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PSPACE = NPSPACE 



Definition: Language B is PSPACE-complete if: 

1. B ∈ PSPACE 
2. Every A in PSPACE is poly-time reducible to B 

(i.e. B is PSPACE-hard) 



QUANTIFIED BOOLEAN FORMULAS 
(in prenex normal form) 

x ∨ ¬y ∃x∃y [ ] 

∀x [ x ∨ ¬x ] 

∀x [ x ] 

∀x∃y [ (x ∨ y) ∧ (¬x ∨ ¬y) ] 

Allow constants, 0 and 1, eg. ∀x [ 0 ∨ ¬x ] 



x ∨ ¬y ∃x∃y [ ] 

∀x [ x ∨ ¬x ] 

∀x [ x ] 

∀x∃y [ (x ∨ y) ∧ (¬x ∨ ¬y) ] 

Definition:  
A fully quantified Boolean formula is a Boolean 
formula (in prenex normal form) where every variable 
is quantified 

∀x∃y [ (x ∨ 0) ∧ (¬x ∨ ¬y) ] 



TQBF = { φ | φ is a true fully quantified 
Boolean formula} 

Theorem: TQBF is PSPACE-complete 
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expression with only constants. Evaluate φ. 
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TQBF ∈ PSPACE 

T(φ): 
1. If φ has no quantifiers, then it is an 
expression with only constants. Evaluate φ. 
Accept iff φ evaluates to 1. 

2. If φ = ∃x ψ, recursively call T on ψ, first with x 
= 0 and then with x = 1.  
Accept iff either one of the calls accepts.    

3. If φ = ∀x ψ, recursively call T on ψ, first 
with x = 0 and then with x = 1.  
Accept iff both of the calls accept.    
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Claim: Every language A in PSPACE is  
polynomial time reducible to TQBF 

We build a poly-time reduction from A to TQBF 

The reduction turns a string w into a fully 
quantified Boolean formula φ that simulates 
the PSPACE machine for A on w 

Let M be a deterministic TM that decides A in 
space nk How do we know M exists? 



A tableau for M on w is an table whose rows are the 
configurations of the computation of M on input w 

q0 w1 wn w2  # #  … … 

# # 

# # 

nk 

2 
O(nk) 
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φ will be true if and only if M accepts w 
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We design φ to encode a simulation of M on w   
φ will be true if and only if M accepts w 

Given two collections of variables denoted c and 
d representing two configurations and t > 0,  
we construct a formula φc,d,t 

If we assign c and d to actual configurations,  
φc,d,t will say:  

 “there exists a configuration m such that  
 φc,m,t/2 is true and φm,d,t/2 is true” 

We let φ = φc         ,  c           , h, where h = 2e s(n) for a  

constant e chosen so that M has less than 2e s(n) 
possible configurations on an input of length n  

start accept 

Here s(n) = nk 



HIGH-LEVEL IDEA: 
 

Encode the Algorithm of Savitch’s Theorem with a 
Quantified Boolean Formula 
If M uses nk space,  
then the QBF φ will have size O(n2k) 

If we assign c and d to actual configurations,  
φc,d,t will say:  

 “there exists a configuration m such that  
 φc,m,t/2 is true and φm,d,t/2 is true” 

We let φ = φc         ,  c           , h, where h = 2e s(n) for a  

constant e chosen so that M has less than 2e s(n) 
possible configurations on an input of length n  

start accept 

Here s(n) = nk 



To construct φc,d,t    
use ideas of Cook-Levin plus Savitch: 
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associated with variables representing 
possible tape symbols and states.  
 



To construct φc,d,t    
use ideas of Cook-Levin plus Savitch: 
 
Each cell in a configuration is 
associated with variables representing 
possible tape symbols and states.  
 
Each config has nk cells so and is 
encoded  by O(nk) variables. 
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If t = 0 or 1, we can easily construct φc,d,t: 

φc,d,t = “c equals d” OR “d follows 
      from c in a single step of M”  

How do we express “c equals d”? 
Write a Boolean formula saying that each of 
the variables representing c is equal to the 
corresponding one in d 

“d follows from c in a single step of M”? 
Use 2 x 3 windows as in the Cook-Levin 
theorem, and write a CNF formula 
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If t > 1, we construct φc,d,t recursively: 

φc,d,t = ∃m [φc,m,t/2 ∧ φm,d,t/2 ] 

∃x1 ∃x2 …∃xL      L= O(nk) 

But how long is this formula? 

φc,d,t = ∃m∀a,b[ [(a,b)=(c,m) ∨ (a,b)=(m,d)] 
    => [ φa,b,t/2 ] ] 

Every level of the recursion cuts t in half but roughly 
doubles the size of the formula (so back to length O(t)) 
So, we modify the formula to be: 

This folds the 2 recursive sub-formulas into 1 



φc,d,t = ∃m∀a,b[ [(a,b)=(c,m) ∨ (a,b)=(m,d)] 
    =>[ φa,b,t/2 ] ] 

  Set    φ = φc         , c            , h   where h = 2d s(n) 
start accept 

• Each recursive step adds a portion that is linear in 
the size of the configurations, so has size O(s(n)) 

• Number of levels of recursion is log h = O(s(n)) 

• Hence, the size of φ is O(s(n)2) 



PSPACE is often called  
the class of games 

 
Formalizations of many popular 
games are PSPACE-Complete 



THE FORMULA GAME (FG) 
…is played between two players, E and A 

Given a fully quantified Boolean formula  

E chooses values for variables quantified by ∃ 

A chooses values for variables quantified by ∀ 

Start at the leftmost quantifier 

E wins if the resulting formula is true 

A wins otherwise 

∃y∀x [ (x ∨ y) ∧ (¬x ∨ ¬y) ] 



FG = { φ | Player E has a winning strategy in φ } 

Theorem: FG is PSPACE-Complete 

Proof:  

FG = TQBF 

∀x∃y [ (x ∨ y) ∧ (¬x ∨ ¬y) ] 

x ∨ ¬y ∃x∃y [ ] 



GEOGRAPHY 
Two players take turns naming cities from 
anywhere in the world 

Each city chosen must begin with the same 
letter that the previous city ended with 

Austin → Nashua → Albany → York 

Cities cannot be repeated 

Whoever cannot name any more cities loses 



GENERALIZED GEOGRAPHY 

b 

a e 

c 

d 

f 

g 

i 

h 



GG = { (G, b) | Player 1 has a winning strategy 
for generalized geography played on graph G 

starting at node b } 

Theorem: GG is PSPACE-Complete 



GG ∈ PSPACE 

M(G, b): If b has no outgoing edges, reject. 

1. Remove node b and all edges touching it 
to get to a new graph G1 

2. For each of the nodes b1, b2, …, bk that b 
originally pointed at, recursively call M(G1, bi) 

3. If all of these accept, Player 2 has a 
winning strategy, so reject.  
Otherwise, accept.   

WANT: Machine M that accepts (G,b)   
         Player 1 has a winning strategy on (G, b) 



We show that FG ≤P GG  

GG IS PSPACE-HARD 

We convert a formula φ into (G, b) such that: 

Player E has winning strategy in φ  
if and only if  
Player 1 has winning strategy in (G, b) 

For simplicity we assume φ is of the form: 
φ = ∃x1∀x2∃x3…∃xk [ψ] 

where ψ is in cnf. 
(Quantifiers alternate, and the last move is E’s) 



b TRUE =1 FALSE = 0 

x1 

x2 

xk T 

T F 

T F 

F 

c 
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b TRUE FALSE 

x1 

c1 

x1 

x1 

x1 

c 

∃x1 [ (x1 ∨ x1 ∨ x1) ] 

F T 



b TRUE FALSE 

x1 

c1 

x1 

x1 

x1 

c 

∃x1 [ (x1 ∨ x1 ∨ x1) ] 

F T 



GG = { (G, b) | Player 1 has a winning strategy 
for generalized geography played on graph G 

starting at node b } 

Theorem: GG is PSPACE-Complete 



But n x n GO, Chess and Checkers 
can be shown to be PSPACE-hard 

Question:  
Is Chess a PSPACE complete problem? 

No, because determining whether a player 
has a winning strategy takes CONSTANT 
time and space (OK, the constant is large…) 



WWW.FLAC.WS 
Read Chapter 10.2 of the book for next time 
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