15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
TIME COMPLEXITY AND POLYNOMIAL TIME; NON DETERMINISTIC TURING MACHINES AND NP

THURSDAY Mar 20
COMPLEXITY THEORY

Studies what can and can’t be computed under limited resources such as time, space, etc

Today: Time complexity
We measure time complexity by counting the elementary steps required for a machine to halt.

Consider the language \(A = \{ 0^k1^k \mid k \geq 0 \} \)

On input of length \(n \):

1. Scan across the tape and **reject** if the string is not of the form \(0^i1^j \)

2. Repeat the following if both 0s and 1s remain on the tape:
 - Scan across the tape, crossing off a single 0 and a single 1

3. If 0s remain after all 1s have been crossed off, or vice-versa, **reject**. Otherwise **accept**.
MEASURING TIME COMPLEXITY

We measure time complexity by counting the elementary steps required for a machine to halt.

Consider the language \(A = \{ 0^k1^k \mid k \geq 0 \} \)

On input of length \(n \):

1. Scan across the tape and reject if the string is not of the form \(0^i1^j \)

2. Repeat the following if both 0s and 1s remain on the tape:
 - Scan across the tape, crossing off a single 0 and a single 1

3. If 0s remain after all 1s have been crossed off, or vice-versa, reject. Otherwise accept.
Definition: Let M be a TM that halts on all inputs. The running time or time-complexity of M is the function $f : \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps that M uses on any input of length n.
ASYMPTOTIC ANALYSIS

5n^3 + 2n^2 + 22n + 6 = O(n^3)
Let f and g be two functions $f, g : \mathbb{N} \to \mathbb{R}^+$. We say that $f(n) = O(g(n))$ if there exist positive integers c and n_0 so that for every integer $n \geq n_0$

$$f(n) \leq cg(n)$$

When $f(n) = O(g(n))$, we say that $g(n)$ is an asymptotic upper bound for $f(n)$

f asymptotically NO MORE THAN g
Let f and g be two functions $f, g : \mathbb{N} \rightarrow \mathbb{R}^+$. We say that $f(n) = O(g(n))$ if there exist positive integers c and n_0 so that for every integer $n \geq n_0$

$$f(n) \leq cg(n)$$

When $f(n) = O(g(n))$, we say that $g(n)$ is an asymptotic upper bound for $f(n)$

f asymptotically NO MORE THAN g

$$5n^3 + 2n^2 + 22n + 6 = O(n^3)$$

If $c = 6$ and $n_0 = 10$, then $5n^3 + 2n^2 + 22n + 6 \leq cn^3$
\[2n^{4.1} + 200283n^4 + 2 = O(n^{4.1}) \]

\[3n \log_2 n + 5n \log_2 \log_2 n = O(n \log_2 n) \]

\[n \log_{10} n^{78} = O(n \log_{10} n) \]
\[2n^{4.1} + 200283n^4 + 2 = O(n^{4.1}) \]

\[3n\log_2 n + 5n \log_2 \log_2 n = O(n\log_2 n) \]

\[n\log_{10} n^{78} = O(n\log_{10} n) \]

\[\log_{10} n = \frac{\log_2 n}{\log_2 10} \]

\[O(n\log_2 n) = O(n\log_{10} n) = O(n\log\log n) \]
Definition: \(\text{TIME}(t(n)) = \{ L \mid L \text{ is a language decided by a } O(t(n)) \text{ time Turing Machine} \} \)

\[
A = \{ 0^k1^k \mid k \geq 0 \} \in \text{TIME}(n^2)
\]
A = \{ 0^k 1^k \mid k \geq 0 \} \in \text{TIME}(n \log n)

Cross off every other 0 and every other 1. If the # of 0s and 1s left on the tape is odd, reject

00000000000001111111111111
x0x0x0x0x0x0xx1x1x1x1x1x1x
xxx0xxx0xxx0xxxx1xxx1xxx1x
xxxxxxx0xxxxxxxxxxxx1xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
We can prove that a TM cannot decide A in less time than $O(n \log n)$
We can prove that a TM cannot decide A in less time than $O(n\log n)$

*7.49 Extra Credit. Let $f(n) = o(n\log n)$. Then $Time(f(n))$ contains only regular languages.

where $f(n) = o(g(n))$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

ie, for all $c > 0$, $\exists n_0$ such that $f(n) < cg(n)$ for all $n \geq n_0$

f asymptotically LESS THAN g
Can $A = \{ 0^k1^k \mid k \geq 0 \}$ be decided in time $O(n)$ with a two-tape TM?

Scan all 0s and copy them to the second tape. Scan all 1s, crossing off a 0 from the second tape for each 1.
Different models of computation yield different running times for the same language!
Theorem: Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$-time multi-tape TM has an equivalent $O(t(n)^2)$ single tape TM.

Claim: Simulating each step in the multi-tape machine uses at most $O(t(n))$ steps on a single-tape machine. Hence total time of simulation is $O(t(n)^2)$.
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine.
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine.
Theorem: Let \(t(n) \) be a function such that \(t(n) \geq n \). Then every \(t(n) \)-time multi-tape TM has an equivalent \(O(t(n)^2) \) single tape TM.

Analysis: (Note, \(k \), the \# of tapes, is fixed.)

Let \(S \) be simulator

- Put \(S \)'s tape in proper format: \(O(n) \) steps
- **Two scans** to simulate one step,
 1. to obtain info for next move \(O(t(n)) \) steps, why?
 2. to simulate it (may need to shift everything over to right possibly \(k \) times): \(O(t(n)) \) steps, why?
Theorem: Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$-time multi-tape TM has an equivalent $O(t(n)^2)$ single tape TM.

Analysis: (Note, k, the # of tapes, is fixed.)

Let S be simulator

- Put S’s tape in proper format: $O(n)$ steps
- Two scans to simulate one step,
 1. to obtain info for next move $O(t(n))$ steps, why?
 2. to simulate it (may need to shift everything over to right possibly k times): $O(t(n))$ steps, why?

Therefore, $O(n) + t(n) O(t(n)) = O(t(n)^2)$ steps in simulation.
\[P = \bigcup_{k \in \mathbb{N}} \text{TIME}(n^k) \]
NON-DETERMINISTIC TURING MACHINES AND NP
Definition: A Non-Deterministic TM is a 7-tuple $T = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where:

- Q is a finite set of states
- Σ is the input alphabet, where $\square \notin \Sigma$
- Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$
- $\delta : Q \times \Gamma \rightarrow 2^{(Q \times \Gamma \times \{L,R\})}$
- $q_0 \in Q$ is the start state
- $q_{accept} \in Q$ is the accept state
- $q_{reject} \in Q$ is the reject state, and $q_{reject} \neq q_{accept}$
NON-DETERMINISTIC TMs

...are just like standard TMs, except:

1. The machine may proceed according to several possibilities

2. The machine accepts a string if there exists a path from start configuration to an accepting configuration
Deterministic Computation:

- accept or reject

Non-Deterministic Computation:

- accept
- reject
Definition: Let M be a NTM that is a decider, i.e. on all inputs, all branches halt (with accept or reject). The **running time or time-complexity** of M is the function $f : \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps that M uses on any branch of its computation on any input of length n.
Theorem: Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$-time nondeterministic single-tape TM has an equivalent $2^{O(t(n))}$ deterministic single tape TM.
Definition: \(\text{NTIME}(t(n)) = \{ L \mid L \text{ is decided by a } O(t(n))-\text{time non-deterministic Turing machine} \} \)

\[\text{TIME}(t(n)) \subseteq \text{NTIME}(t(n)) \]
BOOLEAN FORMULAS

φ = (¬x ∧ y) ∨ z

A satisfying assignment is a setting of the variables that makes the formula true

x = 1, y = 1, z = 1 is a satisfying assignment for φ
A Boolean formula is **satisfiable** if there exists a satisfying assignment for it.

\[
\text{YES:} \quad a \land b \land c \land \neg d
\]

\[
\text{NO:} \quad \neg(x \lor y) \land x
\]

\[
\text{SAT} = \{ \phi \mid \phi \text{ is a satisfiable Boolean formula} \}
\]
A 3cnf-formula is of the form:

\[(x_1 \vee \neg x_2 \vee x_3) \land (x_4 \vee x_2 \vee x_5) \land (x_3 \vee \neg x_2 \vee \neg x_1)\]

- literals
- clauses

\[\begin{align*}
(x_1 \vee \neg x_2 \vee x_1) \\
(x_3 \vee x_1) \land (x_3 \vee \neg x_2 \vee \neg x_1) \\
(x_1 \vee x_2 \vee x_3) \land (\neg x_4 \vee x_2 \vee x_1) \lor (x_3 \vee x_1 \vee \neg x_1) \\
(x_1 \vee \neg x_2 \vee x_3) \land (x_3 \land \neg x_2 \land \neg x_1)
\end{align*}\]
A 3cnf-formula is of the form:

\((x_1 \lor \neg x_2 \lor x_3) \land (x_4 \lor x_2 \lor x_5) \land (x_3 \lor \neg x_2 \lor \neg x_1)\)

The formula is satisfiable if at least one clause is true. Here are some examples:

YES

\((x_1 \lor \neg x_2 \lor x_1)\)

NO

\((x_3 \lor x_1) \land (x_3 \lor \neg x_2 \lor \neg x_1)\)

NO

\((x_1 \lor x_2 \lor x_3) \land (\neg x_4 \lor x_2 \lor x_1) \lor (x_3 \lor x_1 \lor \neg x_1)\)

NO

\((x_1 \lor \neg x_2 \lor x_3) \land (x_3 \land \neg x_2 \land \neg x_1)\)

3SAT = \{ \phi \mid \phi \text{ is a satisfiable 3cnf-formula} \}
3SAT = \{ \phi \mid \phi \text{ is a satisfiable 3cnf-formula} \}

Theorem: $\text{3SAT} \in \text{NTIME}(n^2)$

On input ϕ:

1. Check if the formula is in 3cnf
2. For each variable, non-deterministically substitute it with 0 or 1
3. Test if the assignment satisfies ϕ
NP = \bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k)
Theorem: $L \in NP \iff$ if there exists a poly-time Turing machine $V(\text{erifier})$ with

$L = \{ x | \exists y(\text{witness}) \ |y| = \text{poly}(|x|) \text{ and } V(x,y) \text{ accepts} \}$
Theorem: $L \in NP \iff$ if there exists a poly-time Turing machine $V(\text{erifier})$ with

$L = \{ x \mid \exists y \ (\text{witness}) \ |y| = \text{poly}(|x|) \text{ and } V(x,y) \text{ accepts} \}$

Proof:

(1) If $L = \{ x \mid \exists y \ |y| = \text{poly}(|x|) \text{ and } V(x,y) \text{ accepts} \}$
then $L \in NP$

(2) If $L \in NP$ then

$L = \{ x \mid \exists y \ |y| = \text{poly}(|x|) \text{ and } V(x,y) \text{ accepts} \}$
Theorem: $L \in \text{NP} \iff$ if there exists a poly-time Turing machine $V(\text{erifier})$ with

$L = \{ x | \exists y (\text{witness}) |y| = \text{poly}(|x|) \text{ and } V(x,y) \text{ accepts} \}$

Proof:

(1) If $L = \{ x | \exists y |y| = \text{poly}(|x|) \text{ and } V(x,y) \text{ accepts} \}$ then $L \in \text{NP}$

Because we can guess y and then run V

(2) If $L \in \text{NP}$ then

$L = \{ x | \exists y |y| = \text{poly}(|x|) \text{ and } V(x,y) \text{ accepts} \}$
Theorem: $L \in \text{NP} \iff$ if there exists a poly-time Turing machine $V(\text{erifier})$ with

$L = \{ x \mid \exists y (\text{witness}) \ |y| = \text{poly}(|x|) \text{ and } V(x,y) \text{ accepts} \}$

Proof:

(1) If $L = \{ x \mid \exists y \ |y| = \text{poly}(|x|) \text{ and } V(x,y) \text{ accepts} \}$ then $L \in \text{NP}$

Because we can guess y and then run V

(2) If $L \in \text{NP}$ then

$L = \{ x \mid \exists y \ |y| = \text{poly}(|x|) \text{ and } V(x,y) \text{ accepts} \}$

Let N be a non-deterministic poly-time TM that decides L and define $V(x,y)$ to accept if y is an accepting computation history of N on x
3SAT = \{ \phi \mid \exists y \text{ such that } y \text{ is a satisfying assignment to } \phi \text{ and } \phi \text{ is in 3cnf} \}

SAT = \{ \phi \mid \exists y \text{ such that } y \text{ is a satisfying assignment to } \phi \}
A language is in NP if and only if there exist polynomial-length certificates* for membership to the language.

SAT is in NP because a satisfying assignment is a polynomial-length certificate that a formula is satisfiable.*

* that can be verified in poly-time
HAMILTONIAN PATHS
HAMILTONIAN PATHS
HAMPATH = \{ (G,s,t) \mid G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } t \} \\

Theorem: HAMPATH \in NP \\

The Hamilton path itself is a certificate
K-CLIQUE
K-CLIQUE
CLIQUE = \{ (G,k) \mid G \text{ is an undirected graph with a } k\text{-clique} \}

Theorem: CLIQUE \in NP

The k-clique itself is a certificate
NP = all the problems for which once you have the answer it is easy (i.e. efficient) to verify
P = NP?
$P = NP?$
POLY-TIME REDUCIBILITY

\[f : \Sigma^* \rightarrow \Sigma^* \] is a polynomial time computable function if some poly-time Turing machine \(M \), on every input \(w \), halts with just \(f(w) \) on its tape.

Language \(A \) is polynomial time reducible to language \(B \), written \(A \leq_P B \), if there is a poly-time computable function \(f : \Sigma^* \rightarrow \Sigma^* \) such that:

\[w \in A \iff f(w) \in B \]

\(f \) is called a polynomial time reduction of \(A \) to \(B \).
Theorem: If \(A \leq_P B \) and \(B \in P \), then \(A \in P \)

Proof: Let \(M_B \) be a poly-time (deterministic) TM that decides \(B \) and let \(f \) be a poly-time reduction from \(A \) to \(B \)

We build a machine \(M_A \) that decides \(A \) as follows:

On input \(w \):

1. Compute \(f(w) \)
2. Run \(M_B \) on \(f(w) \)
Definition: A language B is NP-complete if:

1. $B \in \text{NP}$
2. Every A in NP is poly-time reducible to B (i.e. B is NP-hard)
Suppose B is NP-Complete

So, if B is NP-Complete and $B \in P$ then $NP = P$. Why?
Theorem (Cook-Levin): SAT is NP-complete

Corollary: SAT ∈ P if and only if P = NP
Read Chapter 7.3 of the book for next time