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ABSTRACT

While most methods for learning-to-rank documents only
consider relevance scores as features, better results can often
be obtained by taking into account the latent topic structure
of the document collection. Existing approaches that con-
sider latent topics follow a two-stage approach, in which top-
ics are discovered in an unsupervised way, as usual, and then
used as features for the learning-to-rank task. In contrast,
we propose a learning-to-rank framework which integrates
the supervised learning of a maximum margin classifier with
the discovery of a suitable probabilistic topic model. In this
way, the labelled data that is available for the learning-to-
rank task can be exploited to identify the most appropriate
topics. To this end, we use a unified constrained optimiza-
tion framework, which can dynamically compute the latent
topic similarity score between the query and the document.
Our experimental results show a consistent improvement
over the state-of-the-art learning-to-rank models.
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1. INTRODUCTION
The learning-to-rank (LTR) paradigm for information re-

trieval (IR) consists in the use of machine learning tech-
niques for constructing suitable document ranking functions.
Documents in this context are represented as vectors of fea-
tures, capturing relevance w.r.t. the given query as well as
query-independent statistics such as PageRank. LTR ap-
proaches can be distinguished in how they approach the
ranking problem. In particular, pointwise (e.g. [22]), pair-
wise (e.g. [7]), and listwise (e.g. [8, 19, 31]) approaches are
commonly considered, which respectively interpret ranking
as a regression problem, a binary classification problem and
an optimization problem.

In this paper, we will extend a maximum margin based
LTR model, which is known to perform well on this task
[22, 14, 1, 7], with information derived from a latent topic
model, which has already proven beneficial in many IR tasks
[30, 32, 10]. Several authors have already considered the use
of latent topics for LTR. A common approach to do this is
to adopt a two-stage “downstream” method [34], in which
an existing topic model such as Latent Dirichlet Allocation
(LDA) [6] is used to find the latent topics in the documents
and queries. One can then compute a topic-based similar-
ity between the query and a document, e.g. using cosine
similarity or a likelihood based score [30]. By adding the
resulting similarity scores as an additional feature, existing
LTR models can be used to learn a ranking function for
these topic-enriched feature vectors. For example, such a
two-stage method has been used in [27] as a comparative
method. However, since the mechanisms behind discover-
ing the topics and learning the ranking are completely de-
coupled, this approach is inherently sub-optimal. Indeed,
similar approaches have already been shown to perform un-
satisfactorily in other prediction tasks [34, 27], as errors from
one stage are propagated to the next.

The mechanism we propose in this paper is significantly
different from these existing two-stage “downstream” ap-
proaches, as it is based on a tight coupling of latent topic
detection and maximum margin classification. Specifically,
we propose a unified constrained optimization framework,
which is used to find a regularized posterior distribution of
the predictive function in a space defined by the pairwise
maximum margin constraints. The topic model component
of the composite objective function is used to find the latent
dimensions of the dataset, whereas the maximum margin
component is used for label prediction. The advantage of
this approach is that latent topic information can be chosen
so as to aid the classification of data points around the de-



cision boundary of a standard pairwise classifier, and more
generally to prevent misclassifications. In particular, the
proposed framework is capable of obtaining additional la-
tent topic information to obtain a more discriminative rep-
resentation of these hard data points. In this way, a more
effective pairwise-based ranking classifier can be obtained,
taking into account hidden topics that are automatically de-
tected as part of the training process. After presenting the
details of our model, we discuss a technique for solving the
resulting optimization problem. Finally, we conduct exten-
sive experiments on several benchmark datasets and show
that our proposed model consistently improves the state-
of-the-art approaches. We also present results related to
the query-wise performance of our model in comparison to
the comparative models and show that our model performs
much better.

2. RELATED WORK

2.1 Learning-to-rank models
Maximum margin learning has already been successfully

applied to LTR in a number of different ways [1, 14], in
both pointwise [22] and pairwise [7] LTR models. For exam-
ple, the latter approach uses RankSVM with a pairwise hinge
loss function which is specifically adapted to the LTR task.
Note that while [5] discusses the use of query topics in a
maximum margin setting, it does not rely on a topic model
for inferring these query topics. A large number of other
learning-to-rank models have recently been proposed. For
example, Gao et al. [13] presented a novel semi-supervised
listwise LTR model to deal with domains for which no train-
ing data is available. A sparse learning-to-rank model for in-
formation retrieval has been proposed in [17]. Finally, Dang
et al. [9] proposed a two-stage LTR framework to improve
the performance in cases where many relevant documents
are excluded from the ranking list by bag-of-words retrieval
models. None of the above works consider latent topics for
tackling the LTR problem.

2.2 Latent topic models
Unsupervised topic models such as Latent Dirichlet Allo-

cation (LDA) [6] have proven very effective for ad-hoc infor-
mation retrieval [30, 32, 10]. The usefulness of topic models
in this context stems from the fact that latent topics can
be used to better estimate the similarity between queries
and documents when the overlap in actual content words
is low [18, 12]. Existing approaches do not follow the LTR
paradigm, but rather use the low-dimensional topic space to
conduct traditional document retrieval under an unsuper-
vised setting, without considering any other features.
Supervised models based on a latent semantic space have

also been considered [18]. In [4], the authors have pro-
posed a discriminative model, called supervised semantic in-
dexing, which can compute query-document and document-
document similarity in a semantic space. While the authors
state that their model can easily be extended to an LTR
setting, they have not developed such an extension. Gao et
al. have proposed topic models which jointly consider the
query and the title of a document, with the aim of improv-
ing document retrieval in a language modeling framework
[12, 15]. Even though they also use posterior regularization,
there are major differences with our approach; for instance,
our model is designed for the LTR task. In addition, we

introduce a novel interpretation to the optimization frame-
work of the posterior distribution obtained using LDA, using
a convex optimization technique, which leads to a novel for-
mulation and inference algorithm.

There is another line of work that uses probabilistic topic
modeling for document classification, which takes into ac-
count labeled training data during parameter estimation.
One example is the supervised topic model from [21], which
introduces a response variable in the topic modeling frame-
work. The maximum margin entropy discrimination model,
known as MedLDA [34], discriminatively learns a topic model
for binary and multi-class document classification. A differ-
ence between our work and such maximum margin super-
vised topic models is that our model is designed for solving
LTR tasks whereas the aforementioned models only consider
document classification, which leads to a different optimiza-
tion problem.

Note that both our model and the models proposed in
[34, 35] are learned by solving a regularized Bayesian infer-
ence task. However, MedLDA and infinite latent SVM solve a
different optimization problem. In particular, these models
use the same input as text classification models, and use
a latent linear discriminant function with a random weight
vector that only encapsulates the topic feature weights, lead-
ing to an expected classifier with an effective discriminant
function. Due to the use of a random weight vector, these
models cannot directly take into account the non-random
pre-computed features that are traditionally considered in
the LTR task. Supervised text classification models also face
problems when dealing with unbalanced data [22], where one
class tends to dominate the training set, as is commonly the
case for the class of non-relevant documents in information
retrieval. Such unbalanced data leads to a classifier where
the minority class is totally ignored by the text classification
model [22]. Therefore, novel methodologies and algorithms
are needed in order to solve the LTR task using topic models
with pairwise maximum margin constraints.

2.3 Regularized posterior inference
Some probabilistic models have been proposed which make

use of posterior inference with regularization, although la-
tent topics have not previously been considered in such mod-
els. For example, in [11, 29] the authors proposed a prob-
abilistic regularization framework for structured weakly su-
pervised learning. They showed that by directly imposing
decomposable regularization on the posterior moments of
latent variables, the computational efficiency of the uncon-
strained model can be retained while ensuring that desired
constraints hold in expectation. Supervised topic models
discussed above such as [34, 16] also conduct posterior reg-
ularization.

3. BACKGROUND

3.1 Problem Definition
The learning-to-rank (LTR) paradigm aims to learn an

optimal ranking function for a given set of available rele-
vance features. Specifically, let a query set Q and document
collection D be given, and assume that each query qu from
Q is associated with ru documents. The learning algorithm
is given x queries as training examples. The corresponding
documents are typically retrieved from a search engine and
will be denoted as Du = {du1 , d

u
2 , · · · , d

u
ru ∈ D}. Further-



more assume that in the training data, a discrete relevance
label hu

i is associated with each document dui . Our objec-
tive is to learn a ranking function from this training data
that can be used to rank documents for previously unseen
queries.
As is typical in LTR settings, we assume that we have

access to a mapping ψ : Q × D → R
n that maps each

query-document pair to an n-dimensional feature vector.
The training algorithm is then given labeled examples of the
form T = (T1, T2, · · · , Tx), with each Tu of the form Tu =
((ψu

1 , h
u
1 ), (ψ

u
2 , h

u
2 ), · · · , (ψ

u
ru , h

u
ru)) and ψ

u
i = ψ(qu, d

u
i ). We

then need to learn a real-valued function f : Rn → R such
that f(ψ(q, di)) > f(ψ(q, dk)) if document di is more rele-
vant to query q than document dk.

3.2 Pairwise Maximum Margin LTR
We will learn a linear ranking function, parametrized by

a weight vector η ∈ R
n:

fη(ψ) = η
⊺
.ψ, (1)

Our framework follows the pairwise approach to LTR. In
other words, we treat LTR as a binary classification problem
by constructing for each pair of documents (dui , d

u
k), associ-

ated with a given query qu, the vector (ψ
u
i −ψ

u
k ). The latter

vector is assigned the class label yuik defined as follows:

y
u
ik =

{

+1 if dui is ranked higher than duk
−1 otherwise.

(2)

Let the set Bu of document index pairs, given a query qu,
be defined as follows:

Bu = {(i, k)|hu
i > h

u
k} (3)

In other words, (i, k) ∈ Bu if dui is more relevant than duk .
Our framework is based on a maximum margin classifier

model, similar to Support Vector Machines (SVM), which re-
quires us to solve the following optimization problem:

minimize
η

1

2
||η||2 + C

∑

ξik

subject to ξik ≥ 0

y
u
ikη

⊺(ψu
i − ψ

u
k ) ≥ 1− ξik, ∀u, i, k,

(4)

where C is a regularization parameter and ξik are the non-
negative slack variables. It can be shown that solving this
optimization problem is equivalent to minimizing the empir-
ical hinge loss function, defined as follows:

Lh(Bu) =
∑

(i,k)∈Bu

(1− y
u
ikη

⊺(ψu
i − ψ

u
k )). (5)

In our framework, we will consider a modified hinge loss
function, which takes into account the difference in rele-
vance degree and the different number of document pairs
for different queries:

L
′
h(Bu) =

1

|Bu|

∑

(i,k)∈Bu

[|hu
i − h

u
k | − y

u
ikη

⊺(ψu
i − ψ

u
k )]. (6)

Advantages of considering a query-level loss function have
been discussed in [25, 1], where the relevance levels of dif-
ferent documents were also taken into account.

3.3 Topic Modeling
The topic modeling component of our framework is based

on Latent Dirichlet Allocation (LDA). The aim of LDA is to
represent the meaning of each document as a probability dis-
tribution over a set of latent topics. It assumes a generative
process, in which each word in a document is generated by
sampling a topic and then sampling a word. LDA assigns each
word in the document collection to one of the latent topics
(initially at random), and uses this assignment to estimate
both the probability distribution over topics associated with
each document and the probability distribution over words
associated with each topics. These probability distributions
are then used to improve the topic assignments of the words,
and the whole process is repeated until convergence.

To apply LDA in our setting, we expand the document col-
lection D with the set of queries from the training data Q,
i.e. queries are treated as short documents to construct an
aggregated document collection, denoted as D. For any doc-
ument d in D, we let Nd denote the number of words in

document d. Furthermore, we let wd = {wd
n}

Nd

n=1 denote the
words appearing in the each document and W = {wd}Dd=1

the words in the entire aggregated document set. Let zd =

{zdn}
Nd

n=1 denote the topic assignment of the words in docu-
ment d and let Z = {zd}Dd=1 denote the topic assignment
of all words in D. Let Θ = {θd}Dd=1 be the topic distri-
butions of all documents in D. Let the number of topics
be K. Let Φ = {φ1, φ2, · · · , φK} be the V × K matrix of
topic distribution parameters, where each φk parameterizes
a topic-specific multinomial word distribution. V denotes
the number of words in the vocabulary. The posterior dis-
tribution is then given by:

P (Θ,Z,Φ|W ,α,β) =
P0(Θ,Z,Φ|α,β)P (W |Θ,Z,Φ)

P (W |α,β)
,

(7)
where P0(Θ,Z,Φ|α,β) is the prior probability, with α the
parameter of the Dirichlet prior on the per-document topic
distributions and β the parameter of the Dirichlet prior on
the per-topic word distributions.

Zellner in [33] has extended Bayes’ rule so that it can be
used as a learning model. Specifically, Zellner has showed
that Bayes’ rule can be transformed into an optimization
problem. In this way, it can be shown that the values for Θ,
Z and Φ which maximize the posterior distribution (7) can
be found by solving the following optimization problem:

minimize
P (Θ,Z,Φ|α,β)∈P

KL[P (Θ,Z,Φ|W ,α,β)||P0(Θ,Z,Φ|α,β)]

− EP [log P(W |Θ,Z,Φ)]

subject to P (Θ,Z,Φ|W ,α,β) ∈ P, (8)

where P is the probability distribution space, KL(P ||P0) is
the Kullback-Leibler divergence from P to P0, and E is the
expected value operator. This interpretation of Bayes’ theo-
rem will be useful for designing our pairwise LTR model,
which will be based on an extension of (8). Note that
P (W |α,β) has been omitted because it does not depend
on Θ,Z,Φ.

4. DESCRIPTION OF OUR FRAMEWORK
The key characteristic of our framework is that maximum

margin learning is tightly integrated with topic discovery. To
this end, in Section 4.1, we extend the optimization problem



from (4) with a latent topic model, similar to Latent Dirich-
let Allocation (LDA). As we discuss in Section 4.2, solving
the resulting optimization problem requires us to alternate
between topic discovery (informed by the parameters of the
maximum margin classifier) and maximum margin label pre-
diction (informed by the latent topic structure).

4.1 Unified LTR Model
The optimization view of Zellner’s interpretation of Bayes’

rule in (8) can be extended to incorporate posterior con-
straints in Bayesian inference, by adding a convex function
to (8). This leads to the introduction of some auxiliary free
parameters, which can be slack variables. We will use the
following formulation:

minimize
P (Θ,Z,Φ|α,β)∈P,ξ

KL[P (Θ,Z,Φ|W ,α,β)||P0(Θ,Z,Φ|α,β)]

− EP [log P(W |Θ,Z,Φ)] +M(ξ)

subject to P (Θ,Z,Φ|α,β) ∈ Pnew(ξ),

ξ ≥ 0 (9)

where Pnew(ξ) is the subspace of probability distributions
satisfying the constraints that arise out of the optimization
framework. The convex function M(ξ) in our case will be
based on the relevance-weighted pairwise query-level hinge
loss defined in (6). Note that many other interesting exten-
sions to Zellner’s equation have been proposed in the past
such as the MedLDA model [34].
To consider latent topics during maximum margin learn-

ing, the loss function in (6) needs to take into account the
topic similarity between the query qu and document dui . If
we denote this similarity by Υu

i , we can consider the follow-
ing discriminant function:

η
⊺(ψu

i − ψ
u
k ) + ηt(Υ

u
i −Υu

k). (10)

where ηt is a parameter encoding the relative importance
of the topic similarity Υu

i , which is calculated based on the
topic document distribution Θ. Recall that in this distri-
bution, a document (or query) d is represented as a K × 1

vector ~dui , encoding for each latent topic z the correspond-
ing probability P (z|d). For document dui associated with a

query qu, we define Υu
i as the cosine similarity between ~dui

and ~qu. Other metrics such as KL-divergence could also be
used. The overall optimization problem we end up with is
as follows:

minimize
P (Θ,Z,Φ|α,β),

η,ηt,ξ

KL[P (Θ,Z,Φ|W ,α,β)||P0(Θ,Z,Φ|α,β)]

− EP [logP (W |Θ,Z,Φ)] +
1

2
(||η||2 + η

2
t )

+
C

x

x
∑

u=1

1

|Bu|

∑

(i,k)∈Bu

ξ
u
(i,k)

subject to ξ
u
(i,k) ≥ |hu

i − h
u
k | − y

u
ik

[

η
⊺(ψu

i − ψ
u
k )+

ηt(Υ
u
i −Υu

k)
]

, ∀u, i, k,

P (Θ,Z,Φ|α,β) ∈ P(ξu(i,k))

ξ
u
(i,k) ≥ 0, ∀u, i, k. (11)

Note that the latent topic similarities Υu
i and Υu

k are com-
puted in the regularized topic space arising from the opti-
mization component, which differentiates our approach from
the two-stage heuristic methods described in Section 1. By

directly regularizing the posterior distribution with the max-
imum margin constraint, we obtain a more powerful model,
catered specifically to the pairwise LTR task. The useful-
ness of this approach stems from the fact that latent topics
can be chosen specifically to help the maximum margin clas-
sifier, e.g. by preventing instances from being located near
the margin.

4.2 Solving the Optimization Problem
As solving (11) exactly is intractable, we resort to a Monte

Carlo method which alternates between two steps. In the
first step, our goal is to find a maximum margin separation
of the points, i.e. we determine η and ηt given P (Θ,Z,Φ|W ,

α,β). As in the existing RankSVM algorithm, the optimum
solution can be found by adopting the Lagrangian method.
In the second step, we estimate P (Θ,Z,Φ|W ,α,β) given
(η, ηt), as explained below. Both steps are repeated for a
given number of iterations or until the sampler converges
to a steady state. As in traditional topic modeling, the
procedure starts with a random initialization of the topic
assignments. Note that this mechanism closely resembles
the Expectation-Maximization (EM) algorithm. However,
while EM maximizes the expected log-likelihood under the
marginal distribution of the latent variables, we are mini-
mizing the regularized loss.

To estimate P (Θ,Z,Φ|W ,α,β), we use collapsed Gibbs
sampling, where our goal is to estimate the model parame-
ters Θ and Φ. We present a brief derivation of the collapsed
Gibbs sampler with maximum margin constraints below.
Let nzw denote the number of times a word w is assigned to
a topic z and let pdz denote the number of times a word from
document d has been assigned to topic z. We can start with
the joint distribution of the model, which can be expressed
as:

P (Z|α) ∝ P (W ,Z|α,β) (12)

When we incorporate the maximum margin framework in
(12), we obtain the following model:

P (Z|α) ∝
P (W ,Z|α,β)

Ω
· e

1
2
∆−Ψ

. (13)

where Ω is the normalization constant. The first factor in the
right-hand side of (13) adopts the collapsed Gibbs sampling
formulation. In this sampling scheme, we also compute the
transition probabilities, which are used to iteratively find the
word-topic and document-topic latent topic distributions.
The second factor corresponds to the regularization effects
of the pairwise maximum margin classifier. Let Γ denote the
Gamma function where Γ(x) = (x− 1)!. By integrating out
Θ and Φ, we get the marginalized posterior distribution:

P (Z|α) ∝

K
∏

z=1

(

Γ(
∑|β|

s=1 βs)
∏|β|

s=1 Γ(βs)

∫ V
∏

w=1

φ
nzw+βw−1
zw dφz

)

·

D
∏

d=1

(

Γ(
∑|α|

s=1 αs)
∏|α|

s=1 Γ(αs)

∫ K
∏

z=1

θ
pdz+αz−1dθd · e

1
2
∆−Ψ

)

(14)



where ∆ and Ψ are defined as follows

∆ =

[

x
∑

u=1

∑

(d,k)∈Bu

x
∑

û=1

∑

(d̂k̂)∈Bû

λ
u
dkλ

û

d̂k̂
· [(ψu

d − ψ
u
k )

+ (Υu
d −Υu

k)]

]

·
[

(ψû

d̂
− ψ

û

k̂
) + (Υû

d̂
−Υû

k̂
)
]

(15)

Ψ =
x
∑

u=1

∑

(d,k)∈Bu

λ
u
dk(h

u
d − h

u
k) (16)

with λu
dk and λû

d̂k̂
the Lagrange multipliers, satisfying 0 ≤

λu
dk ≤ C

x×|Bu|
for all d, k and u. The above formulation can

be used to derive the following updating rule for the Gibbs
sampler, for one variable zdn given the others:

P (zdn = t|Z¬n, w = v,W¬n,α,β) (17)

∝

(

ntv + βwd
n
− 1

[
∑V

v=1 ntv + βv
]

− 1

)

(pdt + αt − 1)e
1
2
∆−Ψ

In the above equation, the current word is excluded in the
counts nzw and pdz which we denote with the symbol ¬.
The parameters in the model can be estimated based on the
following formulations:

φzv =
nzv + βv

(

∑V

v=1 nzv + βv

) (18)

θdz =
pdz + αz

(

∑K

z=1 pdz + αz

)e
1
2
∆−Ψ (19)

4.3 Prediction on Unlabeled Data
To apply our LTR model on unseen data, we have to de-

termine the latent dimensions of the unseen data using the
regularized topic space that was learned from the training
data. In addition, the model has to project the unseen data
into the learned ranking space of the pairwise maximum
margin classifier for label prediction. To this end, we use the
point estimate of the topics computation procedure from the
training data. After the Markov chain has reached a certain
number of iterations, we draw J samples from it. Specif-
ically, using the maximum a posteriori probability (MAP)
estimation scheme, we obtain a new set of topic distribu-
tions Φ, which we write as Φ̂. Using our collapsed Gibbs
sampler, an estimate of Φ̂ can be obtained as follows:

φ̂zw ∝
1

J

J
∑

j=1

n
(j)
zw + βw (20)

The latent dimensions of an unseen document π can then be
computed as follows:

P (zπn = t|Z¬n) ∝ φ̂twπ
n
(pπt + αt) (21)

The above formulations can be used to separately compute
the latent dimensions for the query and the documents. Let
π denote a feature vector for π, containing the same fea-
tures as those considered in the training set. The prediction
formula for the pairwise maximum margin classifier can be
expressed as:

F (π) =
x
∑

u=1

∑

(i,k)∈Bu

λ
u
ik[(ψ

u
i − ψ

u
k ) + (Υu

i −Υu
k)].π (22)

In the right-hand side of (22), the expression
∑x

u=1

∑

(i,k)∈Bu

λu
ik[(ψ

u
i − ψu

k ) + (Υu
i − Υu

k)] computes the feature weights
for the new vector π. The recipe is to alternately run, until
convergence is reached, the topic prediction model depicted
in (21) using the parameters of the trained regularized topic
space, and then use the pairwise maximum margin formula-
tions depicted in (22), which provides the pairwise regular-
ization effect to the latent dimensions computed in the pre-
vious step, for predicting the labels. When (21) and (22) are
combined together following the same paradigm as depicted
in (13), the new documents are “folded-in” in the previously
trained regularized topic space.

5. EXPERIMENTS AND RESULTS

5.1 Datasets
Many benchmark LTR collections have been released in

the past, such as LETOR [24] and the Yahoo! LTR Chal-
lenge dataset. These collections contain pre-computed query-
dependent and query-independent features but do not pro-
vide access to the corresponding documents, which means
that the latent topic features cannot be computed. As a
result, such existing public benchmark LTR collections can-
not be used in our experiments. One exception is the LE-
TOR OHSUMED [24] benchmark collection, whose text and
queries are freely available1. In addition to LETOR OHSU-
MED, we will use three new collections, which we have built
based on well-known TREC datasets. First, we have used
AQUAINT, which is used in the TREC-HARD [2] track
and contains a total of 50 queries2. The queries along with
the corresponding annotations are provided on the TREC
HARD disk. Second, we have used the WT2G dataset3,
consisting of 50 TREC queries4. Finally, we have used the
ClueWeb09 Category B English documents collection. In
particular, we used a list of 91 features from [3], where the
authors have considered 150 TREC Web Track queries from
2009 to 2011.

Recently, Terrier v4.0 has introduced LTR in its distri-
bution5. We used this open source search engine to cre-
ate training, testing and validation sets for our two new
datasets (AQUAINT and WT2G). We created the corre-
sponding LTR datasets using all query-dependent and query-
independent models currently available in Terrier v4.0. Note
that Terrier v4.0 uses the “title” field from the TREC top-
ics file to retrieve documents. The created datasets com-
prise 39 normalized features, which form a subset of the
features described in [20]; all considered features fall in the
WM and WMP classes described in [20]. Terrier v4.0 can
be set to use its default BM25 implementation to retrieve
the top 1000 documents, which corresponds to what is used
in the official LETOR [24] collections. We separately cre-
ated the LTR dataset for ClueWeb09 because of two rea-
sons. First, this dataset is extremely large for Terrier to
handle on a standalone machine. Second, Terrier’s imple-
mentation currently cannot compute the 91 considered fea-
tures for the ClueWeb09 dataset. In all text collections,

1http://ir.ohsu.edu/ohsumed/
2Note that we use the term queries here whereas in TREC
usually the term topics is used.
3http://ir.dcs.gla.ac.uk/test collections/access to data.html
4http://trec.nist.gov/data/t8.web.html
5http://terrier.org/docs/current/learning.html



we used stemming (Porter stemmer) and stopword removal,
as implemented in Terrier v4.0. Subsequently, we created
five folds. Each fold has approx. 60% query-document pairs
for training, approx. 20% query-document pairs for testing
and the rest for validation. Note that the training, test-
ing and validation sets do not share any queries. One can
thus notice that we have followed the standard LTR dataset
creation procedure as reported in the LETOR dataset doc-
umentation [24]. In our experiments, 42681 unique docu-
ments were retrieved by Terrier for the 50 queries in the
AQUAINT collection. For the WT2G dataset, we retrieved
40773 unique documents, whereas the ClueWeb09 dataset
consists of 42044 unique documents. Note that our imple-
mentation of topic modeling considers the complete docu-
ments, irrespective of different fields (e.g. TITLE) that may
be present.
The publicly available LETOR OHSUMED dataset con-

tains training (approx. 60% of query-document pairs), test-
ing (approx. 20% of query-document pairs) and validation
(approx. 20% of query-document pairs) splits in five folds.
It consists of 14430 unique documents. More information
about this dataset can be obtained from [1]. Each feature
vector in the LETOR OHSUMED also contains the docu-
ment identifier. This information can help us relate a doc-
ument from the downloaded OHSUMED text documents
with its corresponding feature vector in LETOR OHSU-
MED. LETOR OHSUMED also contains meta-information
which allows us to relate text queries with their correspond-
ing query identifiers.

5.2 Comparative Methods
Many popular models have been implemented in RankLib6:

Listnet, AdaRank-MAP, AdaRank-NDCG, Coordinate Ascent,
LambdaMART and MART, which belong to the listwise class of
LTR models, as well as the pairwise models RankNet, Rank-
Boost and LambdaRank, and the pointwise model Linear Re-

gression - L2 Norm and Random Forests. Note that mod-
els implemented in RankLib have been used as strong state-
of-the-art baselines in many recent works such as [26, 23].
We will compare our method against the aforementioned
methods, as well as a number of other publicly available im-
plementations: SVMMAP7, a listwise model, RankSVM-Struct8,
a pairwise model, and the recently proposed DirectRank.
Finally, we will also compare our approach with a seman-

tic search model similar to the one proposed in [4], which
we have slightly modified to handle the feature instances
needed for the LTR task; we will refer to this model as Se-
mantic Search. Note that while the authors of [4] mention
that their model can be adapted to incorporate LTR fea-
tures, they have not included such an evaluation in their
work. This model bears some resemblance to our proposed
framework, in that both models are capable of generating
latent topic similarity features dynamically. In particular,
Semantic Search can be made to generate topic similar-
ity with minor changes to the original model. However, a
crucial difference is that we compute topic similarity in the
regularized space, whereas Semantic Search computes topic
similarity in a so-called “concept space”, which is very sim-

6http://people.cs.umass.edu/∼vdang/ranklib.html
7http://projects.yisongyue.com/svmmap/
8http://research.microsoft.com/en-
us/um/beijing/projects/letor/letor4.0/baselines/
ranksvm-struct.html

ilar to the space obtained by the latent semantic indexing
(LSI) model. We have also experimented with a variant of
Semantic Search, proposed in [12], but found its perfor-
mance on LTR datasets to be very similar to, but slightly
weaker than that of the model from [4]. Finally, note that
we have not considered any unsupervised topic models for
comparison, as such models cannot make use of relevance
judgements during the training process, and can therefore
not be competitive with LTR models in this context.

5.3 Experimental Setup
Hyperparameter Values: We use the following symmet-

ric hyperparameter values in the LDA topic model: α = 50
K

and β = 0.01, where K is the number of topics. This
value is used throughout all experiments, for both our model
and other approaches that use latent topics. These values
have also been used e.g. in LDA for document retrieval [30].
We have experimented with different hyperparameter val-
ues, but did not obtain any significantly different results.
We used the validation set for model selection, which is com-
mon for LETOR baselines [26, 19]. All NDCG results have
been averaged across five folds.

Parameter tuning for comparative models: The parame-
ters of the comparative LTR models in each fold were tuned
using the validation set. To replicate the results for LETOR
OHSUMED, we followed the official guidelines9, which state:
“The validation set can only be used for model selection (set-
ting hyper-parameters and model structure), but cannot be
used for learning. Most baselines released in LETOR web-
site use MAP on the validation set for model selection; you
are encouraged to use the same strategy and should indicate
if you use a different one.” For consistency, we used the
same rules for model selection in the three other datasets.
Parameters were tuned for each fold separately, as is usual
for the LTR setting.

Parameter tuning for our model: We need to tune the reg-
ularization parameter C, the learning rate and the number
of topics K for each fold. In each fold, we varied C from
0.1 to 1 in steps of 0.1, and K from 10 to 1000 in steps of
10. The learning rate values that we experimented with are
{10−2, 10−3, 10−4, 10−5, 10−6}. The value of K was varied
from 10 to 200 in steps of 10. The number of iterations of the
Markov chain was set to 1000. Using these ranges for the pa-
rameters, as for the comparative models, we searched for the
configuration that produced the best mean average precision
(MAP) score on the validation set. Note that because we use
regularized Bayesian inference, overfitting in our model is
unlikely, despite using 1000 iterations for the Markov chain.
Moreover, there is evidence that models based on Bayesian
inference in general tend not to overfit [28].

Description of the experiments: We have conducted two
types of experiments. First, we have compared our approach
with the comparative models, using their default feature
sets, as described in Section 5.1. The results of this exper-
iment are discussed in Section 5.4.1. While this allows us
to find out whether our approach can outperform the exist-
ing state-of-the-art LTR models, it should be noted that we
are using a latent topic similarity feature, which other mod-
els do not have access to, and it might be that our model
is performing better simply because it has access to better
features. Therefore, in a second experiment, we have added

9http://research.microsoft.com/en-
us/um/beijing/projects/letor//letor3baseline.aspx
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Figure 1: LTR results for four datasets.



the query-document latent topic similarity as an additional
feature for the comparative models. In particular, we have
used LDA, following the procedure described in [30] to in-
dependently compute query-document topic similarity. We
also experimented with the cosine similarity for comparing
queries and documents in the latent topic space, but the re-
sults were inferior to those of the method from [30]. As for
our model, the number of latent topics K was automatically
determined using the validation set by varying the number
of topics from 10 to 200 in steps of 10. The number of it-
erations in the Gibbs sampler for computing the topic simi-
larity using the method from [30] is 1000. This experiment
will allow us to assess whether our integrated model has any
benefits over models that simply use latent topics as one of
the features. The results are presented in Section 5.4.2.
Evaluation metric: We have used the PERL evaluation

tool available in LETOR 3.0 for evaluating all the models10.
Our evaluation metric is NDCG which is popular for LTR
evaluation; we refer to [1] for a definition of this metric.
We will use NDCG@k to present our main results, where
k = 1, 3, 5, 8, 10. We have tested for statistical significance
using the paired t-test, as is usual for LTR experiments.

5.4 Experimental Results

5.4.1 Traditional LTR Comparison

Figure 1 presents the results for the considered datasets.
As can be seen from the figure, our model consistently out-
performs all the comparative models, for each of the datasets
and NDCG cut-offs. The improvements against each of the
comparative methods are statistically significant according
to the paired t-test with p < 0.05 . For the AQUAINT
dataset, DirectRank, Semantic Search, Coordinate Ascent,
and LambdaMART do much better than the other comparative
models. For the WT2G dataset, LambdaRank performs very
poorly, with our model being the only one that clearly dif-
fers. The results for ClueWeb09 and LETOR OHSUMED
are consistent with the results for AQUAINT. In both cases,
our model considerably outperforms the other, while Direc-
tRank also shows good performance among the comparative
models. These results confirm our intuition that integrating
latent topic information with maximum margin learning is
capable of outperforming the state-of-the-art approaches.
To better understand the differences in performance across

different queries, Table 1 shows a winning number compari-
son. We refer to [19] for a detailed description of this metric,
which has also been used in e.g. [26]. As we can see from the
table, our model substantially outperforms all of the com-
parative models, with DirectRank again the best performer
among the comparative methods.

5.4.2 Topic Enhanced Datasets Experiment

We present the results for the second experiment in Fig-
ure 2. As we can see from this figure, the performance of
many comparative methods has slightly improved or has re-
mained same as in the previous result. For example, in the
AQUAINT dataset, performance of many comparative mod-
els has improved and none of the results have deteriorated.
Therefore, in the majority of cases latent topic information
leads to a slightly improved performance. However, even

10http://research.microsoft.com/en-
us/um/beijing/projects/letor/letor3download.aspx

Models N@1 N@3 N@5 N@8 N@10

ListNet 17 16 13 13 14
AdaRank-NDCG 12 14 16 17 18
AdaRank-MAP 15 12 14 11 12

SVMMAP 15 20 18 20 18
Coordinate Ascent 24 25 26 25 27

LambdaMART 21 23 21 19 22
LambdaRank 05 08 06 02 11

Linear Regression 18 19 15 18 20
RankSVM 18 15 19 15 15
RankBoost 16 12 13 18 15
DirectRank 30 34 31 32 34
RankNet 19 21 19 12 15
MART 18 18 22 16 15

Random Forests 25 20 21 20 18
Semantic Search 28 33 25 28 25

Our Model 33 39 37 36 36

Table 1: Winning number comparison.

Models N@1 N@3 N@5 N@8 N@10

ListNet 19 17 14 16 18
AdaRank-NDCG 13 16 17 19 20
AdaRank-MAP 16 14 15 10 15

SVMMAP 16 21 20 19 20
Coordinate Ascent 27 26 24 20 23

LambdaMART 23 27 20 21 23
LambdaRank 02 04 03 05 12

Linear Regression 19 20 18 20 21
RankSVM 20 17 20 18 16
RankBoost 18 15 15 19 17
DirectRank 28 28 29 25 25
RankNet 19 18 21 18 19
MART 19 19 24 19 18

Random Forests 23 19 24 21 19
Semantic Search 25 31 26 23 22

Our Model 30 33 31 28 27

Table 2: Winning number comparison when the la-

tent topic similarity feature is incorporated in the

comparative methods.

with the latent topic feature added, none of the compara-
tive methods can outperform our approach. The improve-
ment is still statistically significant for all datasets and all
models, according to the paired t-test with p < 0.05, except
at NDCG@8 in WT2G dataset where Coordinate Ascent

model performs equally well. For the LETOR OHSUMED
dataset, our model performs strictly better than each of
the comparative methods, except at NDCG@8 where Co-

ordinate Ascent performs equally well. Linear Regres-

sionmodel also shows good performance in this experiment.
We can see that the performance gap between the compara-
tive models and our model has slightly decreased compared
to Figure 1. Table 2 presents the winning number results.
Comparing this table with Table 1 clearly shows that the
relative performance of the comparative methods has im-
proved. This demonstrates that latent topic information is
helpful, even when used as a standard feature in other LTR
models. However, our approach still performs consistently
better, confirming the benefit of using an integrated model.

When looking in more detail at the per-query performance
in each dataset, we note that our model especially outper-
forms the comparative methods for long queries, e.g. con-
sisting of two words or more. In Table 3, we present this
comparison in terms of the percentage of winning numbers,
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Figure 2: LTR results in topic enhanced datasets.



1 2 3 >3

AQUAINT 54.33 59.74 69.12 78.66
WT2G 59.64 67.35 73.92 73.92
ClueWeb 61.23 72.98 79.76 83.21

LETOR OHSUMED 57.34 63.65 69.44 75.61

Table 3: Query level performance in terms of the

percentage of winning numbers for different query

lengths.

which shows that the relative performance also improves
with longer queries. These comparisons are done by consid-
ering the latent topic feature in the comparative methods.
This result is expected, as longer queries make it easier to
assign meaningful topics to the query.

6. CONCLUSION
We have presented a novel LTR model that combines la-

tent topic information with maximum margin learning in a
unified way. In our model the latent topic representation is
directly regularized with a pairwise maximum margin con-
straint, which leads to more informative latent topics. We
have conducted extensive experiments using benchmark col-
lections and have shown clear improvements over the state-
of-the-art comparative methods. The main strength of our
model stems from the fact that topic similarity is computed
in the regularized latent topic space. This allows for a direct
interplay between the pairwise maximum margin classifier
and the topic model, which ensures that the topics which are
learned are maximally informative for the prediction of la-
bels. As our experiments show, such an integrated approach
outperforms the existing two-stage de-coupled approach to
incorporating latent topics for in LTR models. One inter-
esting line for future work would be to look at different LTR
tasks such as temporal LTR, for which the use of temporal
topic models seems promising.
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