Problem 1 \text{ DECIDABLE ?}

\{ (M, w) | M is a TM that on input w, tries to move its head past the left end of the tape \}

Problem 2 \text{ DECIDABLE ?}

\{ (M, w) | M is a TM that on input w, moves its head left at least once, at some point \}
Problem 1 UNDECIDABLE

\{ (M, w) | M is a TM that on input w, tries to move its head past the left end of the tape \}

Proof: Assume, for a contradiction, that TM T decides the language

We use T to decide \(A_{\text{TM}} \)

On input \((M,w)\), make a new TM \(N \) that on input \(w \) marks the leftmost tape cell and then simulates \(M(w) \) (as tho the leftmost cell was not there). If \(M \) tries to move to the marked cell, \(N \) moves the head back to the right. If \(M \) accepts, \(N \) tries to move its head past the left end of the tape.

Run T on input \((N,w)\)
Problem 2 DECIDABLE

\{(M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point}\}

On input \((M, w)\), run the machine for \(|Q_M| + |w| + 1\) steps:

- **Accept** If M’s head moved left at all
- **Reject** Otherwise

(Why does this work??)
RICE’S THEOREM, THE RECURSION THEOREM, AND THE FIXED-POINT THEOREM

THURSDAY FEB 27
\[\text{FIN}_{\text{TM}} = \{ M \mid M \text{ is a TM and } L(M) \text{ is finite} \} \]

Is \(\text{FIN}_{\text{TM}} \) Decidable?
\[\text{FIN}_{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is finite} \} \]

Is \(\text{FIN}_{TM} \) Decidable?

Note Properties of this language:

- \(\text{FIN}_{TM} \) is a language of Turing Machines
- If \(M_1 \equiv M_2 \) (ie \(L(M_1) = L(M_2) \)), then either both \(M_1 \) and \(M_2 \) are in \(\text{FIN}_{TM} \) or both are not.
- There are TMs \(M_1 \) and \(M_2 \), such that \(M_1 \in \text{FIN}_{TM} \) and \(M_2 \notin \text{FIN}_{TM} \)
RICE’S THEOREM

Let L be a language over Turing machines. Assume that L satisfies the following properties:

1. For TMs M_1 and M_2, if $M_1 \equiv M_2$ then
 $M_1 \in L \iff M_2 \in L$

2. There are TMs M_1 and M_2, such that $M_1 \in L$ and $M_2 \notin L$

Then L is undecidable

EXTREMELY POWERFUL!
RICE’S THEOREM

Let L be a language over Turing machines. Assume that L satisfies the following properties:

1. For TMs M_1 and M_2, if $M_1 \equiv M_2$ then
 \[M_1 \in L \iff M_2 \in L \]

2. There are TMs M_1 and M_2, such that $M_1 \in L$ and $M_2 \notin L$

Then L is undecidable

\[F\text{IN}_{\text{TM}} = \{ M \mid M \text{ is a TM and } L(M) \text{ is finite} \} \]
RICE’S THEOREM

Let L be a language over Turing machines. Assume that L satisfies the following properties:

1. For TMs M_1 and M_2, if $M_1 \equiv M_2$ then $M_1 \in L \iff M_2 \in L$

2. There are TMs M_1 and M_2, such that $M_1 \in L$ and $M_2 \not\in L$

Then L is undecidable

$$E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$$

$$REG_{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \}$$
Then L is undecidable

Proof: Will show:

\(\mathbb{A}_{TM} \) is mapping reducible to L
Proof: Show L is undecidable

Show: A_{TM} is mapping reducible to L
Proof: Show L is undecidable

Show: A_{TM} is mapping reducible to L
RICE’S THEOREM

Proof:

Define M_\emptyset to be a TM that never halts.

Assume, WLOG, that $M_\emptyset \notin L$ Why?

Let $M_1 \in L$ (such M_1 exists, by assumption)

Show A_{TM} is mapping reducible to L:
RICE’S THEOREM

Proof:

Define M_\emptyset to be a TM that never halts

Assume, WLOG, that $M_\emptyset \not\in L$ Why?

Let $M_1 \in L$ (such M_1 exists, by assumption)

Show A_{TM} is mapping reducible to L:

Map $(M, w) \rightarrow M_w$ where

$M_w(s) = \text{accepts if both } M(w) \text{ and } M_1(s) \text{ accept loops otherwise}$

What is the language of M_w?
A_{TM} is mapping reducible to L

\[\Sigma^* \xrightarrow{f} A_{TM} \xrightarrow{f} \Sigma^* \]

\[(M,w) \xrightarrow{f} \{M_w \equiv M_1 \} \]

\[(M,w) \xrightarrow{f} \{M_w \equiv M_\emptyset \} \]

QED
Problem

Let $S = \{ M \mid M$ is a TM with the property:
for all w, $M(w)$ accepts implies $M(w^R)$ accepts $\}$. S is undecidable.
$A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$

$HALT_{TM} = \{ (M,w) \mid M \text{ is a TM that halts on string } w \}$

$E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$

$REG_{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \}$

$EQ_{TM} = \{ (M,N) \mid M, N \text{ are TMs and } L(M) = L(N) \}$

$ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$

ALL UNDECIDABLE

Where is Rice’s Theorm Applicable?

Which are SEMI-DECIDABLE or not?
The rest of the content of today’s lecture has been a major source of headaches and misunderstandings.
“The recursion theorem is just like tennis. Unless you're exposed to it at age five, you'll never become world class.”

-Juris Hartmanis (Turing Award 1993)

(Note: Juris didn’t see the recursion theorem until he was in his 20’s....)
Theorem: Let T be a Turing machine that computes a function $t : \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$. Then there is a Turing machine R that computes a function $r : \Sigma^* \rightarrow \Sigma^*$, where for every string w,

$$r(w) = t(<R>, w)$$
Theorem: Let \(T \) be a Turing machine that computes a function \(t : \Sigma^* \times \Sigma^* \rightarrow \Sigma^* \).

Then there is a Turing machine \(R \) that computes a function \(r : \Sigma^* \rightarrow \Sigma^* \), where for every string \(w \),

\[
r(w) = t(<R>, w)
\]

\[
(a,b) \rightarrow T \rightarrow t(a,b)
\]

\[
w \rightarrow R \rightarrow t(<R>,w)
\]
Recursion Theorem says:
A Turing machine can obtain its own description (code), and compute with it.

We can use the operation:
"Obtain your own description" in pseudocode!

Given a computable t, we can get a computable r such that $r(w) = t(<R>, w)$ where $<R>$ is a description of r.
Recursion Theorem says:
A Turing machine can obtain its own description (code), and compute with it.

We can use the operation:
"Obtain your own description"
in pseudocode!

Given a computable t, we can get a computable r such that $r(w) = t(<R>,w)$ where $<R>$ is a description of r.

INSIGHT: T (or t) is really R (or r).
Theorem: \(A_{TM} \) is undecidable

Proof (using the Recursion Theorem):

Assume \(H \) decides \(A_{TM} \) (Informal Proof)

Construct machine \(R \) such that on input \(w \):

1. Obtains its own description \(<R> \)

2. Runs \(H \) on \((<R>, w) \) and flips the output

Running \(R \) on input \(w \) always does the opposite of what \(H \) says it should!
Theorem: A_{TM} is undecidable

Proof (using the Recursion Theorem):

Assume H decides A_{TM} (Formal Proof)

Let $T_H(x, w) = \begin{cases}
\text{Reject if } H(x, w) \text{ accepts} \\
\text{Accept if } H(x, w) \text{ rejects}
\end{cases}$

(Here x is viewed as a code for a TM)

By the Recursion Theorem, there is a TM R such that:

$R(w) = T_H(<R>, w) = \begin{cases}
\text{Reject if } H(<R>, w) \text{ accepts} \\
\text{Accept if } H(<R>, w) \text{ rejects}
\end{cases}$

Contradiction!
Theorem: \(\text{MIN}_{\text{TM}} \) is not RE.

Proof (using the Recursion Theorem):

\[
\text{MIN}_{\text{TM}} = \{<M>| M \text{ is a minimal TM, wrt } |<M>|\}
\]
Theorem: \(\text{MIN}_TM \) is not RE.

Proof (using the Recursion Theorem):

Assume \(E \) enumerates \(\text{MIN}_TM \) (Informal Proof)

Construct machine \(R \) such that on input \(w \):

1. Obtains its own description \(<R>\)
2. Runs \(E \) until a machine \(D \) appears with a longer description than of \(R \)
3. Simulate \(D \) on \(w \)

Contradiction. Why?
Theorem: \(\text{MIN}_{\text{TM}} \) is not \(\text{RE} \).

Proof (using the Recursion Theorem):

Assume \(E \) enumerates \(\text{MIN}_{\text{TM}} \) (Formal Proof)

Let \(T_E(x, w) = D(w) \) where \(<D> \) is first in \(E \)'s enumeration s.t. \(|<D>| > |x| \)

By the *Recursion Theorem*, there is a \(\text{TM} \ R \) such that:

\[R(w) = T_E(<R>, w) = D(w) \]

where \(<D> \) is first in \(E \)'s enumeration s.t. \(|<D>| > |<R>| \)

Contradiction. Why?
THE FIXED-POINT THEOREM

Theorem: Let $f : \Sigma^* \rightarrow \Sigma^*$ be a computable function. There is a TM R such that $f(<R>)$ describes a TM that is equivalent to R.
THE FIXED-POINT THEOREM

Theorem: Let \(f : \Sigma^* \rightarrow \Sigma^* \) be a computable function. There is a TM \(R \) such that \(f(<R>) \) describes a TM that is equivalent to \(R \).

Proof: Pseudocode for the TM \(R \):

On input \(w \):

1. Obtain the description \(<R> \)
2. Let \(g = f(<R>) \) and interpret \(g \) as a code for a TM \(G \)
3. Accept \(w \) iff \(G(w) \) accepts
Theorem: Let $f : \Sigma^* \to \Sigma^*$ be a computable function. There is a TM R such that $f(<R>)$ describes a TM that is equivalent to R.

Proof: Let $T_f(x, w) = G(w)$ where $<G> = f(x)$

(Here $f(x)$ is viewed as a code for a TM)

By the Recursion Theorem, there is a TM R such that:

$R(w) = T_f(<R>, w)$
THE FIXED-POINT THEOREM

Theorem: Let $f : \Sigma^* \rightarrow \Sigma^*$ be a computable function. There is a TM R such that $f(<R>)$ describes a TM that is equivalent to R.

Proof: Let $T_f(x, w) = G(w)$ where $<G> = f(x)$
(Here $f(x)$ is viewed as a code for a TM)

By the Recursion Theorem, there is a TM R such that:

$R(w) = T_f(<R>, w) = G(w)$ where $<G> = f(<R>)$

Hence $R \equiv G$ where $<G> = f(<R>)$, ie $<R> \equiv f(<R>)$

So R is a fixed point of f!
THE FIXED-POINT THEOREM

Theorem: Let \(f : \Sigma^* \rightarrow \Sigma^* \) be a computable function. There is a TM \(R \) such that \(f(<R>) \) describes a TM that is *equivalent* to \(R \).

Example:

Suppose a virus flips the first bit of each word \(w \) in \(\Sigma^* \) (or in each TM).

Then there is a TM \(R \) that “remains uninfected”.
Theorem: Let T be a Turing machine that computes a function $t : \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$.

Then there is a Turing machine R that computes a function $r : \Sigma^* \rightarrow \Sigma^*$, where for every string w,

$$r(w) = t(<R>, w)$$
THE RECURSION THEOREM

Theorem: Let T be a Turing machine that computes a function $t : \Sigma^* \times \Sigma^* \to \Sigma^*$.

Then there is a Turing machine R that computes a function $r : \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(<R>, w)$$

So first, need to show how to construct a TM that computes its own description (ie code).
Suppose in general we want to design a program that prints its own description. How?

Print this sentence.

Print two copies of the following (the stuff inside quotes), and put the second copy in quotes:
“Print two copies of the following (the stuff inside quotes), and put the second copy in quotes:”
Lemma: There is a computable function $q : \Sigma^* \rightarrow \Sigma^*$, where for any string w, $q(w)$ is the \textit{description (code)} of a TM P_w that on any input, prints out w and then accepts
A TM SELF THAT PRINTS <SELF>

B (<M>) = < P_{<M>} M > where P_{<M>} M (w') = M (<M>)
A TM SELF THAT PRINTS \(\langle \text{SELF} \rangle \)

\[\langle B \rangle \rightarrow B \rightarrow w' \rightarrow P_{} \rightarrow B \rightarrow B (\langle B \rangle) \]

\[B (\langle M \rangle) = \langle P_{<M>} M \rangle \text{ where } P_{<M>} M (w') = M (\langle M \rangle) \]

So, \(B (\langle B \rangle) = \langle P_{} B \rangle \text{ where } P_{} B (w') = B (\langle B \rangle) \)
A TM SELF THAT PRINTS <SELF>

B (<M>) = < P_<M> M > where P_<M> M (w') = M (<M>)

So, B () = < P_ B > where P_ B (w') = B ()

Now, P_ B (w') = B() = <P_ B >

So, let SELF = P_ B
A TM SELF THAT PRINTS <SELF>

\[\langle M \rangle \xrightarrow{\text{B}} \langle M \rangle \]

\[\langle B \rangle \xrightarrow{\text{B}} \langle B \rangle \]

\[\langle M \rangle \xrightarrow{\text{M}} \langle M \rangle \]

\[\langle B \rangle \xrightarrow{\text{B}} \langle B \rangle \]
A TM SELF THAT PRINTS <SELF>
A NOTE ON SELF REFERENCE

Suppose in general we want to design a program that prints its own description. How?

Print this sentence.

Print two copies of the following (the stuff inside quotes), and put the second copy in quotes:

“Print two copies of the following (the stuff inside quotes), and put the second copy in quotes:”

= B

= P
Theorem: Let T be a Turing machine that computes a function $t : \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$. There is a Turing machine R that computes a function $r : \Sigma^* \rightarrow \Sigma^*$, where for every string w,

$$r(w) = t(<R>, w)$$
Proof:

\[(a,b) \rightarrow T \rightarrow t(a,b)\]
Proof:

\[(a,b) \rightarrow T \rightarrow t(a,b)\]

\[<M> \rightarrow B \rightarrow \rightarrow \rightarrow P \rightarrow M\]
Proof:

(a,b) \rightarrow (a,b)

\langle M \rangle \rightarrow B

\langle M \rangle \rightarrow P \langle M \rangle \rightarrow M

w \rightarrow P \langle BT \rangle \rightarrow B

w' \rightarrow P \langle BT \rangle \rightarrow BT

Proof:

\[(a,b) \xrightarrow{} T \xrightarrow{} t(a,b)\]

\[<M> \xrightarrow{} B \xrightarrow{} \xrightarrow{w'} P^{<M>} \xrightarrow{} M \xrightarrow{} R\]

\[w \xrightarrow{} P^{<BT>} \xrightarrow{<BT>} B \xrightarrow{} \xrightarrow{w'} R\]
Proof:

\[(a, b) \rightarrow T \rightarrow t(a, b)\]

\[w' \rightarrow P^{<M>} \rightarrow M\]

\[w\rightarrow P^{<BT>} \rightarrow B \rightarrow R\]

\[<R> = ???\]
Proof:

(a, b) \rightarrow T \rightarrow t(a, b)

\langle M \rangle \rightarrow B \rightarrow w'

\langle R \rangle = ???

w \rightarrow P \langle BT \rangle \rightarrow B \rightarrow P \langle BT \rangle \rightarrow BT
Proof:

(a, b) \rightarrow T \rightarrow t(a, b)

\langle M \rangle \rightarrow B

\langle M \rangle \rightarrow P \langle M \rangle \rightarrow w'

\langle R \rangle (= \langle P_{BT}BT \rangle)

w \rightarrow P \langle BT \rangle \rightarrow B

w' \rightarrow \langle BT \rangle \rightarrow BT
Proof:

$$(a,b) \rightarrow T \rightarrow t(a,b)$$

$$<M> \rightarrow B \rightarrow w'$$

$$<R> = <P_{<BT>BT}>$$

$$w \rightarrow P_{<BT>} \rightarrow B \rightarrow w'$$
Proof:

\[(a, b) \rightarrow T \rightarrow t(a, b)\]

\[\langle M \rangle \rightarrow B \rightarrow w' \rightarrow P_{<M>} \rightarrow M \]

\[\langle R \rangle = \langle P_{<BT>BT}> \]

\[w \rightarrow P_{<BT>} \rightarrow BT \rightarrow B \rightarrow T \]
Proof:

\[(a, b) \rightarrow T \rightarrow t(a, b)\]

\[<M> \rightarrow B \rightarrow w' \rightarrow P_{<M>} \rightarrow M\]

\[R \rightarrow <R> (= P_{<BT> BT>} \rightarrow T \rightarrow t(<R>, w)\]

\[w \rightarrow P_{<BT>} \rightarrow B \rightarrow t(<R>, w)\]
Theorem: Let T be a Turing machine that computes a function $t : \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$. There is a Turing machine R that computes a function $r : \Sigma^* \rightarrow \Sigma^*$, where for every string w, $r(w) = t(<R>, w)$.
Read Chapter 6.1 and 6.3 for next time