
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

Space Complexity II

THURSDAY April 17

PSPACE = NPSPACE

Definition: Language B is PSPACE-complete if:

1. B ∈ PSPACE
2. Every A in PSPACE is poly-time reducible to B

(i.e. B is PSPACE-hard)

QUANTIFIED BOOLEAN FORMULAS
(in prenex normal form)

x ∨ ¬y ∃x∃y []

∀x [x ∨ ¬x]

∀x [x]

∀x∃y [(x ∨ y) ∧ (¬x ∨ ¬y)]

Allow constants, 0 and 1, eg. ∀x [0 ∨ ¬x]

x ∨ ¬y ∃x∃y []

∀x [x ∨ ¬x]

∀x [x]

∀x∃y [(x ∨ y) ∧ (¬x ∨ ¬y)]

Definition:
A fully quantified Boolean formula is a Boolean
formula (in prenex normal form) where every variable
is quantified

∀x∃y [(x ∨ 0) ∧ (¬x ∨ ¬y)]

TQBF = { φ | φ is a true fully quantified
Boolean formula}

Theorem: TQBF is PSPACE-complete

TQBF ∈ PSPACE

T(φ):
1. If φ has no quantifiers, then it is an
expression with only constants. Evaluate φ.
Accept iff φ evaluates to 1.

TQBF ∈ PSPACE

T(φ):
1. If φ has no quantifiers, then it is an
expression with only constants. Evaluate φ.
Accept iff φ evaluates to 1.

2. If φ = ∃x ψ, recursively call T on ψ, first with x
= 0 and then with x = 1.
Accept iff either one of the calls accepts.

TQBF ∈ PSPACE

T(φ):
1. If φ has no quantifiers, then it is an
expression with only constants. Evaluate φ.
Accept iff φ evaluates to 1.

2. If φ = ∃x ψ, recursively call T on ψ, first with x
= 0 and then with x = 1.
Accept iff either one of the calls accepts.

3. If φ = ∀x ψ, recursively call T on ψ, first
with x = 0 and then with x = 1.
Accept iff both of the calls accept.

Claim: Every language A in PSPACE is
polynomial time reducible to TQBF

We build a poly-time reduction from A to TQBF

Claim: Every language A in PSPACE is
polynomial time reducible to TQBF

We build a poly-time reduction from A to TQBF

The reduction turns a string w into a fully
quantified Boolean formula φ that simulates
the PSPACE machine for A on w

Let M be a deterministic TM that decides A in
space nk How do we know M exists?

A tableau for M on w is an table whose rows are the
configurations of the computation of M on input w

q0 w1 wn w2 # # … …

nk

2
O(nk)

We design φ to encode a simulation of M on w
φ will be true if and only if M accepts w

We design φ to encode a simulation of M on w
φ will be true if and only if M accepts w

Given two collections of variables denoted c and
d representing two configurations and t > 0,
we construct a formula φc,d,t

If we assign c and d to actual configurations,
φc,d,t will be true if and only if
M can go from c to d in t steps

We design φ to encode a simulation of M on w
φ will be true if and only if M accepts w

Given two collections of variables denoted c and
d representing two configurations and t > 0,
we construct a formula φc,d,t

If we assign c and d to actual configurations,
φc,d,t will say:

 “there exists a configuration m such that
 φc,m,t/2 is true and φm,d,t/2 is true”

We design φ to encode a simulation of M on w
φ will be true if and only if M accepts w

Given two collections of variables denoted c and
d representing two configurations and t > 0,
we construct a formula φc,d,t

If we assign c and d to actual configurations,
φc,d,t will say:

 “there exists a configuration m such that
 φc,m,t/2 is true and φm,d,t/2 is true”

We let φ = φc , c , h, where h = 2e s(n) for a

constant e chosen so that M has less than 2e s(n)
possible configurations on an input of length n

start accept

Here s(n) = nk

HIGH-LEVEL IDEA:

Encode the Algorithm of Savitch’s Theorem with a
Quantified Boolean Formula
If M uses nk space,
then the QBF φ will have size O(n2k)

If we assign c and d to actual configurations,
φc,d,t will say:

 “there exists a configuration m such that
 φc,m,t/2 is true and φm,d,t/2 is true”

We let φ = φc , c , h, where h = 2e s(n) for a

constant e chosen so that M has less than 2e s(n)
possible configurations on an input of length n

start accept

Here s(n) = nk

To construct φc,d,t
use ideas of Cook-Levin plus Savitch:

To construct φc,d,t
use ideas of Cook-Levin plus Savitch:

Each cell in a configuration is
associated with variables representing
possible tape symbols and states.

To construct φc,d,t
use ideas of Cook-Levin plus Savitch:

Each cell in a configuration is
associated with variables representing
possible tape symbols and states.

Each config has nk cells so and is
encoded by O(nk) variables.

If t = 0 or 1, we can easily construct φc,d,t:

φc,d,t = “c equals d” OR “d follows
 from c in a single step of M”

If t = 0 or 1, we can easily construct φc,d,t:

φc,d,t = “c equals d” OR “d follows
 from c in a single step of M”

How do we express “c equals d”?
Write a Boolean formula saying that each of
the variables representing c is equal to the
corresponding one in d

If t = 0 or 1, we can easily construct φc,d,t:

φc,d,t = “c equals d” OR “d follows
 from c in a single step of M”

How do we express “c equals d”?
Write a Boolean formula saying that each of
the variables representing c is equal to the
corresponding one in d

“d follows from c in a single step of M”?
Use 2 x 3 windows as in the Cook-Levin
theorem, and write a CNF formula

If t > 1, we construct φc,d,t recursively:

φc,d,t = ∃m [φc,m,t/2 ∧ φm,d,t/2]

∃x1 ∃x2 …∃xL L= O(nk)

If t > 1, we construct φc,d,t recursively:

φc,d,t = ∃m [φc,m,t/2 ∧ φm,d,t/2]

∃x1 ∃x2 …∃xL L= O(nk)

But how long is this formula?

Every level of the recursion cuts t in half but roughly
doubles the size of the formula (so back to length O(t))
So, we modify the formula to be:

If t > 1, we construct φc,d,t recursively:

φc,d,t = ∃m [φc,m,t/2 ∧ φm,d,t/2]

∃x1 ∃x2 …∃xL L= O(nk)

But how long is this formula?

φc,d,t = ∃m∀a,b[[(a,b)=(c,m) ∨ (a,b)=(m,d)]
 => [φa,b,t/2]]

Every level of the recursion cuts t in half but roughly
doubles the size of the formula (so back to length O(t))
So, we modify the formula to be:

This folds the 2 recursive sub-formulas into 1

φc,d,t = ∃m∀a,b[[(a,b)=(c,m) ∨ (a,b)=(m,d)]
 =>[φa,b,t/2]]

 Set φ = φc , c , h where h = 2d s(n)
start accept

• Each recursive step adds a portion that is linear in
the size of the configurations, so has size O(s(n))

• Number of levels of recursion is log h = O(s(n))

• Hence, the size of φ is O(s(n)2)

PSPACE is often called
the class of games

Formalizations of many popular
games are PSPACE-Complete

THE FORMULA GAME (FG)
…is played between two players, E and A

Given a fully quantified Boolean formula

E chooses values for variables quantified by ∃

A chooses values for variables quantified by ∀

Start at the leftmost quantifier

E wins if the resulting formula is true

A wins otherwise

∃y∀x [(x ∨ y) ∧ (¬x ∨ ¬y)]

FG = { φ | Player E has a winning strategy in φ }

Theorem: FG is PSPACE-Complete

Proof:

FG = TQBF

∀x∃y [(x ∨ y) ∧ (¬x ∨ ¬y)]

x ∨ ¬y ∃x∃y []

GEOGRAPHY
Two players take turns naming cities from
anywhere in the world

Each city chosen must begin with the same
letter that the previous city ended with

Austin → Nashua → Albany → York

Cities cannot be repeated

Whoever cannot name any more cities loses

GENERALIZED GEOGRAPHY

b

a e

c

d

f

g

i

h

GG = { (G, b) | Player 1 has a winning strategy
for generalized geography played on graph G

starting at node b }

Theorem: GG is PSPACE-Complete

GG ∈ PSPACE

M(G, b): If b has no outgoing edges, reject.

1. Remove node b and all edges touching it
to get to a new graph G1

2. For each of the nodes b1, b2, …, bk that b
originally pointed at, recursively call M(G1, bi)

3. If all of these accept, Player 2 has a
winning strategy, so reject.
Otherwise, accept.

WANT: Machine M that accepts (G,b)
 Player 1 has a winning strategy on (G, b)

We show that FG ≤P GG

GG IS PSPACE-HARD

We convert a formula φ into (G, b) such that:

Player E has winning strategy in φ
if and only if
Player 1 has winning strategy in (G, b)

For simplicity we assume φ is of the form:
φ = ∃x1∀x2∃x3…∃xk [ψ]

where ψ is in cnf.
(Quantifiers alternate, and the last move is E’s)

b TRUE =1 FALSE = 0

x1

x2

xk T

T F

T F

F

c

b

c

TRUE =1 FALSE = 0

x1

x2

xk

c1

c2

cn

¬x1

 ∃x1∀x2…∃xk(x1 ∨ x1 ∨ x2)
 ∧ (¬x1 ∨ ¬x2 ∨ ¬x2)

 ∧ …

¬x2

¬x2

x1

x1

x2

T

T F

T F

F

b

c

TRUE =1 FALSE = 0

x1

x2

xk

c1

c2

cn

¬x1

 ∃x1∀x2…∃xk(x1 ∨ x1 ∨ x2)
 ∧ (¬x1 ∨ ¬x2 ∨ ¬x2)

 ∧ …

¬x2

¬x2

x1

x1

x2

T

T F

T F

F

b TRUE FALSE

x1

c1

x1

x1

x1

c

∃x1 [(x1 ∨ x1 ∨ x1)]

F T

b TRUE FALSE

x1

c1

x1

x1

x1

c

∃x1 [(x1 ∨ x1 ∨ x1)]

F T

GG = { (G, b) | Player 1 has a winning strategy
for generalized geography played on graph G

starting at node b }

Theorem: GG is PSPACE-Complete

But n x n GO, Chess and Checkers
can be shown to be PSPACE-hard

Question:
Is Chess a PSPACE complete problem?

No, because determining whether a player
has a winning strategy takes CONSTANT
time and space (OK, the constant is large…)

WWW.FLAC.WS
Read Chapter 10.2 of the book for next time

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44

