow p'$

and $\delta(p, \sigma) = q$ and $\delta(p', \sigma) = q'$ Then $q \rightarrow q'$
We need to show:

• The map is *everywhere defined*

• The map is *well defined*

• The map is a *bijection (1-1 and onto)*

• The map *preserves transitions*
Base Case: \(q_{0_{\text{MIN}}} \rightarrow q_0' \)

Recursive Step: If \(p \rightarrow p' \)

\[
\begin{array}{c}
\sigma \\
\downarrow \\
q \\
\sigma \\
\downarrow \\
q'
\end{array}
\]

Then \(q \rightarrow q' \)

The map is everywhere defined:

That is, for all \(q \in M_{\text{MIN}} \), there is a \(q' \in M' \) such that \(q \rightarrow q' \)

If \(q \in M_{\text{MIN}} \), there is a string \(w \) such that

\[
\delta_{\text{MIN}}(q_{0_{\text{MIN}}}, w) = q \quad (\text{WHY?})
\]

Let \(q' = \delta'(q_0', w) \). \(q \) will map to \(q' \) (by induction)
Base Case: $q_{0\text{ MIN}} \rightarrow q_0'$

Recursive Step: If $p \rightarrow p'$

\[\sigma \quad \sigma \]

Then $q \rightarrow q'$

$q \quad q'$

The map is well defined

That is, for all $q \in M_{\text{MIN}}$

there is at most one $q' \in M'$ such that $q \rightarrow q'$

Suppose there exist q' and q'' such that

$q \rightarrow q'$ and $q \rightarrow q''$

We show that q' and q'' are indistinguishable,
so it must be that $q' = q''$ (Why?)
Suppose there exist q' and q'' such that $q \rightarrow q'$ and $q \rightarrow q''$

Suppose q' and q'' are distinguishable.

Contradiction!
The map is 1-1

Suppose there are distinct p and q such that p → q′ and q → q′

p and q are distinguishable (why?)
Base Case: $q_{0 \text{MIN}} \rightarrow q_0'$

Recursive Step: If $p \rightarrow p'$

Then $q \rightarrow q'$

The map is onto

That is, for all $q' \in M'$ there is a $q \in M_{\text{MIN}}$ such that $q \rightarrow q'$

If $q' \in M'$, there is w such that

$\delta'(q_0',w) = q'$

Let $q = \hat{\delta}_{\text{MIN}}(q_{0 \text{MIN}},w)$. q will map to q' (why?)
Base Case: $q_{0\text{MIN}} \rightarrow q_0'$

Recursive Step: If $p \rightarrow p'$

Then $q \rightarrow q'$

The map preserves transitions

That is, if $\delta(p, \sigma) = q$ and $p \rightarrow p'$ and $q \rightarrow q'$

then, $\delta'(p', \sigma) = q'$

(Why?)
How can we prove that two regular expressions are equivalent?
WWW.FLAC.WS

Read Chapters 2.1 & 2.2 for next time