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YOU NEED TO PICK UP  
• THE SYLLABUS,  

• THE COURSE SCHEDULE, 
• THE PROJECT INFO SHEET,  

• TODAY’S CLASS NOTES  



WWW.FLAC.WS 



INSTRUCTORS & TAs 

Aashish Jindia Lenore Blum Andy Smith 



Office Hours 
 
Lenore Blum (lblum@cs) 
Office Hours: Tues 2-3pm, Gates 7105 
 
Andy Smith (adsmith@andrew) 
Office Hours: Mon 6-8pm, GHC 7101 
 
Aashish Jindia (ajindia@andrew) 
Office Hours: Wed 6-8pm, GHC 7101 
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HOMEWORK 

Homework will be assigned every Tuesday and 
will be due one week later at the beginning of 
class. Late homework will be accepted only under 
exceptional circumstances.  
 
All assignments must be typeset (exceptions 
allowed for diagrams). Each problem should be 
done on a separate page. 
 

You must list your collaborators (including 
yourself) and all references (including books, 
articles, websites, people) in every homework 
assignment in a  References section at the end. 



COURSE PROJECT 

Meet with an instructor/TA once a 
month 

Choose a (unique) topic 
 Learn about your topic 

Write progress reports  
(Feb 6, March 22)  

Prepare a 10-minute presentation 
(April 24, April 29, May 1?)  

Final Report (May 1)  



COURSE PROJECT 
Suggested places to look for project topics 
 
Any paper that has appeared in the proceedings of FOCS or 
STOC in the last 5 years. FOCS (Foundations of Computer 
Science) and STOC (Symposium on the Theory of Computing) 
are the two major conferences of general computer science 
theory. The proceedings of both conferences are available at 
the E&S library or electronically. 
 
·  Electronic version of the proceedings of STOC 
  
·  Electronic version of the proceedings of FOCS 
 
• What's New] 

http://portal.acm.org/toc.cfm?id=SERIES396&idx=SERIES396&type=series&coll=ACM&dl=ACM&part=series&WantType=Proceedings&title=STOC&CFID=36220143&CFTOKEN=50709087
http://portal.acm.org/toc.cfm?id=SERIES396&idx=SERIES396&type=series&coll=ACM&dl=ACM&part=series&WantType=Proceedings&title=STOC&CFID=36220143&CFTOKEN=50709087
http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000292
http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000292
http://www.flac-spring-2013.blogspot.com


This class is about mathematical 
models of computation 



WHY SHOULD I CARE? 

WAYS OF THINKING 

THEORY CAN DRIVE PRACTICE 
Mathematical models of computation 
predated computers as we know them 

THIS STUFF IS USEFUL 



Course Outline 

PART 1 
Automata and Languages: 
finite automata, regular languages, pushdown automata, context-free 
languages, pumping lemmas. 

PART 2 
Computability Theory:  
Turing Machines, decidability, reducibility, the arithmetic hierarchy,  the 
recursion theorem, the Post correspondence problem. 

PART 3 
Complexity Theory and Applications: 
time complexity, classes P and NP, NP-completeness, space complexity,  
PSPACE, PSPACE-completeness, the polynomial hierarchy, randomized 
complexity, classes RP and BPP.  



PART 1 
Automata and Languages:  
finite automata, regular languages, pushdown automata, context-free 
languages, pumping lemmas. 

PART 2 
Computability Theory:  
Turing Machines, decidability, reducibility, the arithmetic hierarchy,  the 
recursion theorem, the Post correspondence problem. 

PART 3 
Complexity Theory and Applications:  
time complexity, classes P and NP, NP-completeness, space complexity,  
PSPACE, PSPACE-completeness, the polynomial hierarchy, randomized 
complexity, classes RP and BPP.  

Mathematical Models of Computation 
(predated computers as we know them)  

1940’s-50’s (neurophysiology, 
linguistics) 

1930’s-40’s (logic, decidability) 

1960’s-70’s 
 (computers) 



This class will emphasize PROOFS 

A good proof should be: 

Easy to understand 

Correct 



Suppose A ⊆ {1, 2, …, 2n} 

TRUE or FALSE:  
There are always two numbers in A 
such that one divides the other 

with |A| = n+1 

TRUE 



THE PIGEONHOLE PRINCIPLE 
If you put 6 pigeons in 5 holes 
then at least one hole will have 

more than one pigeon 

HINT 1: 
LEVEL 1 
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THE PIGEONHOLE PRINCIPLE 
If you put n+1 pigeons in n 

holes then at least one hole will 
have more than one pigeon 

HINT 1: 

HINT 2: 
Every integer a can be written as  

a = 2km, where m is an odd number 

LEVEL 1 



LEVEL 2 
PROOF IDEA: 

Given: A ⊆ {1, 2, …, 2n} and |A| = n+1 
 
Show: There is an integer m and elements   
a1 = a2  in A 
such that a1 = 2im and a2 = 2jm 



Suppose A ⊆ {1, 2, …, 2n} with |A| = n+1 
 
Write every number in A as a = 2km, where 
m is an odd number between 1 and 2n-1 

How many odd numbers in {1, …, 2n}? n 

Since |A| = n+1, there must be two numbers 
in A with the same odd part 

Say a1 and a2 have the same odd part m. 
Then a1 = 2im and a2 = 2jm, so one must 
divide the other  

LEVEL 3 PROOF: 



We expect your proofs to have three levels: 

 The first level should be a one-word or 
one-phrase “HINT” of the proof 

(e.g. “Proof by contradiction,” “Proof by induction,” 
“Follows from the pigeonhole principle”)  

 The second level should be a short one-
paragraph description or “KEY IDEA” 

 The third level should be the FULL PROOF 



DOUBLE STANDARDS? 

During the lectures, my proofs will usually 
only contain the first two levels and maybe 
part of the third 



DETERMINISTIC FINITE 
AUTOMATA 
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The automaton accepts a string if the 
process ends in a double circle 

Read string left to right 
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ANATOMY OF A DETERMINISTIC 
FINITE AUTOMATON 

states 

states 

q0 

q1 

q2 

q3 start state (q0)  

accept states (F) 



An alphabet Σ is a finite set (e.g., Σ = {0,1}) 

A string over Σ is a finite-length sequence of 
elements of Σ 

For string x, |x| is the length of x 

The unique string of length 0 will be denoted 
by ε and will be called the empty or null string 

SOME VOCABULARY 

A language over Σ is a set of strings over Σ  
In other words:  a language is a subset of Σ*  

Σ* = the set of strings over Σ  



Q is the set of states (finite) 

Σ is the alphabet (finite) 

δ : Q × Σ → Q  is the transition function 

q0 ∈ Q is the start state 

F ⊆ Q is the set of accept/final states 

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F)  
deterministic  DFA 

Suppose  w1, ... , wn ∈ Σ and  w = w1... wn ∈ Σ*  
Then M accepts w iff there are r0, r1, ..., rn ∈ Q, s.t. 
• r0 = q0  
•  δ(ri, wi+1) = ri+1,   for  i = 0, ..., n-1, and  
• rn ∈ F 



Q is the set of states (finite) 

Σ is the alphabet (finite) 

δ : Q × Σ → Q  is the transition function 

q0 ∈ Q is the start state 

F ⊆ Q is the set of accept/final states 

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F)  

M accepts ε iff q0  ∈ F 

deterministic  DFA 

L(M)  = set of all strings that M accepts  
   = “the language recognized by M” 



0,1 q0 

L(M) = ? 
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L(M) = { w | w has an even number of 1s} 



Q Σ q0 F 
M = ({p,q}, {0,1}, δ, p, {q})  δ 0 1 
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L(M) = {w | w has odd 
                   number of 1s } 
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THEOREM: 

L(M) = {w | w has odd 
                   number of 1s } 

Proof: By induction on n, the length of a string. 
Base Case: n=0: ε ∉ RHS and ε ∉ L(M).  Why? 
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THEOREM: 

L(M) = {w | w has odd 
                   number of 1s } 

Induction Hypothesis: Suppose for all w ∈ Σ*, |w| = n, 
                                   w ∈ L(M) iff w has odd number of 1s. 

Induction step: Any string of length n+1 has the form w0 or w1.   

Proof: By induction on n, the length of a string. 
Base Case: n=0: ε ∉ RHS and ε ∉ L(M).  Why? 



Q Σ q0 F 
M = ({p,q}, {0,1}, δ, p, {q})  δ 0 1 

p p q 

q q p 
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THEOREM: 

L(M) = {w | w has odd 
                   number of 1s } 

Induction Hypothesis: Suppose for all w ∈ Σ*, |w| = n, 
                                   w ∈ L(M) iff w has odd number of 1s. 

Induction step: Any string of length n+1 has the form w0 or w1.   
Now w0 has an odd # of 1’s ⇔  w has an odd # of 1’s⇔             
M is in state q after reading w (why?) ⇔ 
M is in state q after reading w0 (why?) ⇔w0 ∈ L(M) 

Proof: By induction on n, the length of a string. 
Base Case: n=0: ε ∉ RHS and ε ∉ L(M).  Why? 



Q Σ q0 F 
M = ({p,q}, {0,1}, δ, p, {q})  δ 0 1 

p p q 

q q p 
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0 

p q 
THEOREM: 

L(M) = {w | w has odd 
                   number of 1s } 

Induction Hypothesis: Suppose for all w ∈ Σ*, |w| = n, 
                                   w ∈ L(M) iff w has odd number of 1s. 

Induction step: Any string of length n+1 has the form w0 or w1.   
Now w1 has an odd # of 1’s ⇔  w has an even # of 1’s⇔                         
M is in state p after reading w (why?) ⇔  
M is in state q after reading w1 (why?) ⇔w1 ∈ L(M)    QED 

Proof: By induction on n, the length of a string. 
Base Case: n=0: ε ∉ RHS and ε ∉ L(M).  Why? 



Build a DFA that accepts all and only those 
strings that contain 001 



q q00 

1 0 

1 
q0 q001 

0 0 1 

0,1 

Build a DFA that accepts all and only those 
strings that contain 001 



DEFINITION: A language L is 
regular if it is recognized by a DFA,  
i.e. if there is a DFA M s.t. L = L(M). 

L = { w | w contains 001} is regular 

L = { w | w has an even number of 1s} is regular 



UNION THEOREM 
Given two languages, L1 and L2, define 
the union of L1 and L2 as  

L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 }  

Theorem: The union of two regular 
languages is also a regular language 



Theorem: The union of two regular 
languages is also a regular language 

Proof: Let  
M1 = (Q1, Σ, δ1, q0, F1)  be finite automaton for L1 

 and  
M2 = (Q2, Σ, δ2, q0, F2) be finite automaton for L2 

We want to construct a finite automaton  
M = (Q, Σ, δ, q0, F) that recognizes L = L1 ∪ L2  

1 

2 



Idea: Run both M1 and M2 at the same time! 

Q = pairs of states, one from M1 and one from M2 

= { (q1, q2) | q1 ∈ Q1 and q2 ∈ Q2 } 
= Q1 × Q2 

q0 = (q0, q0) 1 2 

F = { (q1, q2) | q1 ∈ F1  or  q2 ∈ F2 } 

δ( (q1,q2), σ) = (δ1(q1, σ), δ2(q2, σ))  



Intersection THEOREM 
Given two languages, L1 and L2, define 
the intersection of L1 and L2 as  

L1 ∩ L2 = { w | w ∈ L1  and  w ∈ L2 }  

Theorem: The intersection of two 
regular languages is also a regular 
language 



UNION?  INTERSECTION? 

q0 q1 
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1 
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UNION 
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INTERSECTION 



Intersection THEOREM 
Given two languages, L1 and L2, define 
the intersection of L1 and L2 as  

L1 ∩ L2 = { w | w ∈ L1  and  w ∈ L2 }  

Theorem: The intersection of two 
regular languages is also a regular 
language 



Show: 
 

L = { x  {1, 2, 3}* | the  digits 1, 2 and 3  
appear in  x in that order, but not 
necessarily consecutively}  

 

is regular.   



Show: 
 

L = { x  {0,1}* | x≠ ε  and d(x) ≡ 0 mod 3 } 
 

is regular.  
 

(d(x) is the natural # corresponding to x.) 
 
  



WWW.FLAC.WS 
YOU NEED TO PICK UP  

THE SYLLABUS,  
THE COURSE SCHEDULE, 

THE PROJECT INFO SHEET,  
TODAY’S CLASS NOTES 

Read Chapters 0, 1.1 and 1.2 of Sipser for next time, 
Also Rabin-Scott paper 
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