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ABSTRACT
We develop a new framework to achieve the goal of Wikipedia
entity expansion and attribute extraction from the Web.
Our framework takes a few existing entities that are auto-
matically collected from a particular Wikipedia category as
seed input and explores their attribute infoboxes to obtain
clues for the discovery of more entities for this category and
the attribute content of the newly discovered entities. One
characteristic of our framework is to conduct discovery and
extraction from desirable semi-structured data record sets
which are automatically collected from the Web. A semi-
supervised learning model with Conditional Random Fields
is developed to deal with the issues of extraction learning
and limited number of labeled examples derived from the
seed entities. We make use of a proximate record graph to
guide the semi-supervised learning process. The graph cap-
tures alignment similarity among data records. Then the
semi-supervised learning process can leverage the unlabeled
data in the record set by controlling the label regularization
under the guidance of the proximate record graph. Exten-
sive experiments on different domains have been conducted
to demonstrate its superiority for discovering new entities
and extracting attribute content.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous
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1. INTRODUCTION
As a remarkable and rich online encyclopedia, Wikipedia

provides a wealth of general knowledge about various as-
pects. Some Wikipedia articles have a structured informa-
tion block known as infobox, as exemplified in Figure 1,
typically on the upper right of the Wikipedia page. An in-
fobox is composed of a set of attribute name and value pairs
that summarize the key information of the entity. Infobox
was extensively explored in some existing projects such as
DBpedia [1], Freebase [4], and YAGO [29].

Although Wikipedia already covers a large number of pop-
ular entities, many entities have not been included. Fig-
ure 2 presents a fragment of a Web page containing a semi-
structured list that describes some cartoon films. After man-
ual checking, we find that quite a number of cartoons in this
list have not been covered by Wikipedia. For example, no
existing Wikipedia entities describe the cartoons numbered
2, 3, 100 and 101. On the other hand, the ones numbered
319 to 321 in the same list are well contained by Wikipedia
and each of them has a description article and an infobox.
Therefore, with these records that are already described by
some Wikipedia entities as clues, we may infer that the
remaining records in the same list shown in Figure 2 are
talking about the same type of entities. For example, one
can infer that, from the record 100, there exists a cartoon
with title “What’s Buzzin’ Buzzard” which does not exist
in Wikipedia. Furthermore, considering the infobox of car-
toon entity “One Droopy Knight” as shown in Figure 1 and
its corresponding data record, i.e. record 320 in Figure 2,
one can infer that the text fragment “Directed by Michael

Lah” in the record 320 is related to the director attribute and
its value. As a result, one can further infer that the director
attribute of the newly discovered entity “What’s Buzzin’

Buzzard” is associated with the value “Tex Avery”. Some
other attributes of the new entity can be obtained similarly.

Inspired by the above observation, we develop a new frame-
work to achieve the goal of new entity discovery and at-
tribute extraction for Wikipedia categories by mining the
rich and valuable semi-structured data records on the Web
as exemplified in Figure 2. Our framework makes use of
a few existing seed Wikipedia entities and their infoboxes
automatically extracted from a particular category as clues
to discover more entities of this category. It can leverage
the existing infoboxes of the seed entities to automatically
harvest attribute content of the newly discovered entities.
Entity attribute extraction is essential for the usability of
the entities in downstream applications such as knowledge
base construction.



Figure 1: The infobox of a cartoon entity.

As noticed by previous works [6, 9, 36, 40], semi-structured
data records have inherent advantages in the presentation
of similar entities sharing common attributes, and these en-
tity records are usually arranged in a layout format that has
some regularities, but not following a strictly fixed template.
As estimated by Elmeleegy et al., 1.4% of Web pages con-
tain lists (formatted with <dl>, <ol>, or <ul>) that can
be extracted into relational tables [9]. Another estimation
shows that 1.1% of the tables (formatted with <table>) on
the Web contain high-quality relational-style data [6]. Since
the <table> tag is commonly used for formatting and navi-
gation, the absolute number of relational tables is very large.
Note that some semi-structured data record sets are ar-
ranged in a much more complicated format than simply with
<ol>, <ul> or <table> tags. Therefore, semi-structured
data exists in large amount on the Web. Such kind of data
records are collected as the source from which we discover
new entities and their attributes.

With respect to the goal of discovering entities from the
Web given some seed entities, some existing works on en-
tity set expansion can tackle this task to some extent. En-
tity set expansion takes a few user given seed entities of a
particular class as input, and aims at collecting more enti-
ties of the same class. SEAL [33] explores the “list” style of
data records, which can be considered as a simplified kind of
semi-structured data records mentioned above, to discover
more entities to expand a given entity set. Specifically, it
extracts named entities with wrappers [34], each of which
is a pair of character-level prefix and suffix. The work [13]
by Gupta and Sarawagi also processes the “list” style of data
records to extract entity names and their attributes. It takes
several user input data records, including entity names and
attribute values, as seeds to discover more entities as well as
similar specified attributes by a trained semi-Markov Con-
ditional Random Field (semi-Markov CRF) [27] based ex-
tractor. This method requires considerable manual effort
when applying it on large number of domains. Some other
works focus on a more general problem setting for the task
of entity set expansion [22, 23, 25]. They first obtain a set
of candidate entities by some linguistics techniques such as
pattern-based method. Then the similarity of a candidate
with the seeds is calculated using their context distributions
on the Web or Web queries. Because of the general set-
ting, the targeted classes have coarser granularity such as
city, country, etc. Moreover, these methods are not able to
conduct attribute extraction of the new entities.

With respect to the goal of entity attribute extraction,
some existing works [14, 30, 37, 38] train extractors on the
free text of Wikipedia articles that are automatically anno-
tated with the corresponding articles’ infoboxes. Different
from their direction, we explore the semi-structured data
records which exist in large quantity on the Web. For ex-

Figure 2: A Web page fragment of cartoon list.

ample, we can extract the entity attributes of release date,
director, etc. from the semi-structured list of the page shown
in Figure 2. Since each data record describes one entity, the
extracted attribute information can be connected to the cor-
rect subjects (i.e. entities) automatically. Consequently, our
entity discovery and attribute extraction framework elimi-
nates some error-prone operations such as coreference reso-
lution and disambiguation.

Although semi-structured data is abundant on the Web
and its inherent advantages are appealing for the task of
entity discovery and attribute extraction, one big challenge
of this task is that the number of available seed entities is
typically very limited. As shown by the work [13], when the
seed number is small, the trained semi-Markov CRF based
extractor cannot perform well. However, it is time consum-
ing and labor force intensive to prepare more seed entities’
as well as their attributes. Semi-supervised approaches are
proposed to ease the difficulty of lacking enough training
data by taking the unlabeled data into account [12, 28]. In
this paper, we propose a semi-supervised learning frame-
work to extract the entities and their attribute content from
the semi-structured data record sets. Our framework first
derives training examples from a few data records by us-
ing the seed Wikipedia entities and their infoboxes as au-
tomatic labeling knowledge. We employ semi-Markov CRF
as the basic sequence classification learning model. Due to
the limited number of seed entities, the derived training ex-
amples are usually not sufficient to train a reliable model
for extracting the entities and their attributes. A semi-
supervised learning model with CRF is developed to solve
this problem by exploiting the unlabeled data in the semi-
structured data record set. To connect the derived training
examples and the unlabeled records in the semi-supervised
learning, a proximate record graph with each node repre-
senting one data record is constructed. Armed with the pair-
wise sequence alignment based similarity measure between
the record nodes in the graph, the labels of derived training
examples can regularize the labels of directly or indirectly
aligned segments in the unlabeled records effectively.
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Figure 3: Architecture of our framework.

2. FRAMEWORK OVERVIEW
A Wikipedia category contains a set of existing entities.

Taking the “MGM animated short films” category as an ex-
ample, its existing entities include“Scat Cats”, “One Droopy

Knight”, etc. Each single entity may have an infobox, as ex-
emplified in Figure 1, which contains a set of attributes.
Each attribute is a name-value pair (n, V ), where n is the
attribute name and V is the set of values. In Figure 1, an
example of attribute is (“Produced by”, {“William Hanna”,
“Joseph Barbera”}). Given a Wikipedia category C with
several existing entities and infoboxes automatically extracted
from C as clues, our framework aims at discovering more en-
tities for the category C as well as extracting the attributes
for the newly discovered entities. For discovering new enti-
ties, one example is the entity “What’s Buzzin’ Buzzard”
found in the semi-structured list shown in Figure 2 and the
director attribute of this new entity is “Tex Avery”.

The architecture of our framework is depicted in Figure 3.
First, the component of semi-structured data record set col-
lection aims at automatically obtaining from the Web a col-
lection of semi-structured data record sets which provide
the sources for new entity discovery and attribute extrac-
tion. Given a Wikipedia category C, it takes several seed
entities S automatically extracted from C as clues for con-
structing a synthetic query to retrieve Web pages. Then
semi-structured data record sets that likely contain new en-
tities and attributes are automatically detected from the re-
trieved pages. One example of such record set is given in
Figure 2. Let D denote a record set discovered from a Web
page. Some records in D, corresponding to the seed enti-
ties in S , are called seed records. The remaining records
likely describe some new entities as well as their attribute
values. In each record, the key information of the entity
described is presented with text segments, such as cartoon
name (i.e. entity name of this cartoon), release date, direc-
tor, etc. The component of semi-supervised learning model
for extraction in our framework aims at detecting these de-
sirable text segments. Considering the characteristics of the
task, we formulate it as a sequence classification problem.
Our classification problem is different from the standard
learning paradigm since we do not have manually labeled
training examples. Instead, our framework automatically
derives the training examples from the seed records. Such
labels are known as derived labels and the labeled records are
known as derived training examples. For instance, consider
the record 320 in Figure 2 corresponding to the seed entity
“One Droopy Knight” in Figure 1, our framework automat-
ically derives labels for the text fragments corresponding to
the entity name and attribute values in this record to gen-
erate a derived training example.

Let DL denote the set of derived training examples in D.
Our goal is to predict the labels of text fragments for each
remaining record inD. We employ semi-Markov Conditional
Random Field (semi-Markov CRF) [27] as the basic sequence

<div>

……

1   1
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<br>

1   0

Scat Cats Rel … Directed …

<br>

<p>

<br>
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One Droopy Knight Rel … Directed …

<br>

……

Figure 4: The DOM of the record set in Figure 2.

classification learning model. Typically, the amount of DL

is quite limited, so the trained classifier by pure supervised
learning would not perform well. A semi-supervised learning
model is developed to solve this problem by exploiting the
data records in D −DL, which is called unlabeled data and
denoted as DU . A proximate record graph, with each node
of the graph representing one data record in D, is proposed
based on the proximate relation of records. This graph is
employed to guide the regularization of the posterior label
distribution of the records in DU during the semi-supervised
learning process. Then the labels of the records in DU are
inferred based on the regularized posterior. The data records
in DU with inferred labels are taken into account in the
subsequent iteration of the training process. Finally, the
new entities and their attributes extracted from different
data record sets are integrated together. Then a ranking
criterion is applied to return a ranked list of the entities
together with their attributes.

3. SEMI-STRUCTURED DATA RECORD
SET COLLECTION

As mentioned in the overview, given a Wikipedia cate-
gory C, a seed entity set S is automatically selected from
C. These seed entities are used for constructing a syn-
thetic query to retrieve Web pages which are expected to
contain semi-structured data record sets as exemplified in
Figure 2. The synthetic query is composed of the seed en-
tity names and the nouns in the category title. In addi-
tion, the query term “list” is added because this term is
often used in the page titles and article titles of the de-
sirable Web pages. One sample synthetic query for “MGM
animated short films” category is 〈scat cats, one droopy
knight, [mgm, film, list]〉, where the square brackets denote
optional query terms. The synthetic query is then submit-
ted to Google API to retrieve relevant documents, and the
pages from Wikipedia are excluded.

In each Web page obtained above, we need to detect the
semi-structured data record set describing a group of tar-
geted entities. To do so, we design a method with two steps,
namely, candidate record region identification, and record
segmentation. To identify the possible record region, we
make use of the seed entities as clues. We first build the
DOM tree of the page and assign a flag array to each inner
node of it. The number of flags in the array is equal to the
number of the seed entities in S . Each flag indicates whether
the corresponding entity appears in the sub-tree rooted at
the current node. After that, the flag array of each node is
set following the post-order traversal. Finally, we identify
the DOM node which has all 1’s in its flag array, and none
of its descendants meets this condition. For example, the
DOM tree of the list in Figure 2 with the flag array added
is shown in Figure 4, and <div> is the DOM node that
satisfies the condition.



The sub-tree identified above is the candidate region in
the page that may contain the desirable record set. Next,
we need to conduct data record segmentation to segment
the sub-trees of the identified DOM node (e.g. <div>) into
separate data records. Several methods may be adopted to
handle this task such as MDR [18], DEPTA [39], and our
previous work RST [3]. Different from MDR and DEPTA
which assume a fixed length of generalized nodes, RST pro-
vides a unified search based solution for record region detec-
tion and segmentation. In this framework, we employ and
modify the RST method so that it only detects the records
within the identified DOM tree (e.g. the tree in Figure 4).
Meanwhile, the top down traversal search is not needed here
since we already know that the record region’s root should
be the root of this sub-tree (e.g. <div> in Figure 4). Note
that this method is able to eliminate regions that cannot be
segmented into records since these regions are probably not
record regions.

4. SEMI-SUPERVISED LEARNING MODEL
FOR EXTRACTION

In our framework, the extraction of new entities and their
attributes from a particular data record set is formulated as
a sequence classification problem. Recall that D is a semi-
structured data record set identified from a Web page. Each
data record xi in D is composed of a sequence of text to-
kens and HTML tags. Hence, it can be represented by a

token sequence xi = x1
i · · ·x

|xi|
i . Since some records in D

correspond to the seed entities known as seed records, we
attempt to automatically identify the text fragments cor-
responding to entity names and attribute values based on
the infobox information. For example, consider the sample
data record 320, i.e., the cartoon “One Droopy Knight” in
Figure 2. By using the infobox of the seed Wikipedia en-
tity as given in Figure 1, the text fragment “ONE DROOPY

KNIGHT” is identified as the entity name and labeled with
“ENTITY NAME” label. The text fragment “Michael Lah”
is identified as the director attribute value of the cartoon and
labeled with “DIRECTED BY” label. Unlike traditional la-
bels that are provided by human, the above labels are auto-
matically derived from the infobox and called derived labels.
The label “OTHER” is used to label the tokens that do not
belong to the entity names and attribute values.

After the seed records are automatically labeled with the
derived labels, we obtain a set of derived training examples

denoted as DL = {(xi, si)}, where si = s1
i · · · s

|si|
i and sq

i =
〈tq

i , u
q
i , y

q
i 〉 is a token segment with the beginning index tq

i ,
the ending index uq

i , and the derived label yq
i . Our goal is to

predict the labels of the text fragments for each record in the
remaining part of D, namely DU = D−DL, so as to extract
new entity names and their attribute values described by
the record. The details of the component for generating the
derived training examples will be presented in Section 5.

We adopt the semi-Markov CRF [27] as the basic sequence
classification learning model. As mentioned, the amount
of DL is quite limited since only a few seed entities are
given. As a result, the performance of the trained classi-
fier with the ordinary supervised learning is limited. To
tackle this problem, we develop a semi-supervised learning
model which exploits the data records in DU . To better uti-
lize DU , a graph-based component is designed to guide the
semi-supervised learning process. Specifically, we propose

1: input: record set D (DL ∪ DU )

2: D
(0)
U ← DU , n← 0

3: Λ(0) ← train semi-Markov CRF on DL

4: G ← construct proximate record graph on D
5: P̂← calculate empirical distribution on DL

6: while true do

7: P← estimate label distribution for each record xi in
D with Λ(n)

8: P∗ ← regularize P with P̂ according to graph G
9: P̃← interpolate distributions of P∗ and P

10: D
(n+1)
U ← inference label of DU with P̃

11: if D
(n+1)
U same as D

(n)
U or n = maxIter then

12: goto Line 17
13: end if

14: Λ(n+1) ← train semi-Markov CRF on DL ∪ D
(n+1)
U

15: n← n + 1
16: end while

17: return D
(n+1)
U

Figure 5: The algorithm of our Semi-supervised

Learning Model.

a graph called proximate record graph where each node of
the graph represents a record in D. Each edge represents the
connected data records with high degree of similarity in both
of text content and HTML format. The high-level pseudo-
code of our semi-supervised learning algorithm is given in
Figure 5. At the beginning, we train the initial parameters
of the semi-Markov CRF on DL in Line 3. Before performing
the semi-supervised learning, the construction of the proxi-
mate record graph G is conducted using the records in D in
Line 4. The details of the construction will be discussed in
Section 4.1. In Lines 7 and 8, the proximate record graph G
guides the regularization of the posterior label distribution
P of the records. The details are presented in Section 4.3.
In Lines 9 and 10, the regularized distribution P∗ is interpo-
lated with the original posterior distribution P to produce an
updated label distribution P̃ which is used in the inference
to get the predicted labels for the records in DU . The details
are presented in Section 4.4. Then, if the stopping condi-
tions in Line 11 are not met, the algorithm proceeds to the
next iteration, and the records in DU with the inferred la-
bels in the current iteration are involved in the semi-Markov
CRF training in Line 14 as discussed in Section 4.5. Finally
the labeling results of DU in the last iteration are returned
as the output.

After all record sets corresponding to category C are pro-
cessed, the extracted entities and attribute values are inte-
grated together. The details are described in Section 4.6.

4.1 Proximate Record Graph Construction
A proximate record graph G = (D, E) is an undirected

weighted graph with each record in D as a vertex and E is the
edge set. Recall that each record xi in D is represented by

a token sequence xi = x1
i · · ·x

|xi|
i . Each edge eij = (xi, xj)

connecting the vertices xi and xj is associated with a weight
wij calculated as:

wij =



A(xi,xj) if xi ∈ K(xj) or xj ∈ K(xi)
0 otherwise

, (1)

where A is a pairwise sequence alignment function return-
ing a score in [0, 1] which indicates the proximate relation



between the two record sequences of xi and xj . K(·) is a
function that can output the top k nearest neighbors. In
the proximate record graph, only the vertices (i.e., records)
sharing similar format and content will be connected by the
edges. Taking the record set given in Figure 2 as an exam-
ple, xi denotes the token sequence obtained from the data
record number i. There are edges such as (x319,x320) and
(x319,x321). However, it is unlikely that there is an edge
between x2 and x319.

To design the alignment function A, we employ a modified
Needleman-Wunsch algorithm [21] which performs a global
alignment on two sequences using the dynamic programming
technique. In particular, we use unit penalty per gap, zero
penalty per matching, and infinite penalty per mismatching.
The overall alignment penalty of two sequences is converted
and normalized into a similarity score in [0, 1]. Considering
data records x2 and x3 in Figure 2, their token sequences
are “<p> DIGIT : cleaning house <br> rel DATE · · · ”, and
“<p> DIGIT : blue monday <br> rel DATE · · · ” respec-
tively. The alignment result is illustrated as below:

< p > DIGIT : cleaning house − − < br > rel · · ·
| | | | |

< p > DIGIT : − − blue monday < br > rel · · ·

where “-” represents a gap token. After sequence alignment,
we obtain a set of aligned token pairs At

ij = {(xm
i , xn

j )},
where (xm

i , xn
j ) indicates that xm

i from xi and xn
j from xj are

aligned. Furthermore, we can also define the set of aligned
segment pairs of xi and xj :

As
ij = {(sq

i , s
r
j)}

s.t. (a).¬∃(xm
i , xn

j ) ∈ At
ij ∧ xm

i ∈ sq

i ∧ xn
j ∈ sr

j , and

(b).(x
t
q
i
−1

i , x
tr
j−1

j ) ∈ At
ij ∧ (x

u
q
i
+1

i , x
ur

j+1

j ) ∈ At
ij , and

(c).uq
i − tq

i ≤ maxL ∧ ur
j − tr

j ≤ maxL.

The first condition constrains that an aligned segment pair
does not contain any aligned token pairs. The second con-
dition constrains that the left (right) neighboring tokens of
the segment pair are aligned. The last condition constrains
that the length of both segments should be less than or equal
to the maximum length maxL. In the above example, one
aligned segment pair is (“cleaning house”, “blue monday”).
Note that the alignment relation between segments is tran-
sitive. Therefore, although x2 and x319 are not directly con-
nected by an edge, the segments “cleaning house” and “scat
cats” can still be aligned indirectly with the paths from x2

to x319 in G.
As shown by the above example, it is beneficial to make

the labels of aligned segments favor towards each other. The
reason is that the text fragments having the same label in
different records often share the same or similar context to-
kens. Meanwhile, they are often presented in the similar
relative locations in their own token sequences. The aligned
segments generated from our pairwise sequence alignment
algorithm can capture the above two characteristics at the
same time. The context tokens of some “OTHER” segments
may also be similar to that of the desirable segments. The
“OTHER” segments in the unlabeled records are often di-
rectly or indirectly aligned to the “OTHER” segments in
the labeled records. The label regularization in the semi-
supervised learning can help predict the correct labels for
such situations.

4.2 Semi-Markov CRF and Features
As mentioned in the overview of our framework in Sec-

tion 2, our semi-supervised extraction model employs semi-
Markov CRFs [27] as the basic classification learning model.
In particular, a linear-chain CRF model is used. Let si =

s1
i · · · s

|si|
i denote a possible segmentation of xi, where sq

i =
〈tq

i , u
q
i , y

m
i 〉 as defined above. Then the likelihood of si can

be expressed as:

P (si|xi; Λ) =
1

Z(xi)
exp {ΛT ·

X

q

f(yq−1
i , sq

i ,xi)}, (2)

where f is a feature vector of the segment sq
i and the state

of the previous segment. Λ is the weight vector that estab-
lishes the relative importance of all the features. Z(xi) is a
normalizing factor.

To avoid the risk of overfitting with only a few derived
training examples in our problem setting, the only feature
template used in our framework is the separator feature:

fj,j′,t,t′,d(y
q−1
i , sq

i ,xi) = 1{y
q
i
=d}1

{x
t
q
i
−j

i
=t}

1
{x

u
q
i
+j′

i
=t′}

,

(3)
where j, j′ ∈ {1, 2, 3}. t and t′ vary over the separators such
as delimiters and tag tokens in the sequence xi. d varies over
the derived labels of the record set from where xi originates.
This class of features are unrelated to the previous state,
so the feature vector f can be simplified to f(sq

i , xi) in our
framework.

4.3 Posterior Regularization
In Lines 7 and 8 of the semi-supervised learning model

shown in Figure 5, the posterior label distribution is regu-
larized with the guidance of the proximate graph G. Once
the parameters of the CRF model are trained, the posterior
probability of a particular segment sq

i in the sequence xi,
denoted by P (sq

i |xi; Λ), can be calculated as:

P (sq
i |xi; Λ) =

1

Z′
exp {ΛT · f(sq

i ,xi)}, (4)

where Z
′

= Σyexp {ΛT · f(〈tq
i , u

q
i , y〉,xi)}. Let the vector

Ps
q
i

= (P (〈tq

i , u
q

i , y〉|xi; Λ))T denote the posterior label dis-

tribution of sq
i . To regularize this distribution with the prox-

imate graph G, we minimize the following function:

O(P) = O1(P) + µO2(P), (5)

where µ is a parameter controlling the relative weights of
the two terms. O1(P) and O2(P) are calculated as in Equa-
tions 6 and 7:

O1(P) =
X

xi∈DL

|xi|
X

b=1

s.t.1≤l≤maxL,
b+l−1≤|xi|

X

s:〈b,b+l−1,y〉

‖P̂s −Ps‖, (6)

O2(P) =
X

(xi,xj)∈E

wij

“

X

(xm
i

,xn
j
)∈At

ij

‖Pxm
i
−Pxn

j
‖

+
X

(s
q
i
,sr

j
)∈As

ij

‖Ps
q
i
−Psr

j
‖

”

, (7)

where ‖ · ‖ is the Euclidean norm. P̂s is the empirical label

distribution of the segment s in xi. When l > 1, P̂ (〈b, b +



l − 1, y〉|xi) is calculated as:

P̂ (〈b, b + l − 1, y〉|xi) =
X

b≤m≤b+l−1

P̂ (〈m, m, y〉|xi)/l, (8)

and P̂ (〈m, m, y〉|xi) is obtained from the derived label se-
quence of xi. In Equation 5, the term O1(P) regularizes
the estimated posterior distribution of the derived training
examples in DL with the original empirical labeling. The
term O2(P) regularizes the estimated posterior distribution
of the aligned token and segment pairs.

To achieve efficient computation, we employ the iterative
updating method to obtain the suboptimal solution P∗ of
Equation 5. The updating formulae are:

P
′
s

q
i

= P̂s
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where P is the old estimation from the last iteration. Note
that after each iteration, P′ should be normalized so as to
meet the condition ‖P′‖1 = 1, where ‖ · ‖1 is the ℓ1 norm.
Then P′ will be regarded as the old estimation for the next
iteration.

4.4 Inference with Regularized Posterior
In Lines 9 and 10 of the algorithm shown in Figure 5,

the obtained P ∗(sq

i |xi) in the regularization is employed to
adjust the original P (sq

i |xi; Λ) which is calculated with the
parameters obtained from the training in the last iteration.
The interpolation function is given in Equation 11:

P̃ (sq

i |xi; Λ) = (1− υ)P ∗(sq

i |xi) + υP (sq

i |xi; Λ), (11)

where υ is a parameter controlling the relative weights of
P ∗ and P . Then we calculate the new feature value related
to sq

i on xi as P̃ (sq
i |xi; Λ) ∗ Z

′

. This value is utilized in the
Viterbi decoding algorithm to infer new label sequences for
the records in DU .

Recall that the proximate graph G captures the align-
ment relation between similar segments and this relation is
transitive. Therefore, the decoded labels with the interpo-
lated posterior distribution favor towards the labels of their
aligned neighboring segments.

4.5 Semi-supervised Training
As shown in Line 11 of the algorithm in Figure 5, if the

inferred labels of the records in DU from the previous step
are the same as the ones obtained in the last iteration, the
semi-supervised learning process terminates. Otherwise, if
n is still smaller than the maximum iteration number, the
records in DU with new labels will be taken into consider-
ation in the next iteration of the training process. In this
training, we maximize the penalized log likelihood function
as shown below:

ℓ(Λ(n)) = η
X

(xi,si)∈DL

log P (si|xi; Λ
(n)) (12)

+ (1− η)
X

(xi,s∗
i
)∈D

(n)
U

log P (s∗i |xi; Λ
(n)) + γ‖Λ(n)‖,

where η is a parameter controlling the relative weights of
the contribution from the records in DL and DU . The term
γ‖Λ(n)‖ is the Euclidean norm penalty factor weighted by γ.
s∗i is the segmentation of xi inferred from the previous step.
Obviously, the above objective function is still concave and
it can thus be optimized with the efficient gradient descent
methods such as L-BFGS [19].

4.6 Result Ranking
In our semi-supervised leaning model for extraction as

shown in Figure 5, each data record set is processed sep-
arately. Thus, the same entity may be extracted from dif-
ferent record sets where it appears with its different variant
names. Before ranking the result entities, we first conduct
entity deduplication. The number of occurrence of the same
entity is counted during the deduplication process. Then the
entities are ranked according to their number of occurrence.
After entity deduplication, the attributes of the same entity
collected from different record sets are integrated together,
and they are also deduplicated and ranked similarly. The de-
tails of variant collecting and approximate string matching
utilized in the deduplication will be presented in Section 5
since they are also used in the generation of derived training
examples.

5. DERIVED TRAINING EXAMPLE
GENERATION

As mentioned before, in a semi-structured data record set
D, the seed records refer to the data records that correspond
to the seed entities in S . The goal of derived training ex-
ample generation is to automatically identify seed records in
D and determine the sequence classification labels for these
records using the information of the seed infoboxes. Since
such labels are not directly provided by human as in the
standard machine learning paradigm, we call them derived
labels. Moreover, the records, after determining the derived
labels, are called derived training examples. The generation
task can be decomposed into two steps, namely, seed record
finding and attribute labeling.

To find the seed record in D for a seed entity E, we first
find the records that contain E’s name or its variants as
a sub-sequence. The name variants are obtained from syn-
onym in WordNet and the redirection relation in Wikipedia.
If the entity name is a person name detected by YagoTool1,
we also collect its variants by following the name conven-
tions, such as middle name removal, given name acronym,
etc. In addition, we allow an approximate string matching
as supplement in case that the collected variants are not
sufficient. The found records are regarded as candidate seed
records of E, and the matching sub-sequences are regarded
as the candidate record name segments. If multiple record
name segments are found in one candidate seed record, the
one that has the smallest index in the record is retained and
the others are discarded. We adopt this strategy because the
subject of a record, i.e. the record name segment, is usually
given in the very beginning of the record [8]. When multi-
ple candidate seed records are found for E, the one whose
record name segment has the smallest index in its own to-
ken sequence is returned as the seed record. This treatment
can handle the case that the entity name of E appears as
an attribute value or plain text in other non-seed records.

1http://www.mpi-inf.mpg.de/yago-naga/javatools/



The found record name segment of the seed record is labeled
with the derived label “ENTITY NAME”.

The seed records found above compose the derived train-
ing set DL. The procedure of labeling the attribute values
in these seed records is similar to the labeling of the entity
name. The attribute values for labeling are collected from
the seed entities’ infoboxes and their variants are obtained
in a similar manner as above. In addition, we use Yago-
Tool to normalize the different formats of date and number
types. The variant set of each attribute value goes through
the same procedure above for entity name except that we
only search the value variant in its own seed record. The
derived labels of attribute values are obtained from the seed
entity’s infobox, such as “DIRECTED BY”, “STORY BY”,
etc. After the labeling of attribute values, the remaining un-
labeled parts in the seed records are labeled with “OTHER”.

6. EXPERIMENTS

6.1 Experiment Setting
We collect 16 Wikipedia categories as depicted in Table 1

to evaluate the performance of our framework. These cate-
gories are well-known so that the annotators can collect the
full set of the ground truth without ambiguity. Therefore,
the experimental results are free from the annotation bias.
Moreover, some of these categories are also used in the ex-
perimental evaluation of existing works, such as SEAL [33]
which will also be compared in our experiments.

To obtain the ground truth of entity elements, the annota-
tors first check the official Web site of a particular category
if available. Normally, the full entity list can be found from
the Web site. For example, the teams of NBA can be col-
lected from a combox in the home page. For the categories
that do not have their own official Web sites such as African
country, our annotators try to obtain the entity elements
from other related organization Web sites, e.g. the Web site
of The World Bank. In addition, the entity lists of some
categories are also available in Wikipedia.

Wikipedia already contains articles for some entities in
the above categories, and quite many of these articles have
well maintained infoboxes. This is helpful for us to collect
the ground truth attribute values with high quality for con-
ducting the evaluation of the attribute extraction results.
For each entity, the annotators collect the ground truth at-
tribute values for each attribute that also appeared in the
seed entities’ infoboxes of the same category. Since these in-
foboxes are used to generate the derived training examples,
the extracted attribute values have the same label set as the
derived label set from these infoboxes. Hence, the collected
ground truth attribute values can be used to evaluate the
results. During the collection of attribute values, if the en-
tity exists in Wikipedia and has a good quality infobox, our
annotators use the infobox first. After that, they search the
Web to collect the values for the remaining attributes.

For each category, the semi-structured data collection com-
ponent randomly selects two seed entities from the existing
ones in Wikipedia to generate a synthetic query. This query
is issued to Google API to download the top 200 hit Web
pages. The discovery of entities and the extraction of their
attributes are carried out with the semi-structured record
sets detected from the downloaded pages. This procedure
is executed 3 times per category so as to avoid the possible
bias introduced by the seed entity selection. The average of

Table 1: The details of the Wikipedia categories col-

lected for the experiments.

Category
Category Name

# of
ID entities
1 African countries 55
2 Best Actor Academy Award winners 78
3 Best Actress Academy Award winners 72
4 Best Picture Academy Award winners 83
5 Counties of Scotland 33
6 Fields Medalists 52
7 First Ladies of the United States 44
8 Leone d’Oro winners 57
9 Member states of the European Union 27
10 National Basketball Association teams 30
11 Nobel laureates in Chemistry 160
12 Nobel laureates in Physics 192
13 Presidents of the United States 44
14 Prime Ministers of Japan 66
15 States of the United States 50
16 Wimbledon champions 179

these 3 runs is reported as the performance on this category.
It is worthwhile to notice that when three or more seeds are
available, we can enhance the performance by generating
several synthetic queries with different combinations of the
seeds and aggregate the results of these synthetic queries.
For example, three synthetic queries each of which involves
two seeds can be generated from three seed entities.

In our framework, the parameter setting is chosen based
on a separate small development data set. The tuned param-
eters are µ = 0.1, υ = 0.2, and η = 0.01. In the proximate
record graph construction, each vertex is connected to its
3 nearest neighbors. The iteration numbers are 20 and 10
for regularization updating and semi-supervised learning re-
spectively. Following the setting in [27], maxL and γ are set
to be 6 and 0.01.

6.2 Entity Expansion
For entity expansion, we conduct comparison with two

methods. The first one is a baseline that employs super-
vised semi-Markov CRF as the extraction method (called
CRF-based baseline). It also makes use of the collected semi-
structured record sets by our framework as the informa-
tion resource and takes the derived training examples in our
framework as the training data to perform supervised learn-
ing. The second comparison method is an existing work,
namely SEAL [33]. SEAL also utilizes the semi-structured
data on the Web to perform entity set expansion. It gener-
ates a character-level wrapper for each Web page with the
seed entities as clues. We collect 200 results from the sys-
tem2 Web site of SEAL per seed set per category.

Both precision and recall are used to evaluate the rank-
ing results of entity discovery. We first report the result of
precision at K (P@K) where K is the number of entities con-
sidered from the top of the ranked output list by a method.
For each method, the value of K varies over 5, 20, 50, 100,
and 200. The results of entity discovery of different methods
are given in Table 2. It can be observed that all three meth-
ods achieve encouraging performance. Their average P@5
values are 0.94, 0.90 and 0.90 respectively. This demon-

2http://www.boowa.com/



Table 2: The precision performance of entity discovery of different methods.

Our framework CRF-based baseline SEAL
# @5 @20 @50 @100 @200 @5 @20 @50 @100 @200 @5 @20 @50 @100 @200
1 1.00 1.00 0.94 0.48 0.25 1.00 0.90 0.80 0.47 0.25 1.00 1.00 0.92 0.47 0.25
2 1.00 1.00 0.94 0.76 0.38 1.00 0.90 0.84 0.68 0.38 1.00 1.00 0.92 0.71 0.38
3 1.00 0.95 0.92 0.67 0.35 1.00 0.90 0.82 0.58 0.31 1.00 0.85 0.74 0.48 0.29
4 1.00 1.00 0.98 0.81 0.41 1.00 0.93 0.90 0.77 0.41 1.00 1.00 0.98 0.79 0.40
5 0.53 0.43 0.28 0.16 0.11 0.40 0.35 0.28 0.16 0.11 0.40 0.40 0.22 0.12 0.07
6 1.00 1.00 0.94 0.50 0.25 1.00 0.95 0.84 0.43 0.25 1.00 1.00 0.86 0.46 0.24
7 1.00 0.93 0.72 0.42 0.21 0.93 0.85 0.60 0.41 0.21 1.00 0.80 0.62 0.40 0.21
8 0.87 0.85 0.74 0.44 0.24 0.73 0.68 0.48 0.34 0.24 0.80 0.72 0.51 0.26 0.14
9 0.80 0.72 0.46 0.23 0.12 0.60 0.55 0.44 0.23 0.12 0.80 0.55 0.42 0.22 0.12
10 1.00 1.00 0.54 0.28 0.14 1.00 0.93 0.48 0.25 0.14 1.00 1.00 0.52 0.27 0.14
11 1.00 0.95 0.90 0.88 0.66 1.00 0.87 0.84 0.68 0.52 1.00 0.95 0.86 0.71 0.48
12 1.00 0.97 0.86 0.84 0.73 1.00 0.83 0.78 0.62 0.58 1.00 0.95 0.92 0.57 0.52
13 1.00 1.00 0.80 0.41 0.21 1.00 0.93 0.72 0.37 0.19 1.00 0.98 0.76 0.39 0.20
14 1.00 1.00 0.84 0.52 0.32 1.00 0.95 0.76 0.44 0.30 1.00 0.98 0.82 0.42 0.30
15 1.00 1.00 0.95 0.48 0.24 1.00 0.93 0.88 0.48 0.24 1.00 1.00 0.96 0.48 0.24
16 0.80 0.68 0.52 0.33 0.19 0.67 0.62 0.48 0.33 0.18 0.47 0.35 0.34 0.25 0.14

avg. 0.94 0.91 0.77 0.52 0.31 0.90 0.82 0.68 0.46 0.28 0.90 0.85 0.71 0.44 0.26

P-value in pairwise t-test 0.014 9.90E-
08

1.25E-
05

0.002 0.025 0.074 0.011 0.004 0.001 0.010

strates that semi-structured data on the Web is very useful
in this task. Therefore, making use of the semi-structured
Web data to enrich some categories of Wikipedia is a feasible
and practical direction. On average, the performance of our
framework with semi-supervised learning extraction is bet-
ter than SEAL. One reason for the superior performance is
that our framework detects the semi-structured data record
region before the extraction. This can eliminate the noise
blocks in the Web pages. The character-level wrapper of
SEAL may be affected by these noise blocks. In addition,
with only a few seeds, the character-level wrapper of SEAL
cannot overcome the difficulty caused by the cases that the
seed entity names have inconsistent contexts. For example,
one seed name is embedded in a tag <font> while the other
seed name is not. The wrapper induction procedure will be
misled by this inconsistency. Moreover, when the text seg-
ments of the names have similar format contexts as that of
other segments of the records, the obtained wrapper will also
extract more false positives. The CRF-based baseline also
suffers from the above context related difficulties. Our semi-
supervised learning method can cope with this problem by
taking the unlabeled data records into account. Specifically,
the sequence alignment based proximate record graph regu-
larizes the labels according to the alignment relation so as to
overcome the difficulties brought in by the ambiguous con-
text. We conduct pairwise t-test using a significance level of
0.05 and find that the improvements of our framework are
significant in most cases. The P-values in the significance
tests are given in the last row of Table 2.

We manually check some categories with low performance.
One major type of error for Category 9 is due to the non-EU
European countries, such as “Ukraine” and “Switzerland”.
When we retrieve the semi-structured data records from the
Web, the seeds of EU member countries also serve as the
seeds for non-EU European countries in a counterproduc-
tive manner. For the category of Scotland county, many
noisy place names are extracted. The main reason is that
the entity names in this category are also widely used to

name other places all over the nations of British Common-
wealth. Consequently, the collected large amount of noisy
semi-structured data records affect the performance.

We also report the recall of different methods in Table 3.
Since the number of the ground truth entities in different
categories varies from dozens to near 200, the recall values
are calculated at different K values of the result list, namely
50, 100, and 200. If the ground truth number is no more than
a particular K value, the recall for this K value is calculated.
On average, our framework outperforms SEAL by about 7%.
One reason is that the noise output of SEAL affects the
ranking of the true positives, and some of them are ranked
lower. Another possible reason is that the search engine
cannot return sufficient number of semi-structured record
sets. This also affects the performance of our framework.

6.3 Attribute Extraction
Another major goal of our framework is to extract at-

tribute values for the detected entities. SEAL does not
perform entity attribute extraction, therefore, we only re-
port the performance of our framework and the CRF-based
baseline. For each domain, we only examine the extracted
attributes of the correct entities in its answer entity list and
report the average precision at different K values from 1 to
10 in all domains. Note that about one fifth correctly ex-
tracted entities do not have detected attributes and they are
excluded from this evaluation.

The result of attribute extraction performance is given in
Figure 6. It can been seen that our framework can perform
significantly better than the CRF-based baseline with a dif-
ference about 11% on average at different K levels. It is
worth emphasizing that our framework can achieve 16% im-
provement on average when K is no more than 5. It indicates
that our framework is rather robust. We manually check the
extracted attributes of CRF-based baseline and find that
besides noise segments, it sometimes wrongly identifies the
name of an entity as an attribute value. The reason is that
the CRF-based baseline only depends on the separator fea-



Table 3: The precision performance of entity discov-

ery of different methods.
Our framework CRF baseline SEAL

H
H

H
H#
K

50 100 200 50 100 200 50 100 200

1 – 0.91 0.94 – 0.89 0.94 – 0.89 0.94
2 – 0.79 0.87 – 0.78 0.84 – 0.79 0.82
3 – 0.74 0.83 – 0.68 0.83 – 0.62 0.79
4 – 1.00 1.00 – 0.95 1.00 – 0.97 0.99
5 0.45 0.52 0.71 0.44 0.52 0.71 0.35 0.39 0.45
6 – 1.00 1.00 – 0.92 1.00 – 0.92 1.00
7 0.81 1.00 1.00 0.72 0.97 1.00 0.74 0.90 0.95
8 – 0.71 0.84 – 0.62 0.80 – 0.41 0.51
9 0.84 0.92 0.96 0.81 0.92 0.96 0.81 0.88 0.96
10 0.96 1.00 1.00 0.86 0.89 1.00 0.93 0.96 1.00
11 – – 0.81 – – 0.66 – – 0.61
12 – – 0.74 – – 0.59 – – 0.52
13 0.93 0.97 1.00 0.86 0.88 0.90 0.89 0.90 0.93
14 – 0.83 1.00 – 0.75 1.00 – 0.76 1.00
15 0.98 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00
16 – – 0.19 – – 0.18 – – 0.16

avg. 0.83 0.88 0.87 0.77 0.85 0.84 0.79 0.80 0.79

tures to identity segments. Thus they cannot distinguish
those segments with similar context tokens. Our framework
can handle these cases by regularizing the label distribu-
tion with the proximate record graph as guidance. As a
result, noise segments can be regularized to favor towards
the segments labeled as “OTHER” in the derived training
examples. Similarly, the segments of the entity name and
the attribute value with similar context tokens can also be
properly identified. In addition, it can be seen that the at-
tributes of higher rank have better precision. Specifically,
our framework can output 2 true positive attribute values
among the top 3 extracted attribute results. It is because the
important attributes of an entity are repeatedly mentioned
in different data record sets, such as the capital and GDP
of an African country, the party and spouse of a US pres-
ident, etc. Therefore, they are ranked higher according to
the counted occurrence time. We also find that some correct
attributes are not ranked very high. One possible reason is
due to the simple design of the final ranking method which
only counts the number of occurrence of the extracted at-
tributes.

7. RELATED WORK
SEAL [33] exploits “list” style of data, which can be con-

sidered as a simplified kind of semi-structured data records
in this paper, to discover more entities for expanding a given
entity set. They extract named entities with wrappers, each
of which is composed of a pair of character-level prefix and
suffix [34]. However, they do not perform record region de-
tection, consequently the wrappers may extract noise from
the non-record regions of the page. Context distribution
similarity based methods [23, 25] utilize the context of the
seed entities in the documents or Web search queries to gen-
erate a feature/signature vector of the targeted class. Then
the candidate entities are ranked according to the similar-
ity of their feature vectors with the class’s vector. Different
from the above methods that explore positive seed instances
only, Li et al [16] proposed a learning method that takes both
positive and unlabeled learning data as input and generates
a set of reliable negative examples from the candidate en-
tity set. Then the remaining candidates are evaluated with
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Figure 6: The attribute extraction performance of

our framework and the CRF-based baseline.

the seeds as well as the negative examples. Ensemble se-
mantics methods [7, 26] assemble the existing set expansion
techniques as well as their information resources to boost
the performance of a single approach on a single resource.
The output of named entity recognition [20] can serve as one
source to perform set expansion [23, 25, 26]. All the above
methods cannot extract attributes of the discovered entities.

Entity set acquisition systems [5, 10] do not need input
seeds. They leverage domain independent patterns, such
as “is a” and “such as”, to harvest the instances of a given
class. Open information extraction [2, 11] and table seman-
tifying [17, 31, 32] focus more on extracting or annotating
large amount of facts and relations. The methods of weakly-
supervised attribute acquisition [22, 24] can also be applied
in identifying important attributes for the categories. Thus,
the existing infoboxes can be polished, and the non-infobox
categories can obtain proper attributes to establish their own
infobox schemata.

Among the semi-supervised CRF approaches, one class
of methods consider data sequence granularity [12, 15, 35].
Precisely, these methods incorporate one more term in the
objective function of CRF. This term captures the condi-
tional entropy of the CRF model or the minimum mutual
information on the unlabeled data. The extra term can be
interpreted by information theory such as rate distortion
theory. However, the objective function does not possess the
convexity property any more. Subramanya et al. also con-
structed a graph to guide the semi-supervised CRF learning
in part-of-speech tagging problem [28]. This method regu-
larizes the posterior probability distribution on each single
token in a 3-gram graph. Its n-gram based graph construc-
tion is not applicable to the problem tackled here. The rea-
son is that the length of our desirable text segments cannot
be fixed in advance. In contrast, our proximate record graph
can capture both record level and segment level similarities
at the same time. Furthermore, the proximate record graph
is also able to capture the position information of a text
segment in the alignment so that the aligned segments with
higher chance describing the same functionality components
of different records.



8. CONCLUSIONS AND FUTURE WORK
In this paper, a framework of Wikipedia entity expan-

sion and attribute extraction is presented. This framework
takes a few seed entities automatically collected from a par-
ticular category as well as their infoboxes as clues to har-
vest more entities as well as attribute content by exploiting
the semi-structured data records on the Web. To tackle
the problem of lacking sufficient training examples, a semi-
supervised learning model is proposed. A proximate record
graph is designed, based on pairwise sequence alignment, to
guide the semi-supervised learning. Extensive experimen-
tal results can demonstrate that our framework can outper-
form a state-of-the-art existing system. The semi-supervised
learning model achieves significant improvement compared
with pure supervised learning.

Several directions are worth exploring in the future. One
direction is to investigate how to perform derived training
example generation with the article of the seed entity when
its infobox does not exist. Another direction is to detect
new attributes in the semi-structured data record sets that
are not mentioned in the infoboxes. Such new attributes are
valuable to populate the relations in knowledge bases.
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