# 15 - 453FORMAL LANGUAGES, **AUTOMATA AND** COMPUTABILITY

# Space Complexity II

**THURSDAY April 17** 

# PSPACE = NPSPACE

**Definition:** Language B is PSPACE-complete if:

#### **1.** $B \in PSPACE$

2. Every A in PSPACE is poly-time reducible to B (i.e. B is PSPACE-hard)

### **QUANTIFIED** BOOLEAN FORMULAS (in prenex normal form)

 $\exists x \exists y [x \lor \neg y]$  $\forall x [ x \lor \neg x ]$ ∀x[x]  $\forall x \exists y [ (x \lor y) \land (\neg x \lor \neg y) ]$ Allow constants, 0 and 1, eg.  $\forall x [ 0 \lor \neg x ]$  Definition: A fully quantified Boolean formula is a Boolean formula (in prenex normal form) where every variable is quantified

> $\exists x \exists y [x \lor \neg y]$  $\forall x [ x \lor \neg x ]$ ∀x[x]  $\forall x \exists y [ (x \lor y) \land (\neg x \lor \neg y) ]$  $\forall x \exists y [(x \lor 0) \land (\neg x \lor \neg y)]$

#### TQBF = { $\phi \mid \phi$ is a true fully quantified Boolean formula}

## **Theorem: TQBF is PSPACE-complete**

# **TQBF** $\in$ **PSPACE**

# 

# 1. If $\phi$ has no quantifiers, then it is an expression with only constants. Evaluate $\phi$ . Accept iff $\phi$ evaluates to 1.

# **TQBF** $\in$ **PSPACE**

# 

If φ has no quantifiers, then it is an expression with only constants. Evaluate φ.
 Accept iff φ evaluates to 1.

2. If  $\phi = \exists x \psi$ , recursively call T on  $\psi$ , first with x = 0 and then with x = 1. Accept iff either one of the calls accepts.

# **TQBF** $\in$ **PSPACE**

# **Τ(φ**):

If φ has no quantifiers, then it is an expression with only constants. Evaluate φ.
 Accept iff φ evaluates to 1.

2. If  $\phi = \exists x \psi$ , recursively call T on  $\psi$ , first with x = 0 and then with x = 1. Accept iff either one of the calls accepts.

3. If  $\phi = \forall x \psi$ , recursively call T on  $\psi$ , first with x = 0 and then with x = 1. Accept iff both of the calls accept.

# **Claim:** Every language A in PSPACE is polynomial time reducible to TQBF

We build a poly-time reduction from A to TQBF

Claim: Every language A in PSPACE is polynomial time reducible to TQBF

We build a poly-time reduction from A to TQBF

The reduction turns a string w into a fully quantified Boolean formula  $\phi$  that simulates the PSPACE machine for A on w

Let M be a deterministic TM that decides A in space n<sup>k</sup> How do we know M exists?

A tableau for M on w is an table whose rows are the configurations of the computation of M on input w



Given two collections of variables denoted c and d representing two configurations and t > 0, we construct a formula  $\phi_{c,d,t}$ 

If we assign c and d to actual configurations,  $\phi_{c,d,t}$  will be true if and only if M can go from c to d in t steps

Given two collections of variables denoted c and d representing two configurations and t > 0, we construct a formula  $\phi_{c,d,t}$ 

If we assign c and d to actual configurations,  $\phi_{c,d,t}$  will say: "there exists a configuration m such that  $\phi_{c,m,t/2}$  is true and  $\phi_{m,d,t/2}$  is true"

Given two collections of variables denoted c and d representing two configurations and t > 0, we construct a formula  $\phi_{c,d,t}$ 

If we assign c and d to actual configurations,  $\phi_{c,d,t}$  will say: "there exists a configuration m such that  $\phi_{c,m,t/2}$  is true and  $\phi_{m,d,t/2}$  is true" We let  $\phi = \phi_{c_{start}}$ ,  $c_{accept}$ , h, where  $h = 2^{e_{s(n)}}$  for a constant e chosen so that M has less than 2<sup>e s(n)</sup> possible configurations on an input of length n Here  $s(n) = n^k$ 

# **HIGH-LEVEL IDEA:**

Encode the Algorithm of Savitch's Theorem with a Quantified Boolean Formula If M uses n<sup>k</sup> space, then the QBF \u0365 will have size O(n<sup>2k</sup>)

If we assign c and d to actual configurations,  $\phi_{c,d,t}$  will say: "there exists a configuration m such that  $\phi_{c,m,t/2}$  is true and  $\phi_{m,d,t/2}$  is true" We let  $\phi = \phi_{c_{start}}$ ,  $c_{accept}$ , h, where  $h = 2^{e_{s(n)}}$  for a constant e chosen so that M has less than 2<sup>e s(n)</sup> possible configurations on an input of length n Here  $s(n) = n^k$ 

# To construct $\phi_{c,d,t}$ use ideas of Cook-Levin plus Savitch:

To construct  $\phi_{c,d,t}$ use ideas of Cook-Levin plus Savitch:

Each cell in a configuration is associated with variables representing possible tape symbols and states.

To construct  $\phi_{c,d,t}$ use ideas of Cook-Levin plus Savitch:

Each cell in a configuration is associated with variables representing possible tape symbols and states.

Each config has n<sup>k</sup> cells so and is encoded by O(n<sup>k</sup>) variables.

If t = 0 or 1, we can easily construct  $\phi_{c,d,t}$ :

 If t = 0 or 1, we can easily construct  $\phi_{c,d,t}$ :

How do we express "c equals d"? Write a Boolean formula saying that each of the variables representing c is equal to the corresponding one in d If t = 0 or 1, we can easily construct  $\phi_{c,d,t}$ :

How do we express "c equals d"? Write a Boolean formula saying that each of the variables representing c is equal to the corresponding one in d

"d follows from c in a single step of M"? Use 2 x 3 windows as in the Cook-Levin theorem, and write a CNF formula If t > 1, we construct  $\phi_{c,d,t}$  recursively:

$$\phi_{c,d,t} = \exists m \left[ \phi_{c,m,t/2} \land \phi_{m,d,t/2} \right]$$
$$\exists x_1 \exists x_2 ... \exists x_L \quad L = O(n^k)$$

If t > 1, we construct  $\phi_{c,d,t}$  recursively:

$$\phi_{c,d,t} = \exists m \left[ \phi_{c,m,t/2} \land \phi_{m,d,t/2} \right]$$
$$\exists x_1 \exists x_2 \dots \exists x_L \quad L = O(n^k)$$

#### But how long is this formula?

Every level of the recursion cuts t in half but roughly doubles the size of the formula (so back to length O(t)) So, we modify the formula to be:

If t > 1, we construct  $\phi_{c,d,t}$  *recursively*:

$$\phi_{c,d,t} = \exists m \left[ \phi_{c,m,t/2} \land \phi_{m,d,t/2} \right]$$
$$\exists x_1 \exists x_2 ... \exists x_L \quad L = O(n^k)$$

#### But how long is this formula?

Every level of the recursion cuts t in half but roughly doubles the size of the formula (so back to length O(t)) So, we modify the formula to be:

 $\phi_{c,d,t} = \exists m \forall a, b[ [(a,b)=(c,m) \lor (a,b)=(m,d)] => [\phi_{a,b,t/2}]$ 

This folds the 2 recursive sub-formulas into 1

$$\phi_{c,d,t} = \exists m \forall a, b[[(a,b)=(c,m) \lor (a,b)=(m,d)] =>[\phi_{a,b,t/2}]]$$

Set 
$$\phi = \phi_{c_{start}, c_{accept}, h}$$
 where  $h = 2^{d_s(n)}$ 

- Each recursive step adds a portion that is linear in the size of the configurations, so has size O(s(n))
- Number of levels of recursion is log h = O(s(n))
- Hence, the size of  $\phi$  is O(s(n)<sup>2</sup>)

PSPACE is often called the class of games

Formalizations of many popular games are PSPACE-Complete

# THE FORMULA GAME (FG)

...is played between two players, E and A Given a fully quantified Boolean formula  $\exists y \forall x [(x \lor y) \land (\neg x \lor \neg y)]$ 

E chooses values for variables quantified by ∃
A chooses values for variables quantified by ∀
Start at the leftmost quantifier
E wins if the resulting formula is true

A wins otherwise

# $\forall x \exists y [ (x \lor y) \land (\neg x \lor \neg y) ]$ $\exists x \exists y [ x \lor \neg y ]$

FG = {  $\phi$  | Player E has a winning strategy in  $\phi$  } Theorem: FG is PSPACE-Complete

**Proof:** 

# FG = TQBF

## GEOGRAPHY

Two players take turns naming cities from anywhere in the world

Each city chosen must begin with the same letter that the previous city ended with

**Cities cannot be repeated** 

Austin  $\rightarrow$  Nashua  $\rightarrow$  Albany  $\rightarrow$  York

Whoever cannot name any more cities loses

# **GENERALIZED** GEOGRAPHY



#### GG = { (G, b) | Player 1 has a winning strategy for generalized geography played on graph G starting at node b }

**Theorem: GG is PSPACE-Complete** 

## $\textbf{GG} \in \textbf{PSPACE}$

WANT: Machine M that accepts (G,b)
⇔ Player 1 has a winning strategy on (G, b)
M(G, b): If b has no outgoing edges, *reject*.
1. Remove node b and all edges touching it to get to a new graph G<sub>1</sub>

2. For each of the nodes  $b_1$ ,  $b_2$ , ...,  $b_k$  that b originally pointed at, recursively call  $M(G_1, b_i)$ 

3. If all of these accept, Player 2 has a winning strategy, so *reject*. Otherwise, *accept*.

## **GG** IS PSPACE-HARD

We show that  $FG \leq_P GG$ 

We convert a formula  $\phi$  into (G, b) such that:

Player E has winning strategy in if and only if Player 1 has winning strategy in (G, b)

For simplicity we assume  $\phi$  is of the form:

 $\phi = \exists \mathbf{x}_1 \forall \mathbf{x}_2 \exists \mathbf{x}_3 \dots \exists \mathbf{x}_k [\psi]$ 

where  $\psi$  is in cnf. (Quantifiers alternate, and the last move is E's)



C





# $\exists \mathbf{x}_1 \left[ \left( \mathbf{x}_1 \lor \mathbf{x}_1 \lor \mathbf{x}_1 \right) \right]$



# $\exists \mathbf{x}_1 [ (\mathbf{x}_1 \lor \mathbf{x}_1 \lor \mathbf{x}_1) ]$



#### GG = { (G, b) | Player 1 has a winning strategy for generalized geography played on graph G starting at node b }

**Theorem: GG is PSPACE-Complete** 

#### Question: Is Chess a PSPACE complete problem?

No, because determining whether a player has a winning strategy takes CONSTANT time and space (OK, the constant is large...)

But n x n GO, Chess and Checkers can be shown to be PSPACE-hard

# WWW.FLAC.WS

Read Chapter 10.2 of the book for next time