15-453
FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
THE PUMPING LEMMA FOR
REGULAR LANGUAGES
and
REGULAR EXPRESSIONS

TUESDAY Jan 21
WHICH OF THESE ARE REGULAR?

\[B = \{0^n1^n \mid n \geq 0\} \]

\[C = \{ w \mid w \text{ has equal number of occurrences of 01 and 10}\} \]

\[D = \{ w \mid w \text{ has equal number of 1s and 0s}\} \]
THE PUMPING LEMMA

Let L be a regular language with $|L| = \infty$

Then there is a positive integer P s.t.

1. $|y| > 0$ (y isn’t ε)
2. $|xy| \leq P$
3. For every $i \geq 0$, $xy^iz \in L$

if $w \in L$ and $|w| \geq P$

then can write $w = xyz$, where:

1. $|y| > 0$ (y isn’t ε)
2. $|xy| \leq P$
3. For every $i \geq 0$, $xy^iz \in L$

Why is it called the pumping lemma? The word w gets PUMPED into something longer...
Proof: Let M be a DFA that recognizes L

Let P be the **number of states** in M

Assume $w \in L$ is such that $|w| \geq P$

We show: $w = xyz$

1. $|y| > 0$
2. $|xy| \leq P$
3. $xy^i z \in L$ for all $i \geq 0$

There must be j and k such that $j < k \leq P$, and $r_j = r_k$ (**why?**) (Note: $k - j > 0$)
Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Assume $w \in L$ is such that $|w| \geq P$

We show: $w = xyz$

1. $|y| > 0$
2. $|xy| \leq P$
3. $xy^iz \in L$ for all $i \geq 0$

There must be j and k such that $j < k \leq P$, and $r_j = r_k$
Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Assume $w \in L$ is such that $|w| \geq P$

We show: $w = xyz$

1. $|y| > 0$
2. $|xy| \leq P$
3. $xy^iz \in L$ for all $i \geq 0$

There must be j and k such that $j < k \leq P$, and $r_j = r_k$
USING THE **PUMPING LEMMA**

Let’s prove that $B = \{0^n1^n \mid n \geq 0\}$ is not regular

Assume B is regular. Let $w = 0^p1^p$

If B is regular, can write $w = xyz$, $|y| > 0$, $|xy| \leq P$, and for any $i \geq 0$, xy^iz is also in B

y must be all 0s: Why? $|xy| \leq P$

$xyyz$ has more 0s than 1s

Contradiction!
USING THE PUMPING LEMMA

\[D = \{ w | w \text{ has equal number of 1s and 0s} \} \]

is not regular

Assume \(D \) is regular. Let \(w = 0P1P \) (\(w \) is in \(D \)!

If \(D \) is regular, can write \(w = xyz, |y| > 0, |xy| \leq P \), where for any \(i \geq 0 \), \(xy^iz \) is also in \(D \)

\(y \) must be all 0s: Why? \(|xy| \leq P \)

\(xyyz \) has more 0s than 1s

Contradiction!
WHAT DOES D LOOK LIKE?

\[D = \{ w \mid w \text{ has equal number of occurrences of 01 and 10} \} \]
WHAT DOES C LOOK LIKE?

\[C = \{ w \mid w \text{ has equal number of occurrences of 01 and 10}\} \]

\[= \{ w \mid w = 1, w = 0, w = \varepsilon \text{ or } w \text{ starts with a 0 and ends with a 0 or } w \text{ starts with a 1 and ends with a 1} \} \]

\[1 \cup 0 \cup \varepsilon \cup 0(0 \cup 1)^*0 \cup 1(0 \cup 1)^*1 \]
REGULAR EXPRESSIONS
(expressions representing languages)

\(\sigma \) is a regexp representing \(\{ \sigma \} \)

\(\varepsilon \) is a regexp representing \(\{ \varepsilon \} \)

\(\emptyset \) is a regexp representing \(\emptyset \)

If \(R_1 \) and \(R_2 \) are regular expressions representing \(L_1 \) and \(L_2 \) then:

\((R_1R_2) \) represents \(L_1 \cdot L_2 \)

\((R_1 \cup R_2) \) represents \(L_1 \cup L_2 \)

\((R_1)^* \) represents \(L_1^* \)
PRECEDENCE
EXAMPLE

$R_1 \ast R_2 \cup R_3 = (((R_1 \ast) R_2) \cup R_3)$
{ \(w \mid \text{w has exactly a single 1} \} \\
0^*10^*
What language does \emptyset^* represent?
What language does $\emptyset^* \text{ represent?}$
\{ w \mid \text{w has length } \geq 3 \text{ and its 3rd symbol is 0} \}
\{ w \mid w \text{ has length } \geq 3 \text{ and its 3rd symbol is 0} \} \\
(0 \cup 1)(0 \cup 1)0(0 \cup 1)^*
\{ w \mid \text{every odd position of } w \text{ is a 1} \}
\{ w \mid \text{every odd position of } w \text{ is a } 1 \}\}

\((1(0 \cup 1))^*(1 \cup \varepsilon)\)
EQUVALENCE

L can be represented by a regexp
⇔ L is regular

1. L can be represented by a regexp
 ⇒ L is regular

2. L can be represented by a regexp
 ⇐ L is a regular language
1. Given regular expression R, we show there exists NFA N such that R represents $L(N)$

Induction on the length of R:

Base Cases (R has length 1):

- $R = \sigma$

 \[\xymatrix{ O \ar[r]^\sigma & O } \]

- $R = \varepsilon$

 \[\xymatrix{ O \ar[r] & O } \]

- $R = \emptyset$

 \[\xymatrix{ O \ar[r] & O } \]
Inductive Step:

Assume R has length $k > 1$, and that every regular expression of length $< k$ represents a regular language.

Three possibilities for R:

- $R = R_1 \cup R_2$
 (Union Theorem!)
- $R = R_1 R_2$
 (Concatenation)
- $R = (R_1)^*$
 (Star)

Therefore: L can be represented by a regexp $\Rightarrow L$ is regular.
Give an NFA that accepts the language represented by \((1(0 \cup 1))^*\)
2. L can be represented by a regexp

L is a regular language

Proof idea: Transform an NFA for L into a regular expression by removing states and re-labeling arrows with regular expressions
Add unique and distinct start and accept states

While machine has more than 2 states:

Pick an internal state, rip it out and re-label the arrows with regexps, to account for the missing state
Add unique and distinct start and accept states
While machine has more than 2 states:
Pick an internal state, rip it out and re-label the arrows with regexps, to account for the missing state

01*0
While machine has more than 2 states:

More generally:
While machine has more than 2 states:

More generally:

\[R(q_1, q_2)R(q_2, q_2)^*R(q_2, q_3) \cup R(q_1, q_3) \]
$R(q_0, q_3) =$
represents $L(N)$
R(q₀, q₃) = (a*b)(a∪b)*

represents L(N)
Formally: Add q_{start} and q_{accept} to create G (GNFA)

Run CONVERT(G): (Outputs a regexp)

If #states = 2

return the expression on the arrow going from q_{start} to q_{accept}
Formally: Add q_{start} and q_{accept} to create G (GNFA)

Run CONVERT(G): (Outputs a regexp)

If $\#\text{states} > 2$

select $q_{\text{rip}} \in Q$ different from q_{start} and q_{accept}

define $Q' = Q - \{q_{\text{rip}}\}$

define R' as:

\[
R'(q_i, q_j) = R(q_i, q_{\text{rip}})R(q_{\text{rip}}, q_{\text{rip}})^*R(q_{\text{rip}}, q_j) \cup R(q_i, q_j)
\]

(R' = the regexps for edges in G')

We note that G and G' are equivalent

return CONVERT(G')
Claim: CONVERT(G) is equivalent to G

Proof by induction on k (number of states in G)

Base Case:

✓ k = 2

Inductive Step:

Assume claim is true for k-1 state GNFA

Recall that G and G’ are equivalent

But, by the induction hypothesis, G’ is equivalent to CONVERT(G’)

Thus: CONVERT(G’) equivalent to CONVERT(G)

QED
$bb \cup (a \cup ba)b^*a$

$(bb \cup (a \cup ba)b^*a)^* (b \cup (a \cup ba)b^*)$
Convert the NFA to a regular expression

- \(q_1 \) to \(q_2 \) via \(a, b \)
- \(q_1 \) to \(q_3 \) via \(a \)
- \(q_3 \) to \(q_2 \) via \(b \)
- \(q_2 \) to itself via \(b \)
DEFINITION

DFA ↔ NFA

Regular Language ↔ Regular Expression
WWW.FLAC.WS

Finish Chapter 1 of the book for next time