15 - 453FORMAL LANGUAGES, **AUTOMATA AND** COMPUTABILITY

ORACLE TURING MACHINES AND TURING REDUCIBILITY

TUESDAY, MAR 4

ORACLE TMs

Oracle

Computational Theology?

ORACLE TMs

Oracle for A_{TM}

INFINITE TAPE

ORACLE TMs

Oracle for A_{TM}

INFINITE TAPE

ORACLE MACHINES

An ORACLE is a set B to which the TM may pose membership questions "Is w in B?" (formally: TM enters state q_2) and the TM always receives a correct answer in one step (formally: if the string on the oracle tape is in B, state q_2 is changed to q_{YES} , otherwise q_{NO})

This makes sense even if B is not decidable! (We do not assume that the oracle B is a computable set!) We say A is semi-decidable in B if there is an oracle TM M with oracle B that semi-decides A

We say A is decidable in B if there is an oracle TM M with oracle B that decides A

$HALT_{TM}$ is DECIDABLE in A_{TM}

On input (M,w), decide if M halts on w as follows:

1. Ask the oracle for A_{TM} whether M accepts w. If yes, then ACCEPT

2. Switch the accept and reject states of M to get M'. Ask the oracle for A_{TM} whether M' accepts w. If yes, then ACCEPT

3. REJECT

A_{TM} is DECIDABLE in HALT_{TM}

On input (M,w), decide if M accepts w as follows:

Ask the oracle for $HALT_{TM}$ whether M halts on w. If yes, then run M(w) and output its answer. If no, then REJECT.

Language A "Turing Reduces" to Language B

if A is decidable in B, ie if there is an oracle TM M with oracle B that decides A

≤_T VERSUS ≤_m

Theorem: If A \leq_m B then A \leq_T B

Proof:

If $A \leq_m B$ then there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every w,

 $w \in A \Leftrightarrow f(w) \in B$

We can thus use an oracle for B to decide A

Theorem: $\neg HALT_{TM} \leq_T HALT_{TM}$ Theorem: $\neg HALT_{TM} \not\leq_m HALT_{TM}$

THE ARITHMETIC HIERARCHY

 $\Delta_1^0 = \{ \text{decidable sets} \}$ (sets = languages)

$$\sum_{1}^{0} = \{ \text{ semi-decidable sets } \}$$

- $\sum_{n+1}^{0} = \{ \text{ sets semi-decidable in some } B \in \sum_{n}^{0} \}$
- $\Delta_{n+1}^{0} = \{ \text{ sets decidable in some } B \in \sum_{n}^{0} \}$
 - $\Pi_{n}^{0} = \{ \text{ complements of sets in } \sum_{n}^{0} \}$

WWW.FLAC.WS Read Chapter 6.4 for next time