15-453
FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
THE ARITHMETIC HIERARCHY

THURSDAY, MAR 6
THE ARITHMETIC HIERARCHY

\[\Delta^0_{n+1} = \{ \text{decidable sets} \} \quad (\text{sets} = \text{languages}) \]

\[\Sigma^0_{n+1} = \{ \text{semi-decidable sets} \} \]

\[\Sigma^0_n \quad = \{ \text{sets semi-decidable in some } B \in \Sigma^0_n \} \]

\[\Delta^0_{n+1} \quad = \{ \text{sets decidable in some } B \in \Sigma^0_n \} \]

\[\Pi^0_n \quad = \{ \text{complements of sets in } \Sigma^0_n \} \]
Decidable Languages

Semi-decidable Languages

Co-semi-decidable Languages

\[\sum_1^0 \cap \Pi_1^0 = \Delta_1^0 \]

Decidable Languages
Semi-decidable Languages

Decidable Languages

Co-semi-decidable Languages

\[\Sigma_1^0 \cap \Pi_1^0 = \Delta_1^0 \]

\[\Sigma_3^0 \cap \Pi_3^0 = \Delta_3^0 \]

\[\Sigma_2^0 \cap \Pi_2^0 = \Delta_2^0 \]
Definition: A decidable predicate \(R(x,y) \) is some proposition about \(x \) and \(y \), where there is a TM \(M \) such that

for all \(x, y \), \(R(x,y) \) is TRUE \(\Rightarrow \) \(M(x,y) \) accepts
\(R(x,y) \) is FALSE \(\Rightarrow \) \(M(x,y) \) rejects

We say \(M \) “decides” the predicate \(R \).

1. \(x, y \) are positive integers or elements of \(\Sigma^* \)
Definition: A decidable predicate \(R(x,y) \) is some proposition about \(x \) and \(y \), where there is a TM \(M \) such that

for all \(x, y \), \(R(x,y) \) is TRUE \(\implies \) \(M(x,y) \) accepts
\(R(x,y) \) is FALSE \(\implies \) \(M(x,y) \) rejects

We say \(M \) “decides” the predicate \(R \).

EXAMPLES:
\(R(x,y) = \) “\(x + y \) is less than 100”
\(R(<N>,y) = \) “\(N \) halts on \(y \) in at most 100 steps”

Kleene’s T predicate, \(T(<M>, x, y) \): \(M \) accepts \(x \) in \(y \) steps.

1. \(x, y \) are positive integers or elements of \(\sum^* \)
Definition: A decidable predicate $R(x,y)$ is some proposition about x and y^1, where there is a TM M such that

for all x, y, $R(x,y)$ is TRUE \Rightarrow $M(x,y)$ accepts

$R(x,y)$ is FALSE \Rightarrow $M(x,y)$ rejects

We say M “decides” the predicate R.

EXAMPLES:
$R(x,y) =$ “$x + y$ is less than 100”
$R(<N>,y) =$ “N halts on y in at most 100 steps”
Kleene’s T predicate, $T(<M>, x, y): M$ accepts x in y steps.

Note: A is decidable $\iff A = \{x \mid R(x,\varepsilon)\}$,
for some decidable predicate R.
Theorem: A language A is semi-decidable if and only if there is a decidable predicate $R(x, y)$ such that:

$$A = \{ x \mid \exists y \ R(x,y) \}$$

Proof:
Theorem: A language A is semi-decidable if and only if there is a **decidable** predicate $R(x, y)$ such that:

$$A = \{ x \mid \exists y \ R(x,y) \}$$

Proof:

(1) If $A = \{ x \mid \exists y \ R(x,y) \}$ then A is semi-decidable

(2) If A is semi-decidable, then $A = \{ x \mid \exists y \ R(x,y) \}$
Theorem: A language A is semi-decidable if and only if there is a decidable predicate $R(x, y)$ such that: $A = \{ x \mid \exists y \ R(x,y) \}$

Proof:
(1) If $A = \{ x \mid \exists y \ R(x,y) \}$ then A is semi-decidable
Because we can enumerate over all y's

(2) If A is semi-decidable, then $A = \{ x \mid \exists y \ R(x,y) \}$
Theorem: A language A is semi-decidable if and only if there is a decidable predicate $R(x,y)$ such that: $A = \{ x | \exists y \ R(x,y) \}$

Proof:

1. If $A = \{ x | \exists y \ R(x,y) \}$ then A is semi-decidable
 Because we can enumerate over all y's

2. If A is semi-decidable, then $A = \{ x | \exists y \ R(x,y) \}$
Let M semi-decide A
Then, $A = \{ x | \exists y \ T(<M>, x, y) \}$ (Here M is fixed.)
where
Kleene’s T predicate, $T(<M>, x, y)$: M accepts x in y steps.
Theorem

$\Sigma^0_1 = \{ \text{semi-decidable sets} \}$

$= \{ x | \exists y \ R(x,y) \}$

$\Pi^0_1 = \{ \text{complements of semi-decidable sets} \}$

$= \{ x | \forall y \ R(x,y) \}$

$\Delta^0_1 = \{ \text{decidable sets} \}$

$= \Sigma^0_1 \cap \Pi^0_1$

Where R is a decidable predicate
Theorem

$\Sigma_2^0 = \{ \text{sets semi-decidable in some semi-dec. B} \}$

= languages of the form $\{ x | \exists y_1 \forall y_2 R(x,y_1,y_2) \}$

$\Pi_2^0 = \{ \text{complements of } \Sigma_2^0 \text{ sets} \}$

= languages of the form $\{ x | \forall y_1 \exists y_2 R(x,y_1,y_2) \}$

$\Delta_2^0 = \Sigma_2^0 \cap \Pi_2^0$

Where R is a decidable predicate
Theorem

\[\sum_0^n = \text{languages } \{ x \mid \exists y_1 \forall y_2 \exists y_3 \ldots Q y_n \ R(x, y_1, \ldots, y_n) \} \]

\[\Pi_0^n = \text{languages } \{ x \mid \forall y_1 \exists y_2 \forall y_3 \ldots Q y_n \ R(x, y_1, \ldots, y_n) \} \]

\[\Delta_0^n = \sum_0^n \cap \Pi_0^n \]

Where \(R \) is a decidable predicate
Example

$$\sum_1^0 = \text{languages of the form } \{ x \mid \exists y \ R(x,y) \}$$

We know that $$A_{TM}$$ is in $$\sum_1^0$$ Why?

Show it can be described in this form:
$\Sigma^0_1 = \text{languages of the form } \{ x | \exists y \ R(x,y) \}$

We know that A_{TM} is in Σ^0_1

Show it can be described in this form:

$A_{TM} = \{ \langle M, w \rangle | \exists t \ [M \text{ accepts } w \text{ in } t \text{ steps}] \}$

Decidable predicate
Example

\[\Sigma_1^0 = \text{languages of the form } \{ x \mid \exists y \ R(x,y) \} \]

We know that \(A_{TM} \) is in \(\Sigma_1^0 \) Why?

Show it can be described in this form:

\[A_{TM} = \{ \langle M, w \rangle \mid \exists t \ [M \text{ accepts } w \text{ in } t \text{ steps}] \} \]

Decidable predicate

\[A_{TM} = \{ \langle M, w \rangle \mid \exists t \ T (<M>, w, t) \} \]
Example

Σ^0_1 = languages of the form \{ x | \exists y $R(x,y)$ \}

We know that A_{TM} is in Σ^0_1 Why?

Show it can be described in this form:

$A_{TM} = \{ <(M,w)> | \exists t [M \text{ accepts } w \text{ in } t \text{ steps}] \}$

decidable predicate

$A_{TM} = \{ <(M,w)> | \exists t T(<M>, w, t) \}$

$A_{TM} = \{ <(M,w)> | \exists v (v \text{ is an accepting computation history of } M \text{ on } w) \}$
Decidable languages

Semi-decidable languages

Co-semi-decidable languages

$\sum_1^0 \cap \pi_2^0 = \Delta_2^0$

Δ_3^0

Δ_1^0

\sum_3^0

π_3^0

π_1^0

\sum_2^0

π_2^0
$$\Pi^0_1 = \text{languages of the form } \{ \ x \mid \forall y \ R(x,y) \ \}$$

Show that \text{EMPTY} (ie, \text{ETM}) = \{ \ M \mid L(M) = \emptyset \ \} is in $$\Pi^0_1$$
$\Pi^0_1 = \text{languages of the form } \{ x \mid \forall y \ R(x,y) \} \}

\text{Show that } \text{EMPTY (ie, } E_{TM}) = \{ M \mid L(M) = \emptyset \} \text{ is in } \Pi^0_1

\text{EMPTY} = \{ M \mid \forall w \forall t [M \text{ doesn’t accept } w \text{ in } t \text{ steps}] \}
\[\Pi^0_1 = \text{languages of the form } \{ x \mid \forall y \ R(x,y) \} \]

Show that \text{EMPTY (ie, } E_{TM}) = \{ M \mid L(M) = \emptyset \} \text{ is in } \Pi^0_1

\text{EMPTY} = \{ M \mid \forall w \forall t \ [\neg T(<M>, w, t)] \}

\text{decidable predicate}
Π^0_1 = languages of the form \{ $x \mid \forall y \ R(x,y)$ \}

Show that EMPTY (ie, E_{TM}) = \{ $M \mid L(M) = \emptyset$ \} is in Π^0_1

$\text{EMPTY} = \{ M \mid \forall w \forall t \ [\neg T(<M>, w, t)] \}$

two quantifiers?? decidable predicate
THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable function \(<, \,> : \Sigma^* \times \Sigma^* \rightarrow \Sigma^*\) and computable functions \(\pi_1\) and \(\pi_2 : \Sigma^* \rightarrow \Sigma^*\) such that

\[z = <w, t> \implies \pi_1 (z) = w \text{ and } \pi_2(z) = t \]
THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable function \(<, >: \Sigma^* \times \Sigma^* \rightarrow \Sigma^*\) and computable functions \(\pi_1\) and \(\pi_2: \Sigma^* \rightarrow \Sigma^*\) such that

\[z = \langle w, t \rangle \implies \pi_1(z) = w \text{ and } \pi_2(z) = t \]

\[\text{EMPTY} = \{ M \mid \forall w \forall t \ [M \text{ doesn't accept } w \text{ in } t \text{ steps}] \} \]

\[\text{EMPTY} = \{ M \mid \forall z [M \text{ doesn't accept } \pi_1(z) \text{ in } \pi_2(z) \text{ steps}] \} \]

\[\text{EMPTY} = \{ M \mid \forall z [\neg T(\langle M \rangle, \pi_1(z), \pi_2(z))] \} \]
Theorem. There is a 1-1 and onto computable function $<, >: \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$ and computable functions π_1 and $\pi_2 : \Sigma^* \rightarrow \Sigma^*$ such that

$z = <w, t> \Rightarrow \pi_1(z) = w$ and $\pi_2(z) = t$

Proof: Let $w = w_1...w_n \in \Sigma^*$, $t \in \Sigma^*$. Let $a, b \in \Sigma$, $a \neq b$.

$<w, t> := a w_1... a w_n b t$

$\pi_1(z) := \text{“if } z \text{ has the form } a w_1... a w_n b t, \text{ then output } w_1... w_n, \text{ else output } \varepsilon”$

$\pi_2(z) := \text{“if } z \text{ has the form } a w_1... a w_n b t, \text{ then output } t, \text{ else output } \varepsilon”$
Decidable languages

Semi-decidable languages

Co-semi-decidable languages

\[\Delta_3^0 \]

\[\Sigma_3^0 \]

\[\Pi_3^0 \]

\[\Sigma_2^0 \]

\[\Pi_2^0 \]

\[\Sigma_1^0 \]

\[\Pi_1^0 \]

\[\Delta_2^0 = \Sigma_2^0 \cap \Pi_2^0 \]

\[\Delta_1^0 \]

\[\Delta_2^0 \]

\[\Delta_3^0 \]

\[A_{TM} \]

EMPTY
\(\Pi_2^0 \) = languages of the form \(\{ x \mid \forall y \exists z \ R(x,y,z) \} \)

Show that TOTAL = \(\{ M \mid M \text{ halts on all inputs} \} \) is in \(\Pi_2^0 \)
$\Pi^0_2 = \text{languages of the form } \{ x | \forall y \exists z \ R(x,y,z) \}$

Show that $\text{TOTAL} = \{ M | M \text{ halts on all inputs} \}$ is in Π^0_2

$\text{TOTAL} = \{ M | \forall w \exists t \ [M \text{ halts on } w \text{ in } t \text{ steps}] \}$

decidable predicate
$$\Pi^0_2 = \text{languages of the form } \{ x \mid \forall y \exists z \ R(x,y,z) \}$$

Show that $\text{TOTAL} = \{ M \mid M \text{ halts on all inputs} \}$ is in Π^0_2

$$\text{TOTAL} = \{ M \mid \forall w \ \exists t \ [T(<M>, w, t)] \}$$

decidable predicate
Decidable languages

Semi-decidable languages

Co-semi-decidable languages

\[\sum_3^0 \]

\[\sum_2^0 \]

\[\sum_1^0 \]

\[\Delta_3^0 \]

\[\Delta_2^0 \]

\[\Delta_1^0 \]

\[\sum_2^0 \cap \Pi_2^0 \]

\[\pi_3^0 \]

\[\pi_2^0 \]

\[\pi_1^0 \]

TOTAL

EMPTY

\[A_{TM} \]
\[\Sigma^0_2 = \text{languages of the form } \{ x \mid \exists y \forall z \ R(x,y,z) \} \]

Show that \(\text{FIN} = \{ M \mid L(M) \text{ is finite} \} \) is in \(\Sigma^0_2 \)
$\sum^0_2 = \text{languages of the form } \{ x \mid \exists y \forall z \ R(x,y,z) \}$

Show that $\text{FIN} = \{ M \mid \text{L}(M) \text{ is finite} \}$ is in \sum^0_2

$\text{FIN} = \{ M \mid \exists n \forall w \forall t \ [\text{Either } |w| < n, \text{ or } M \text{ doesn’t accept } w \text{ in } t \text{ steps}] \}$

$\text{FIN} = \{ M \mid \exists n \forall w \forall t \ (|w| < n \lor \neg T(<M>,w,t)) \}$

decidable predicate
Decidable languages

Semi-decidable languages

Co-semi-decidable languages

\sum_3^0

\sum_2^0

\sum_1^0

Δ_3^0

Δ_2^0

Δ_1^0

Π_3^0

Π_2^0

Π_1^0

$\sum_2^0 \cap \Pi_2^0$

$\text{FIN}

\text{TOTAL}$

A_{TM}

\text{EMPTY}
$\Sigma^0_3 = \text{languages of the form } \{ x \mid \exists y \forall z \exists u \; R(x,y,z,u) \}$

Show that $\text{COF} = \{ M \mid L(M) \text{ is cofinite} \}$ is in Σ^0_2
\(\sum_3^0 \) = languages of the form \(\{ x \mid \exists y \forall z \exists u \ R(x,y,z,u) \} \)

Show that \(\text{COF} = \{ M \mid \text{L}(M) \text{ is cofinite } \} \) is in \(\sum_2^0 \)

\(\text{COF} = \{ M \mid \exists n \forall w \exists t \ [|w| > n \Rightarrow M \text{ accept } w \text{ in } t \text{ steps}] \} \)

\(\text{COF} = \{ M \mid \exists n \forall w \exists t \ (|w| \leq n \forall T(<M>,w,t)) \} \)

decidable predicate
Decidable languages

Semi-decidable languages

\[\sum_0^0 \]

\[\sum_0^3 \]

\[\Pi_3^0 \]

\[\Pi_1^0 \]

\[\Delta_0^0 \]

\[\Delta_2^0 \]

\[\Delta_3^0 \]

\[\Pi_2^0 \]

\[\Pi_0^0 \]

\[\sum_2^0 \cap \Pi_2^0 \]

\[\sum_2^0 \]

\[\sum_1^0 \]

Co-semi-decidable languages

\[\text{COF} \]

\[\text{FIN} \]

\[\text{TOTAL} \]

\[\text{EMPTY} \]

\[\text{집계} \]

\[\text{TM} \]
Decidable languages

Semi-decidable languages

Co-semi-decidable languages

\[\Sigma^0_0 \]

\[\Delta^0_1 \]

\[\Delta^0_2 \]

\[\Sigma^0_2 \]

\[\Pi^0_2 \]

\[\Pi^0_3 \]

\[\sum^0_2 \cap \Pi^0_2 \]

\[\Delta^0_3 \]

\[\Pi^0_1 \]

\[\text{ATM} \]

\[\text{TOTAL} \]

\[\text{EMPTY} \]

\[\text{REG} \]
Decidable languages

Semi-decidable languages

Co-semi-decidable languages

\[\Sigma^0_3 \]
\[\sum^0_2 \]
\[\sum^0_1 \]

\[\Delta^0_3 \]
\[\Delta^0_2 \]

\[\Delta^0_1 \]

\[\Pi^0_3 \]
\[\Pi^0_2 \]
\[\Pi^0_1 \]

\[\Sigma^0_2 \cap \Pi^0_2 \]

\[\text{DEc} \]
\[\text{FIN} \]
\[\text{TOTAL} \]

\[\text{ATM} \]
\[\text{TOTAL} \]

\[\text{EMPTY} \]
Decidable languages

Semi-decidable languages

CFL

\[\sum_3^0 \]

\[\sum_2^0 \]

FIN

\[\sum_1^0 \]

\[\Delta_3^0 \]

\[\Delta_2^0 \]

\[\Delta_1^0 \]

\[\Pi_3^0 \]

\[\Pi_2^0 \]

\[\Pi_1^0 \]

\[\text{TOTAL} \]

\[\text{EMPTY} \]

\[\text{ATM} \]

\[\text{FIN} \]

\[\text{CFL} \]

\[\sum_2^0 \cap \Pi_2^0 \]
Each is m-complete for its level in hierarchy and cannot go lower (by the SuperHalting Theorem, which shows the hierarchy does not collapse).
Each is m-complete for its level in hierarchy and cannot go lower (by the SuperHalting Theorem, which shows the hierarchy does not collapse).

L is m-complete for class C if

i) $L \in C$ and

ii) L is m-hard for C,

ie, for all $L' \in C$, $L' \leq_m L$
A_{TM} is m-complete for class $C = \sum_{1}^{0}$

i) $A_{TM} \in C$

ii) A_{TM} is m-hard for C,
\(A_{TM} \) is m-complete for class \(C = \Sigma_1^0 \)

i) \(A_{TM} \in C \)

ii) \(A_{TM} \) is m-hard for \(C \),

Suppose \(L \in C \). Show: \(L \leq_m A_{TM} \)

Let \(M \) semi-decide \(L \). Then Map

\(\Sigma^* \rightarrow \Sigma^* \)

where \(w \rightarrow (M, w) \).

Then, \(w \in L \iff (M, w) \in A_{TM} \)

QED
FIN is m-complete for class $C = \sum_2^0$

i) $FIN \in C$

ii) FIN is m-hard for C,

Suppose $L \in C$. Show: $L \leq_m FIN$
Supose $L \in \Sigma_2^0$ ie $L = \{ w | \exists y \forall z \ R(w,y,z) \}$ where R is decided by some TM D

Show: $L \leq_m \text{FIN}$
Suppose \(L \in \Sigma^0_2 \) ie \(L = \{ w | \exists y \forall z \ R(w, y, z) \} \) where \(R \) is decided by some TM \(D \).

Show: \(L \leq_m \text{FIN} \)

Map \(\Sigma^* \rightarrow \Sigma^* \)

where \(w \rightarrow N_{D,w} \)
Suppose \(L \in \Sigma^0_2 \) i.e. \(L = \{ w \mid \exists y \forall z \ R(w, y, z) \} \) where \(R \) is decided by some TM \(D \)

Show: \(L \leq_m \text{FIN} \)

Map \(\Sigma^* \to \Sigma^* \)

where \(w \to N_{D, w} \)

Define \(N_{D, w} \) on input \(s \):

1. Write down all strings \(y \) of length \(|s|\)
2. For each \(y \), try to find a \(z \) such that
 \(\neg R(w, y, z) \) and accept if all are successful
 (here use \(D \) and \(w \))

So, \(w \in L \iff N_{D, w} \in \text{FIN} \)
ORACLES not all powerful

The following problem cannot be decided, even by a TM with an oracle for the Halting Problem:

SUPERHALT = \{ (M,x) \mid M, \text{ with an oracle for the Halting Problem, halts on } x \}
ORACLES not all powerful

The following problem cannot be decided, even by a TM with an oracle for the Halting Problem:

SUPERHALT = \{ (M,x) \mid M, with an oracle for the Halting Problem, halts on x \}

Can use diagonalization here!

Suppose H decides SUPERHALT (with oracle)
Define \(D(X) = \text{"if } H(X,X) \text{ accepts (with oracle) then LOOP, else ACCEPT."} \)

\(D(D) \) halts \(\iff \) \(H(D,D) \) accepts \(\iff \) \(D(D) \) loops…
ORACLES not all powerful

Theorem: The arithmetic hierarchy is strict. That is, the nth level contains a language that isn’t in any of the levels below n.

Proof IDEA: Same idea as the previous slide.
Theorem: The arithmetic hierarchy is strict. That is, the nth level contains a language that isn’t in any of the levels below n.

Proof IDEA: Same idea as the previous slide.

$	ext{SUPERHALT}^0 = \text{HALT} = \{ (M,x) \mid M \text{ halts on } x \}$.

$	ext{SUPERHALT}^1 = \{ (M,x) \mid M, \text{ with an oracle for the Halting Problem, halts on } x \}$.

$	ext{SUPERHALT}^n = \{ (M,x) \mid M, \text{ with an oracle for } \text{SUPERHALT}^{n-1}, \text{ halts on } x \}$.
WWW.FLAC.WS

Read Chapter 6.4 for next time