15-4.53
 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

15-453
 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

YOU NEED TO PICK UP
THE SYLLABUS,
THE COURSE SCHEDULE,
THE PROJECT INFO SHEET, TODAY'S CLASS NOTES

WWW.FLAC.WS

INSTRUCTORS \& TAs

Lenore Blum

Aashish Jindia

Andy Smith

Office Hours

Lenore Blum (lblum@cs)
Office Hours: Tues 2-3pm, Gates 7105
Andy Smith (adsmith@andrew)
Office Hours: Mon 6-8pm, GHC 7101
Aashish Jindia (ajindia@andrew)
Office Hours: Wed 6-8pm, GHC 7101

Project
Homework 15\%
\section*{Class

Participation 5\%}
Midterm I
15\%
Midterm II 15\%

Project
Homework 25\%
Final
25\%
\section*{Class

Participation}
\section*{$5+5 \%$}
\section*{Midterm I}
15\%
Midterm II 15\%

HOMEWORK

Homework will be assigned every Tuesday and will be due one week later at the beginning of class. Late homework will be accepted only under exceptional circumstances.

All assignments must be typeset (exceptions allowed for diagrams). Each problem should be done on a separate page.

You must list your collaborators (including yourself) and all references (including books, articles, websites, people) in every homework assignment in a References section at the end.

COURSE PROJ ECT

Choose a (unique) topic
Learn about your topic
Write progress reports
(Feb 6, March 22)
Meet with an instructor/TA once a month
Prepare a 10-minute presentation (April 24, April 29, May 1?)

Final Report (May 1)

COURSE PROJ ECT

Suggested places to look for project topics

Any paper that has appeared in the proceedings of FOCS or STOC in the last 5 years. FOCS (Foundations of Computer Science) and STOC (Symposium on the Theory of Computing) are the two major conferences of general computer science theory. The proceedings of both conferences are available at the E\&S library or electronically.

- Electronic version of the proceedings of STOC
- Electronic version of the proceedings of FOCS

What's New

This class is about mathematical models of computation

WHY SHOULD I CARE?

WAYS OF THINKING

THEORY CAN DRIVE PRACTICE

Mathematical models of computation predated computers as we know them

THIS STUFF IS USEFUL

Course Outline

PART 1

Automata and Languages:
finite automata, regular languages, pushdown automata, context-free languages, pumping lemmas.

PART 2

Computability Theory:
Turing Machines, decidability, reducibility, the arithmetic hierarchy, the recursion theorem, the Post correspondence problem.

PART 3

Complexity Theory and Applications:
time complexity, classes P and NP, NP-completeness, space complexity, PSPACE, PSPACE-completeness, the polynomial hierarchy, randomized complexity, classes RP and BPP.

Mathematical Models of Computation (predated computers as we know them)

PART 1

 Automata and Languages:linguistics)finite automata, regular languages, pushdown automata, context-free languages, pumping lemmas.

PART 2

Computability Theory: 1930's-40's (logic, decidability) Turing Machines, decidability, reducibility, the arithmetic hierarchy, the recursion theorem, the Post correspondence problem.

PART 3

 1960's-70'sComplexity Theory and Applications: (computers) time complexity, classes P and NP, NP-completeness, space complexity, PSPACE, PSPACE-completeness, the polynomial hierarchy, randomized complexity, classes RP and BPP.

This class will emphasize PROOFS

A good proof should be:

Easy to understand

Correct

Suppose $A \subseteq\{1,2, \ldots, 2 n\}$ with $|A|=n+1$
TRUE or FALSE:
There are always two numbers in \mathbf{A} such that one divides the other

TRUE

LEVEL 1

HINT 1:

THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes then at least one hole will have more than one pigeon

LEVEL 1

HINT 1:

THE PIGEONHOLE PRINCIPLE

 If you put 6 pigeons in 5 holes then at least one hole will have more than one pigeon

LEVEL 1

HINT 1:

THE PIGEONHOLE PRINCIPLE

If you put $\mathrm{n}+1$ pigeons in n holes then at least one hole will have more than one pigeon

HINT 2:

Every integer a can be written as $\mathrm{a}=\mathbf{2}^{\mathrm{k}} \mathrm{m}$, where m is an odd number

LEVEL 2

PROOF IDEA:

Given: $A \subseteq\{1,2, \ldots, 2 n\}$ and $|A|=n+1$
Show: There is an integer m and elements $a_{1} \neq a_{2}$ in A
such that $\mathrm{a}_{1}=2 \mathrm{im}$ and $\mathrm{a}_{2}=2 \mathrm{j} \mathrm{m}$

Suppose $A \subseteq\{1,2, \ldots, 2 n\}$ with $|A|=n+1$
Write every number in A as a = $2^{\mathrm{k}} \mathrm{m}$, where m is an odd number between 1 and $2 n-1$

How many odd numbers in $\{1, \ldots, 2 n\} ?$

Since $|\mathrm{A}|=\mathrm{n}+1$, there must be two numbers in A with the same odd part

Say a_{1} and a_{2} have the same odd part m. Then $\mathrm{a}_{1}=2 \mathrm{i} \mathrm{m}$ and $\mathrm{a}_{2}=2 \mathrm{j} \mathrm{m}$, so one must divide the other

We expect your proofs to have three levels:
\square The first level should be a one-word or one-phrase "HINT" of the proof
(e.g. "Proof by contradiction," "Proof by induction," "Follows from the pigeonhole principle")
\square The second level should be a short oneparagraph description or "KEY IDEA"
\square The third level should be the FULL PROOF

DOUBLE STANDARDS?

During the lectures, my proofs will usually only contain the first two levels and maybe part of the third

DETERMINISTIC FINITE AUTOMATA

DETERMINISTIC FINITE AUTOMATA and

REGULAR LANGUAGES

TUESDAY JAN 14

The automaton accepts a string if the process ends in a double circle

ANATOMY OF A DETERMINISTIC FINITE AUTOMATON

SOME VOCABULARY

An alphabet Σ is a finite set (e.g., $\Sigma=\{0,1\}$)
A string over Σ is a finite-length sequence of elements of $\boldsymbol{\Sigma}$
$\Sigma^{*}=$ the set of strings over $\boldsymbol{\Sigma}$
For string $x,|x|$ is the length of x
The unique string of length 0 will be denoted by ε and will be called the empty or null string

A language over $\boldsymbol{\Sigma}$ is a set of strings over $\boldsymbol{\Sigma}$ In other words: a language is a subset of Σ^{*}
deterministic
DFA
A \wedge finite automaton \wedge is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
\mathbf{Q} is the set of states (finite)
Σ is the alphabet (finite)
$\delta: \mathbf{Q} \times \mathbf{\Sigma} \rightarrow \mathbf{Q}$ is the transition function $\mathrm{q}_{0} \in \mathbf{Q}$ is the start state
$\mathbf{F} \subseteq \mathbf{Q}$ is the set of accept/final states
Suppose $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}} \in \boldsymbol{\Sigma}$ and $\mathbf{w}=\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}} \in \boldsymbol{\Sigma}^{*}$ Then \mathbf{M} accepts w iff there are $r_{0}, r_{1}, \ldots, r_{n} \in \mathbf{Q}$, s.t.

- $r_{0}=q_{0}$
- $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$, for $i=0, \ldots, n-1$, and
- $r_{n} \in F$
deterministic
A^{\wedge} finite automaton \wedge is a 5 -tuple $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$
Q is the set of states (finite)
Σ is the alphabet (finite)
$\delta: \mathbf{Q} \times \boldsymbol{\Sigma} \rightarrow \mathbf{Q}$ is the transition function $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state
$\mathrm{F} \subseteq \mathrm{Q}$ is the set of accept/final states

$$
M \text { accepts } \varepsilon \text { iff } q_{0} \in F
$$

$$
\begin{aligned}
L(M) & =\text { set of all strings that M accepts } \\
& =\text { "the language recognized by } M "
\end{aligned}
$$

$\mathrm{L}(\mathrm{M})=$?

$$
\mathrm{L}(\mathrm{M})=\text { ? }
$$

$\mathrm{L}(\mathrm{M})=$?

$L(M)=\{w \mid w h a s ~ a n ~ e v e n ~ n u m b e r ~ o f ~ 1 s\} ~$

δ	0	1
p	p	q
q	q	p

$Q \quad \Sigma \quad q_{0} F$ $M=(\{p, q\},\{0,1\}, \delta, p,\{q\})$

 THEOREM:
 $L(M)=\{w \mid w h a s ~ o d d$ number of 1s \}

Proof: By induction on n, the length of a string. Base Case: $\mathrm{n}=0$: $\varepsilon \notin$ RHS and $\varepsilon \notin \mathrm{L}(\mathrm{M})$. Why?

$\mathrm{Q} \quad \Sigma \quad \mathrm{q}_{0} \mathrm{~F}$ $M=(\{p, q\},\{0,1\}, \delta, p,\{q\})$

THEOREM:

$L(M)=\{w \mid w h a s ~ o d d$

 number of 1 s \}Proof: By induction on n , the length of a string. Base Case: $\mathrm{n}=0: \varepsilon \notin \mathrm{RHS}$ and $\varepsilon \notin \mathrm{L}(\mathrm{M})$. Why? Induction Hypothesis: Suppose for all $\mathbf{w} \in \mathbf{\Sigma}^{*},|\mathbf{w}|=\mathrm{n}$, $w \in L(M)$ iff w has odd number of 1 s .
Induction step: Any string of length $\mathrm{n}+1$ has the form w0 or w1.

$\mathrm{Q} \quad \Sigma \quad \mathrm{q}_{0} \mathrm{~F}$ $M=(\{p, q\},\{0,1\}, \delta, p,\{q\})$

THEOREM:

$L(M)=\{w \mid w h a s ~ o d d$

 number of 1 s \}Proof: By induction on n , the length of a string.
Base Case: $\mathrm{n}=0$: $\varepsilon \notin \mathrm{RHS}$ and $\varepsilon \notin \mathrm{L}(\mathrm{M})$. Induction Hypothesis: Suppose for all $\mathbf{w} \in \mathbf{\Sigma}^{*},|\mathbf{w}|=\mathrm{n}$, $w \in L(M)$ iff w has odd number of 1 s . Induction step: Any string of length $\mathrm{n}+1$ has the form w0 or w1. Now w0 has an odd \# of 1's \Leftrightarrow w has an odd \# of 1's \Leftrightarrow M is in state q after reading w (why?) \Leftrightarrow
M is in state q after reading w0 (why?) $\Leftrightarrow \mathrm{w} 0 \in \mathrm{~L}(\mathrm{M})$

$\mathrm{Q} \quad \Sigma \quad \mathrm{q}_{0} \mathrm{~F}$ $M=(\{p, q\},\{0,1\}, \delta, p,\{q\})$

THEOREM:

$L(M)=\{w \mid w h a s ~ o d d$

 number of 1 s \}Proof: By induction on n , the length of a string.
Base Case: $\mathrm{n}=0$: $\varepsilon \notin \mathrm{RHS}$ and $\varepsilon \notin \mathrm{L}(\mathrm{M})$. Induction Hypothesis: Suppose for all $\mathbf{w} \in \boldsymbol{\Sigma}^{*},|\mathbf{w}|=\mathrm{n}$, $w \in L(M)$ iff w has odd number of 1 s . Induction step: Any string of length $\mathrm{n}+1$ has the form w0 or w1. Now w1 has an odd \# of 1's \Leftrightarrow w has an even \# of 1's \Leftrightarrow M is in state p after reading $w(w h y ?) \Leftrightarrow$
M is in state q after reading w1 (why?) $\Leftrightarrow w 1 \in L(M) \quad Q E D$

Build a DFA that accepts all and only those strings that contain 001

Build a DFA that accepts all and only those strings that contain 001

DEFINITION: A language L is regular if it is recognized by a DFA, i.e. if there is a DFA M s.t. $L=L(M)$.

$L=\{w \mid w$ contains 001$\}$ is regular

UNION THEOREM

Given two languages, L_{1} and L_{2}, define the union of L_{1} and L_{2} as

$$
L_{1} \cup L_{2}=\left\{w \mid w \in L_{1} \text { or } w \in L_{2}\right\}
$$

Theorem: The union of two regular languages is also a regular language

Theorem: The union of two regular languages is also a regular language

Proof: Let
$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0}^{1}, F_{1}\right)$ be finite automaton for L_{1} and
$M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{0}^{2}, F_{2}\right)$ be finite automaton for L_{2}

We want to construct a finite automaton $M=\left(\mathbf{Q}, \Sigma, \delta, q_{0}, F\right)$ that recognizes $L=L_{1} \cup L_{2}$

Idea: Run both \mathbf{M}_{1} and $\mathbf{M}_{\mathbf{2}}$ at the same time!

Q = pairs of states, one from M_{1} and one from M_{2}
$=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}\right.$ and $\left.q_{2} \in Q_{2}\right\}$
$=Q_{1} \times \mathbf{Q}_{\mathbf{2}}$

$$
\begin{aligned}
& q_{0}=\left(q_{0}^{1}, q_{0}^{2}\right) \\
& F=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in F_{1} \text { or } q_{2} \in F_{2}\right\} \\
& \delta\left(\left(q_{1}, q_{2}\right), \sigma\right)=\left(\delta_{1}\left(q_{1}, \sigma\right), \delta_{2}\left(q_{2}, \sigma\right)\right)
\end{aligned}
$$

Intersection THEOREM

Given two languages, L_{1} and L_{2}, define the intersection of L_{1} and L_{2} as

$$
L_{1} \cap L_{2}=\left\{w \mid w \in L_{1} \text { and } w \in L_{2}\right\}
$$

Theorem: The intersection of two regular languages is also a regular language

UNION? INTERSECTION?

UNION

INTERSECTION

Intersection THEOREM

Given two languages, L_{1} and L_{2}, define the intersection of L_{1} and L_{2} as

$$
L_{1} \cap L_{2}=\left\{w \mid w \in L_{1} \text { and } w \in L_{2}\right\}
$$

Theorem: The intersection of two regular languages is also a regular language

Show:

$L=\left\{x \square\{1,2,3\}^{*} \mid\right.$ the digits 1,2 and 3 appear in x in that order, but not necessarily consecutively\}

is regular.

Show:

$L=\left\{x \square\{0,1\}^{*} \mid x \neq \varepsilon\right.$ and $\left.d(x) \equiv 0 \bmod 3\right\}$
 is regular.

$(\mathrm{d}(\mathrm{x})$ is the natural \# corresponding to x .)

WWW.FLAC.WS

YOU NEED TO PICK UP
 THE SYLLABUS,
 THE COURSE SCHEDULE, THE PROJECT INFO SHEET, TODAY'S CLASS NOTES

Read Chapters 0, 1.1 and 1.2 of Sipser for next time, Also Rabin-Scott paper

