THEOREM

For every regular language L, there exists a UNIQUE (up to re-labeling of the states) minimal DFA M_{mim} such that L = L(M_{mim})

Minimal means wrt number of states

PROOF

- 1. Let M be a DFA for L (wlog, assume no inaccessible states)
- 2. For pairs of states (p,q) define:
- p distinguishable from q and
- p indistinguisable from q (p~q).
- 3. Table-filling algorithm: first distinguish final from non-final states and then work backwards to distinguish more pairs.

4. What's left over are exactly the indistinguishable pairs, ie ~ related pairs. Needs proof.

PROOF

- 5. ~ is an equivalence relation so partitions the states into equivalence classes, E_M
- 6. Define M_{min}

Define: M_{MIN} = (Q_{MIN}, \Sigma, \delta_{MIN}, q_{0 MIN}, F_{MIN})

 ${\sf Q}_{{\sf M}{\sf I}{\sf N}}={\sf E}_{{\sf M}}, \ {\sf q}_{0\ {\sf M}{\sf I}{\sf N}}=[{\sf q}_0], \ {\sf F}_{{\sf M}{\sf I}{\sf N}}=\{\ [{\sf q}]\ |\ {\sf q}\in{\sf F}\ \}$

$$\begin{split} &\delta_{\mathsf{MIN}}([\mathbf{q}],\,\sigma\,) = [\,\delta(\,\mathbf{q},\,\sigma\,)\,] \text{ show well defined} \\ &\mathsf{Claim:}\,\hat{\delta}_{\mathsf{MIN}}([\mathbf{q}],\,w\,) = [\,\hat{\delta}(\,\mathbf{q},\,w)\,],\,w\in\Sigma^* \\ &\mathsf{So:}\,\,\hat{\delta}_{\mathsf{MIN}}([\mathbf{q}_0],\,w\,) = [\,\hat{\delta}(\,\mathbf{q}_0,\,w)\,],\,w\in\Sigma^* \end{split}$$

Follows: $M_{MIN} \equiv M$

PROOF

But is M_{min} unique minimum?

Yes, because if $M' \equiv M$ and minimum then M' has no inaccesible states and is irreducible and

Theorem. M_{min} is isomorphic to any M' with the above properties

(need to give mapping and prove it has all the needed properties: everywhere defined , well defined, 1-1, onto, preserves transitions, and {final states} map onto {final states})

So M_{min} is isomorphic to any minimum M' = M