
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

YOU NEED TO PICK UP
• THE SYLLABUS,

• THE COURSE SCHEDULE,
• THE PROJECT INFO SHEET,

• TODAY’S CLASS NOTES

WWW.FLAC.WS

INSTRUCTORS & TAs

Aashish Jindia Lenore Blum Andy Smith

Office Hours

Lenore Blum (lblum@cs)
Office Hours: Tues 2-3pm, Gates 7105

Andy Smith (adsmith@andrew)
Office Hours: Mon 6-8pm, GHC 7101

Aashish Jindia (ajindia@andrew)
Office Hours: Wed 6-8pm, GHC 7101

Project

15%

Midterm II

15%

Final

25%

Homework

25%
5+5%

Class
Participation

Midterm I

15%

Project

15%

Midterm II

15%

Final

25%

Homework

25%
5+5%

Class
Participation

Midterm I

15%

HOMEWORK

Homework will be assigned every Tuesday and
will be due one week later at the beginning of
class. Late homework will be accepted only under
exceptional circumstances.

All assignments must be typeset (exceptions
allowed for diagrams). Each problem should be
done on a separate page.

You must list your collaborators (including
yourself) and all references (including books,
articles, websites, people) in every homework
assignment in a References section at the end.

COURSE PROJECT

Meet with an instructor/TA once a
month

Choose a (unique) topic
 Learn about your topic

Write progress reports
(Feb 6, March 22)

Prepare a 10-minute presentation
(April 24, April 29, May 1?)

Final Report (May 1)

COURSE PROJECT
Suggested places to look for project topics

Any paper that has appeared in the proceedings of FOCS or
STOC in the last 5 years. FOCS (Foundations of Computer
Science) and STOC (Symposium on the Theory of Computing)
are the two major conferences of general computer science
theory. The proceedings of both conferences are available at
the E&S library or electronically.

· Electronic version of the proceedings of STOC

· Electronic version of the proceedings of FOCS

• What's New]

http://portal.acm.org/toc.cfm?id=SERIES396&idx=SERIES396&type=series&coll=ACM&dl=ACM&part=series&WantType=Proceedings&title=STOC&CFID=36220143&CFTOKEN=50709087
http://portal.acm.org/toc.cfm?id=SERIES396&idx=SERIES396&type=series&coll=ACM&dl=ACM&part=series&WantType=Proceedings&title=STOC&CFID=36220143&CFTOKEN=50709087
http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000292
http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000292
http://www.flac-spring-2013.blogspot.com

This class is about mathematical
models of computation

WHY SHOULD I CARE?

WAYS OF THINKING

THEORY CAN DRIVE PRACTICE
Mathematical models of computation
predated computers as we know them

THIS STUFF IS USEFUL

Course Outline

PART 1
Automata and Languages:
finite automata, regular languages, pushdown automata, context-free
languages, pumping lemmas.

PART 2
Computability Theory:
Turing Machines, decidability, reducibility, the arithmetic hierarchy, the
recursion theorem, the Post correspondence problem.

PART 3
Complexity Theory and Applications:
time complexity, classes P and NP, NP-completeness, space complexity,
PSPACE, PSPACE-completeness, the polynomial hierarchy, randomized
complexity, classes RP and BPP.

PART 1
Automata and Languages:
finite automata, regular languages, pushdown automata, context-free
languages, pumping lemmas.

PART 2
Computability Theory:
Turing Machines, decidability, reducibility, the arithmetic hierarchy, the
recursion theorem, the Post correspondence problem.

PART 3
Complexity Theory and Applications:
time complexity, classes P and NP, NP-completeness, space complexity,
PSPACE, PSPACE-completeness, the polynomial hierarchy, randomized
complexity, classes RP and BPP.

Mathematical Models of Computation
(predated computers as we know them)

1940’s-50’s (neurophysiology,
linguistics)

1930’s-40’s (logic, decidability)

1960’s-70’s
 (computers)

This class will emphasize PROOFS

A good proof should be:

Easy to understand

Correct

Suppose A ⊆ {1, 2, …, 2n}

TRUE or FALSE:
There are always two numbers in A
such that one divides the other

with |A| = n+1

TRUE

THE PIGEONHOLE PRINCIPLE
If you put 6 pigeons in 5 holes
then at least one hole will have

more than one pigeon

HINT 1:
LEVEL 1

THE PIGEONHOLE PRINCIPLE
If you put 6 pigeons in 5 holes
then at least one hole will have

more than one pigeon

HINT 1:
LEVEL 1

THE PIGEONHOLE PRINCIPLE
If you put n+1 pigeons in n

holes then at least one hole will
have more than one pigeon

HINT 1:

HINT 2:
Every integer a can be written as

a = 2km, where m is an odd number

LEVEL 1

LEVEL 2
PROOF IDEA:

Given: A ⊆ {1, 2, …, 2n} and |A| = n+1

Show: There is an integer m and elements
a1 = a2 in A
such that a1 = 2im and a2 = 2jm

Suppose A ⊆ {1, 2, …, 2n} with |A| = n+1

Write every number in A as a = 2km, where
m is an odd number between 1 and 2n-1

How many odd numbers in {1, …, 2n}? n

Since |A| = n+1, there must be two numbers
in A with the same odd part

Say a1 and a2 have the same odd part m.
Then a1 = 2im and a2 = 2jm, so one must
divide the other

LEVEL 3 PROOF:

We expect your proofs to have three levels:

 The first level should be a one-word or
one-phrase “HINT” of the proof

(e.g. “Proof by contradiction,” “Proof by induction,”
“Follows from the pigeonhole principle”)

 The second level should be a short one-
paragraph description or “KEY IDEA”

 The third level should be the FULL PROOF

DOUBLE STANDARDS?

During the lectures, my proofs will usually
only contain the first two levels and maybe
part of the third

DETERMINISTIC FINITE
AUTOMATA

DETERMINISTIC FINITE
AUTOMATA

and
REGULAR LANGUAGES

TUESDAY JAN 14

0
0,1

0 0

1

1

1

0111 111

11

1

The automaton accepts a string if the
process ends in a double circle

Read string left to right

0
0,1

0 0

1

1

1

ANATOMY OF A DETERMINISTIC
FINITE AUTOMATON

states

states

q0

q1

q2

q3 start state (q0)

accept states (F)

An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of
elements of Σ

For string x, |x| is the length of x

The unique string of length 0 will be denoted
by ε and will be called the empty or null string

SOME VOCABULARY

A language over Σ is a set of strings over Σ
In other words: a language is a subset of Σ*

Σ* = the set of strings over Σ

Q is the set of states (finite)

Σ is the alphabet (finite)

δ : Q × Σ → Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept/final states

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F)
deterministic DFA

Suppose w1, ... , wn ∈ Σ and w = w1... wn ∈ Σ*
Then M accepts w iff there are r0, r1, ..., rn ∈ Q, s.t.
• r0 = q0
• δ(ri, wi+1) = ri+1, for i = 0, ..., n-1, and
• rn ∈ F

Q is the set of states (finite)

Σ is the alphabet (finite)

δ : Q × Σ → Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept/final states

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F)

M accepts ε iff q0 ∈ F

deterministic DFA

L(M) = set of all strings that M accepts
 = “the language recognized by M”

0,1 q0

L(M) = ?

0,1 q0

L(M) = ?

q0 q1

0 0

1

1

L(M) = ?

q0 q1

0 0

1

1

L(M) = { w | w has an even number of 1s}

Q Σ q0 F
M = ({p,q}, {0,1}, δ, p, {q}) δ 0 1

p p q

q q p
0

1

1

0

p q

Q Σ q0 F
M = ({p,q}, {0,1}, δ, p, {q}) δ 0 1

p p q

q q p
0

1

1

0

p q
THEOREM:

L(M) = {w | w has odd
 number of 1s }

Q Σ q0 F
M = ({p,q}, {0,1}, δ, p, {q}) δ 0 1

p p q

q q p
0

1

1

0

p q
THEOREM:

L(M) = {w | w has odd
 number of 1s }

Proof: By induction on n, the length of a string.
Base Case: n=0: ε ∉ RHS and ε ∉ L(M). Why?

Q Σ q0 F
M = ({p,q}, {0,1}, δ, p, {q}) δ 0 1

p p q

q q p
0

1

1

0

p q
THEOREM:

L(M) = {w | w has odd
 number of 1s }

Induction Hypothesis: Suppose for all w ∈ Σ*, |w| = n,
 w ∈ L(M) iff w has odd number of 1s.

Induction step: Any string of length n+1 has the form w0 or w1.

Proof: By induction on n, the length of a string.
Base Case: n=0: ε ∉ RHS and ε ∉ L(M). Why?

Q Σ q0 F
M = ({p,q}, {0,1}, δ, p, {q}) δ 0 1

p p q

q q p
0

1

1

0

p q
THEOREM:

L(M) = {w | w has odd
 number of 1s }

Induction Hypothesis: Suppose for all w ∈ Σ*, |w| = n,
 w ∈ L(M) iff w has odd number of 1s.

Induction step: Any string of length n+1 has the form w0 or w1.
Now w0 has an odd # of 1’s ⇔ w has an odd # of 1’s⇔
M is in state q after reading w (why?) ⇔
M is in state q after reading w0 (why?) ⇔w0 ∈ L(M)

Proof: By induction on n, the length of a string.
Base Case: n=0: ε ∉ RHS and ε ∉ L(M). Why?

Q Σ q0 F
M = ({p,q}, {0,1}, δ, p, {q}) δ 0 1

p p q

q q p
0

1

1

0

p q
THEOREM:

L(M) = {w | w has odd
 number of 1s }

Induction Hypothesis: Suppose for all w ∈ Σ*, |w| = n,
 w ∈ L(M) iff w has odd number of 1s.

Induction step: Any string of length n+1 has the form w0 or w1.
Now w1 has an odd # of 1’s ⇔ w has an even # of 1’s⇔
M is in state p after reading w (why?) ⇔
M is in state q after reading w1 (why?) ⇔w1 ∈ L(M) QED

Proof: By induction on n, the length of a string.
Base Case: n=0: ε ∉ RHS and ε ∉ L(M). Why?

Build a DFA that accepts all and only those
strings that contain 001

q q00

1 0

1
q0 q001

0 0 1

0,1

Build a DFA that accepts all and only those
strings that contain 001

DEFINITION: A language L is
regular if it is recognized by a DFA,
i.e. if there is a DFA M s.t. L = L(M).

L = { w | w contains 001} is regular

L = { w | w has an even number of 1s} is regular

UNION THEOREM
Given two languages, L1 and L2, define
the union of L1 and L2 as

L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 }

Theorem: The union of two regular
languages is also a regular language

Theorem: The union of two regular
languages is also a regular language

Proof: Let
M1 = (Q1, Σ, δ1, q0, F1) be finite automaton for L1

 and
M2 = (Q2, Σ, δ2, q0, F2) be finite automaton for L2

We want to construct a finite automaton
M = (Q, Σ, δ, q0, F) that recognizes L = L1 ∪ L2

1

2

Idea: Run both M1 and M2 at the same time!

Q = pairs of states, one from M1 and one from M2

= { (q1, q2) | q1 ∈ Q1 and q2 ∈ Q2 }
= Q1 × Q2

q0 = (q0, q0) 1 2

F = { (q1, q2) | q1 ∈ F1 or q2 ∈ F2 }

δ((q1,q2), σ) = (δ1(q1, σ), δ2(q2, σ))

Intersection THEOREM
Given two languages, L1 and L2, define
the intersection of L1 and L2 as

L1 ∩ L2 = { w | w ∈ L1 and w ∈ L2 }

Theorem: The intersection of two
regular languages is also a regular
language

UNION? INTERSECTION?

q0 q1

0 0

1

1

p0 p1

1
1

0

0

q0,p0 q1,p0
1

1

q0,p1 q1,p1
1

1

0 0
0 0

UNION

q0,p0 q1,p0
1

1

q0,p1 q1,p1
1

1

0 0
0 0

INTERSECTION

Intersection THEOREM
Given two languages, L1 and L2, define
the intersection of L1 and L2 as

L1 ∩ L2 = { w | w ∈ L1 and w ∈ L2 }

Theorem: The intersection of two
regular languages is also a regular
language

Show:

L = { x {1, 2, 3}* | the digits 1, 2 and 3
appear in x in that order, but not
necessarily consecutively}

is regular.

Show:

L = { x {0,1}* | x≠ ε and d(x) ≡ 0 mod 3 }

is regular.

(d(x) is the natural # corresponding to x.)

WWW.FLAC.WS
YOU NEED TO PICK UP

THE SYLLABUS,
THE COURSE SCHEDULE,

THE PROJECT INFO SHEET,
TODAY’S CLASS NOTES

Read Chapters 0, 1.1 and 1.2 of Sipser for next time,
Also Rabin-Scott paper

	Slide Number 1
	Slide Number 2
	Slide Number 4
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 67

