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ABSTRACT
An important way to improve users’ satisfaction in Web
search is to assist them to issue more effective queries. One
such approach is query refinement (reformulation), which
generates new queries according to the current query issued
by users. A common procedure for conducting refinement is
to generate some candidate queries first, and then a scoring
method is designed to assess the quality of these candidates.
Currently, most of the existing methods are context based.
They rely heavily on the context relation of terms in the his-
torical queries, and cannot detect and maintain the semantic
consistency of queries. In this paper, we propose a graphical
model to score queries. The proposed model exploits a latent
topic space, which is automatically derived from the query
log, to assess the semantic dependency of terms in a query.
In the graphical model, both term context dependency and
topic context dependency are considered. This also makes
it feasible to score some queries which do not have much
available historical term context information. We also uti-
lize social tagging data in the candidate query generation
process. Based on the observation that different users may
tag the same resource with different tags of similar mean-
ing, we propose a method to mine these term pairs for new
candidate query construction.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query Formulation, Search Process
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1. INTRODUCTION
Extensive research works have been conducted to improve

the performance of search engines by exploiting search logs [1,
11, 21, 29]. One important area is to help users issue more
effective queries. There are two major directions in this
research, namely, query suggestion (recommendation) and
query refinement (reformulation). In query suggestion, his-
torical queries are recommended to users according to a cer-
tain similarity measure with the current query issued by
users. This suggestion can be performed based on the click
graph [13, 26] or query flow graph [5, 6]. However, it cannot
provide new queries which are not contained in the query
log. On the other hand, in query refinement, the query log
is used in a more delicate manner that the current query
is refined by exploiting the term dependency information in
the historical queries. The generated query may be an exist-
ing query in the query log, or a totally new query. According
to the operations performed, there are three major types of
refinement, namely, substitution [22, 32], expansion [3, 11,
18], and deletion [24, 36]. A common procedure of carrying
out refinement is to generate some candidate queries first,
and then a scoring method is used to assess the quality of
these candidates.

A contextual model was proposed by investigating the
context similarity of terms in historical queries [32]. Two
terms in a pair with similar contexts are used to substitute
each other in new query generation. Then, a context based
translation model is employed to score the generated queries.
Jones et al. employed hypothesis likelihood ratio to identify
those highly related query phrase or term pairs in all user
sessions [22]. Then, these phrase pairs are utilized to gener-
ate new queries for the input query. All the above methods
make use of query log, and exploit the context information
to generate term pairs and score new queries. For example,
Table 1 shows top 15 output queries of an existing context
based method, which is used as the comparison baseline in
our experiments, for the original query “wrestling ring in-
structions”. We can observe that the context based method
has two shortcomings. First, the context based candidate
term generation process is easily affected by noise when deal-



Table 1: Top 15 results given by a context based
method for original query “wrestling ring instruc-
tions”. “�” represents the unchanged original terms.

1 � rings � 6 � � poncho 11 � � steps
2 championship � � 7 � � stitches 12 � � instruction
3 � � instrutions 8 � � scarf 13 � � manual
4 � � instuctions 9 � � loom 14 championships � �
5 � � afghans 10 � � afghan 15 � blaylock �

ing with ambiguous terms. For example, considering the
term “instructions”, due to the fact that “instructions” has
very diverse contexts in historical queries, a lot of noise is in-
volved in its candidate list such as “afghans”, “poncho”, etc.
Furthermore, typos such as “instrutions” and “instuctions”
also degrade the performance when dealing with the typo-
prone terms. Second, context based method cannot detect
and maintain consistency of semantic meaning when scor-
ing a new query. For example, as shown in Table 1, a good
output query is “wrestling ring manual”, but it is ranked as
the 13th. The reason is that the scoring function highly de-
pends on the co-occurrence of the terms in the contexts of
historical queries. “championship ring” is quite popular in
query log owing to NBA. Consequently, “championship ring
instructions” is assigned a high score although the semantic
meaning of the terms in this refined query is not consistent.

Furthermore, when an unfamiliar or rare query is issued
by a user, existing context based methods cannot work well
too. The definition of unfamiliar query is given as follows:

definition 1 (Unfamiliar query). Let (t1, · · · , tn) de-
note a particular query q with length greater than 1, i.e.
n > 1. Let (ti, · · · , tj) denote a sub-sequence of q, where
1 ≤ i < j ≤ n. If none of (ti, · · · , tj)s has ever been ob-
served before as a whole query or a sub-sequence of other
queries, q is regarded as an unfamiliar query.

The main reason for ineffective handling of unfamiliar queries
by existing context based methods is that these methods
mine the historical queries to obtain hints for refining the
issued query. When there is no or very little related informa-
tion, the performance will inevitably be affected. First, it is
not easy to figure out the candidate terms to refine the query.
Second, the statistical information may not be reliable to
differentiate the quality of different candidate queries. One
may expect that as the amount of available query log in-
creases, the number of unfamiliar queries will decrease. We
conducted an investigation on the percentage of unfamiliar
queries in an existing query log used in our experiments and
found out that the situation is not as optimistic as what we
expect. This query log consists of queries issued to a search
engine for a period of 3 months. We started with the queries
of the first 2 months as historical queries on hand. At the be-
ginning, the queries in the first day of the third month were
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Figure 1: Percentage of unfamiliar queries.

Table 2: Top 30 tags of “http://www.dvguru.com/”.
The tag frequency is given on the right of each tag.

video 237 news 26 daily 13
dv 156 tech 22 blogging 13
blog 145 howto 19 audio 12
filmmaking 113 editing 17 reviews 10
digital 87 tools 16 movie 10
film 79 tips 16 digitalvideo 10
blogs 50 tv 15 entertainment 9
technology 41 movies 15 business 8
tutorial 29 software 14 cinema 7
tutorials 27 vlog 13 advice 7

used to simulate the newly issued queries, and we calculated
the percentage of unfamiliar queries in that day. Then, these
queries were added into historical query set so that they were
treated as historical queries when we proceeded to the sec-
ond day of the third month. The same statistical procedure
was repeated for all the subsequent days. The statistical
information is shown in Figure 1. We can see that the per-
centage of unfamiliar queries does not change significantly
when the amount of historical queries accumulate. Thus, it
shows that a certain percentage of unfamiliar queries will
always be issued by users. Consequently, it poses another
challenge in generating candidate terms for those unfamiliar
queries due to the lack of context information. Moreover, it
also causes difficulty in scoring of new queries.

In summary, the context based methods have limitations
in both major tasks, namely, candidate generation and query
scoring. In candidate generation, noise will be involved as
exemplified in Table 1 for the terms with diverse meaning.
The candidates cannot be generated properly when lacking
context information for some terms. In query scoring, the
context based methods cannot detect and maintain the se-
mantic consistency of the terms in the query. Furthermore,
if the query is not familiar, the scoring task becomes even
harder. To tackle the problems in the first task, we propose
a method to generate better candidate term pairs by con-
sidering useful information from social tagging data. Social
tagging is an important application and a valuable semantic
repository, and its potential in enhancing Web search perfor-
mance has been studied in personalized search [7] and query
suggestion [16]. Currently, millions of users are involved
in some famous social tagging systems such as Delicious1

and Flickr2, and they tag and share their favorite online re-
sources. For example, in Delicious data, the tag set of URL
“http://www.dvguru.com/”, which is a Web site for users to
share their experience on digital videos, is given in Table 2.
From this tag set, term pairs with similar meaning such as
“film” and “movie”, “tips” and “tutorial” can be easily found.
This is due to the fact that different users may choose their
own preferred tags to express the same concept. Therefore,
if two tags co-occur frequently in different resources’ tag sets,
they are very likely to have closely related meaning. More-
over, users regularly maintain their own tagging data and
correct some typos and inaccurate tags, so social tagging
data contains less noise than query log.

To tackle the problems in the second task, we propose a
graphical model which can score a query taking into account
the semantic consistency of the terms in the query as well as
the term context. First we discover the latent topics in the

1http://www.delicious.com/
2http://www.flickr.com

http://www.delicious.com/
http://www.flickr.com


query log, and these topics are utilized to construct a latent
topic sequences of the terms in a query. When we score a
query with the proposed graphical model, the latent topic
sequence of the query is used as hidden evidence to guide
the semantic dependency assessment.

2. OVERVIEW OF OUR FRAMEWORK
As mentioned above, there are two major tasks to refine a

query. The first task is to generate some candidate queries
for the original query via operations such as substitution.
The second task is to score the generated candidate queries,
and rank them according to the predicted quality.

In the first task, we focus on query term substitution.
We first determine a set of possible substitution terms for
each term in the original query. These terms are utilized to
substitute one or more original terms in the original query.
As discussed in Section 1, the noise and the lack of suf-
ficient context information are the major problems when
using query log. To tackle these problems, we develop a
method to generate better candidate term pairs by consid-
ering useful information from social tagging data. Based on
the observation that terms with similar meaning are often
used to tag the same resource by different users, we can
extract some candidate substitution pairs. Then a filter-
ing method is proposed with a delicately designed similarity
function. This method is capable of filtering out different
types of noisy pairs such as “north” and “carolina”, “free”
and “music”.

In the second step, we propose a graphical model to score
the quality of the candidate queries generated in the first
step. In the proposed graphical model, the semantic consis-
tency of the queries is considered. Two groups of variables
are designed in the graphical model. One group corresponds
to the terms, and the other group corresponds to the con-
cepts of the terms. Unlike existing context based methods,
we examine the query quality taking into account the se-
mantic consistency of the consecutive terms in a latent con-
cept space. We first derive a set of pseudo-documents from
the query log data. Then these pseudo-documents are used
to generate a latent concept space. The graphical model
can capture the concept dependency between consecutive
terms. Therefore, even when the term context information
is not sufficient in the query log, it can still give reliable score
by considering the semantic dependency of the consecutive
terms in the latent concept space.

3. CANDIDATE TERM GENERATION
To generate candidate terms from social tagging data for

query refinement, we make use of a bookmark data, namely
Delicious, to illustrate our method and test the performance
in the experiment. Note that the proposed method is appli-
cable to other types of social tagging data. In this compo-
nent, we first develop a method for mining term pairs from
the bookmark data. After that, we consider the pseudo-
context of the candidates to filter out noise.

3.1 Candidate Term Extraction
A piece of bookmark, denoted by Blu = {t1, t2, · · · }, is

a set of tags which are given by a user u to summarize the
content of a URL l, such as {film, tutorial, blog} and {movie,
technology, tips}. Our candidate term extraction method is
based on the observation that different users may use tags

with similar meaning to describe the same resource. To
capture this kind of co-occurrence, we aggregate all tags
from different users of the same URL together, and compose
a set of distinct tags for each URL, which is denoted by Tl.

The mutual information of two tags, t1 and t2, can be
calculated as in Equation 1:

I(t1, t2) =
∑

Xt1
,Xt2

∈{0,1}
P (Xt1 , Xt2 ) log

P (Xt1 , Xt2 )

P (Xt1 )P (Xt2 )
, (1)

where Xti is a binary random variable indicating whether
term ti appears in a particular tag set Tl. For example,
P (Xt1 = 1, Xt2 = 1) is the proportion of the tag sets which
contain t1 and t2 simultaneously. Because commonly used
terms may be used to tag a lot of URLs such as “free” and
“good”. To cope with this problem, we adopt the normalized
form of mutual information:

NMI(t1, t2) =
I(t1, t2)[

H(t1) +H(t2)
]
/2
, (2)

where H(ti) is the entropy of ti’s distribution among all the
tag sets, and calculated as in Equation 3:

H(ti) = −
∑

Xti
∈{0,1}

P (Xti) logP (Xti). (3)

If NMI(t1, t2) is greater than a threshold, the term pair t1
and t2 will be stored for the next stage of term filtering.

3.2 Candidate Term Filtering
The term pairs generated in the previous step may in-

volve noise. The first kind of noise is mainly caused by
noun phrases. For example, “north” is found as the top 1
candidate for “carolina”, and “united” is top 1 for “states”.
These are obviously not good candidates for term refine-
ment. The main reason is that the phrases, i.e. “north
carolina” and “united states”, are used by many users to tag
URLs. Thus, the NMI values of two terms in the same
phrase are large. Another kind of noise is caused by the
frequently used terms. For example, “free” is found as one
of the candidates for many terms such as “music”, “movie”,
“film”, etc. By manually examining the data, we find that
users maintain a large amount of bookmarks for these free
resources on the Web. We propose a method to filter out
this undesirable candidate terms.

For each tag t, we first construct its pseudo-context in
the bookmark environment, denoted by C(t), which is com-
posed of all tags that co-occur with t in at least one Blu.
cnt
(
ti|C(t)

)
denotes the frequency of ti in the pseudo-context

of t. It is equivalent to the co-occurrence frequency of t and
ti in all Blus. Then the pseudo-context document of tag t,
Dt, is defined as:

Dt , (wt
1, w

t
2, · · · , wt

T ), (4)

where wt
i is ti’s weight in Dt, which can be computed as:

wt
i =

cnt
(
ti|C(t)

)∑
tj
cnt
(
tj |C(t)

) × log
|DT |

|{Dtk |ti ∈ Dtk}|
, (5)

where DT denotes the set of all pseudo-context documents,
and T is the vocabulary of the bookmark data. Then, we
calculate a refined cosine similarity between a pair of pseudo-
context documents:

sim(Dti ,Dtj ) =

∑|T |
k=1(wti

k × w
tj
k )
(
1− γ(ti, tj |tk)

)
|Dti ||Dtj |

, (6)



where γ(ti, tj |tk) is the relation factor between term ti and
tj given tk, which is calculated as:

γ(ti, tj |tk) =
cnt
(
ti, tj |C(tk)

)
min

{
cnt
(
ti|C(tk)

)
, cnt

(
tj |C(tk)

)} , (7)

where cnt
(
ti, tj |C(tk)

)
is the number of Blus that contain

ti, tj and tk simultaneously. Therefore, the terms which co-
occur with “north carolina” frequently will contribute less
when calculating the similarity of Dcarolina and Dnorth. The
design of γ(ti, tj |tk) is based on the following observation:
one URL is seldom tagged by the same user with two terms
that have similar meaning such as “film” and “movie”, “car”
and “automobile”. According to Equation 7, the value of
γ(“car”,“automobile”|“repair”) tends to be small, while, the
value of γ(“carolina”,“north”|“lottery”) tends to be large.
Consequently, the contribution of the term “repair” to the
similarity between Dcar and Dautomobile is increased, and
the contribution of the term “lottery” to the similarity be-
tween Dcarolina and Dnorth is decreased. The refined cosine
similarity can also filter out the terms which are frequently
used such as “free” and “howto”, because their contexts are
quite diverse, and cannot have a high similarity with other
specific terms’ contexts.

4. GRAPHICAL MODEL BASED SCORING
In this section, we first present the graphical model and

the scoring method. Then we describe the details of the
model, namely, latent topic discovery from the query log,
and model parameter training.

4.1 The Graphical Model
A query q is composed of a sequence of terms, which can

be denoted by q : t1 · · · tn, where the superscript indi-
cates the position of the term, and tr(1 ≤ r ≤ n) may take
any term in the vocabulary. We propose a graphical model
which considers the dependency among latent semantic top-
ics. Figure 2 depicts the design of the graphical model. The
query terms, i.e. tr, are observable and represented by filled
nodes, and the latent topics, denoted by zr, of the corre-
sponding terms are unobservable and represented by empty
nodes. The discovery of latent topics will be discussed later.

The transition probability, denoted by P (zr+1|zr), be-
tween topics is considered, where zr and zr+1 are the se-
mantic topics of tr and tr+1 respectively. We also make
use of the probability of obtaining the term tr+1 given tr

and zr+1, i.e. P (tr+1|zr+1, tr). Hence, in this model, each
term depends on its latent topic and the preceding term,
and each topic depends on its preceding topic. When we
score a query with this graphical model, the latent topic se-
quence of the query is used as hidden evidence to guide the
semantic consistency assessment. For queries with good se-
mantic consistency, their corresponding topic sequences will
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…… 
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t1 t2 tn 

z1 z2 zn 

Figure 2: The graphical model for scoring a query.

increase the score of their quality. For these queries, the
transition probability between the consecutive topics in the
topic sequence is higher.

When we employ this graphical model to score a candidate
query, the score of a query q can be denoted as P (t1 · · · tn),
which is given in Equation 8:

P (t1:n) =

zN∑
zr=z1,1≤r≤n

P (t1:n, z1:n). (8)

We marginalize over all possible latent semantic topic se-
quences to calculate the joint probability of generating the
term in query q. Based on the structure of the designed
graphical model, P (t1:n, z1:n) can be calculated as in Equa-
tion 9 by the chain rule:

P (t1:n, z1:n) =
∏

1≤r≤n

P (zr|zr−1)P (tr|zr, tr−1). (9)

When r = 1, P (z1|z0) = P (z1) and P (t1|z1, t0) = P (t1|z1).
This graphical model shares some resemblance to Hid-

den Markov Models (HMM). However, one major difference
is that there are dependencies between neighboring terms,
which capture their co-occurrence.

4.2 Scoring Algorithm
As mentioned above, the scoring function needs to con-

cretize the latent topic sequence in the graphical model de-
picted in Figure 2. The possible latent topic paths compose a
trellis structure, which is shown in Figure 3. To marginalize
the joint probability P (t1:n, z1:n) (refer to Equation 9) over
all possible latent topic paths, we can employ a dynamic pro-
gramming method, similar to the forward algorithm. The
forward variable αr(i) is defined as:

αr(i) , P (t1:r, zr = zi), (10)

which is the score of the partial query t1 · · · tr given the topic
zi at the position r. When r = 1, we set α1(i) = P (z1 =
zi)P (t1|z1 = zi, t

0). The recursive calculation of α is:

αr(i) =

[ ∑
zj∈Z

αr−1(j)P (zr = zi|zr−1 = zj)

]
P (tr|tr−1, zi),

(11)
where P (zr = zi|zr−1 = zj) is independent of the position
r, and equal to P (zi|zj). Finally the score of a query can be
calculated by summing over all possible zi for αn(i):

P (t1:n) =
∑
zi∈Z

αn(i). (12)
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Figure 3: Trellis structure of latent topic sequences.



Therefore, to conduct the scoring, we need three kinds of
model parameters, namely, P (zi), P (zj |zi), and P (tl|zj , tk),
which can be learned in the model training phase.

4.3 Latent Topic Analysis and Training Algo-
rithm

The latent topics of the terms in queries are discovered
from the query log. These latent sematic topics discov-
ered are transferred to initialize the model parameters of the
graphical model. Then, the historical queries are treated as
training sequences to learn the model parameters.

4.3.1 Latent Topic Analysis of Query Log
A typical format of the records in query log can be rep-

resented as a triple (query, clicked url, time). One direct
way of using query log data for latent topic analysis is to
treat each clicked url as a single document unit. This ap-
proach will suffer from the data sparseness problem since
most of URLs only involve very small number of queries.
Instead of adopting such a simple strategy, we aggregate
all the queries related to the same host together, and con-
struct one pseudo-document for each host, denoted by H.
For example, the pseudo-document of “www.mapquest.com”
consists of the queries such as “mapquest”, “travel map”,
“driving direction”, etc. Some general Web sites such as
“en.wikipedia.org” and “www.youtube.com” are not suitable
for latent topic analysis, because they involve large amount
of queries which cover very diverse aspects. To tackle this
problem, we first sort the host pseudo-documents in de-
scending order according to the number of distinct query
terms they have. Then, the top ranked pseudo-documents
are eliminated in our latent topic discovery process.

We employ the standard Latent Dirichlet Allocation (LDA)
algorithm [4] to conduct the latent semantic topic analysis
on the collection of pseudo-documents. In particular, Gibb-
sLDA3 package is used to generate a set of latent topics
Z = {z1, z2, · · · , zN}. Each topic zi is associated with
a multinomial distribution of terms, denoted by P (tk|zi),
where tk is a term. Each tk in a certain pseudo-document
H is assigned a topic, denoted by z(tm|H) in this paper.

4.3.2 Latent Topic Transfer
We transfer the latent topics discovered above to initialize

the model parameters in the beginning of training phase:

P̂ (zi) =
1

|Z| , (13)

P̂ (zj |zi) =
exp (−DKL(zj ||zi))∑

zk∈Z
exp (−DKL(zk||zi))

, (14)

P̂ (tl|zj , tk) =
P̂ (tk, tl, zj)

P̂ (tk, zj)
=
P̂ (tk, tl|zj)
P̂ (tk|zj)

, (15)

whereDKL(zj ||zi) =
∑

tk
P (tk|zj) log

P (tk|zj)
P (tk|zi)

is the Kullback-

Leibler divergence between two distributions P (·|zi) and P (·|zj).
When zi and zj are highly related topics, the value of P̂ (zj |zi)
is large. P̂ (tk, tl|zj) is the probability that tk and tl co-occur

in the topic zj , and P̂ (tk|zj) is the probability of tk in zj .

3http://gibbslda.sourceforge.net/

P̂ (tk, tl|zj) and P̂ (tk|zj) are calculated as:

P̂ (tk, tl|zj) =
cnt(tk, tl|zj)∑

m

∑
n cnt(tm, tn|zj)

, (16)

P̂ (tk|zj) =

∑
n cnt(tk, tn|zj)∑

m

∑
n cnt(tm, tn|zj)

, (17)

where cnt(tm, tn|zj) denotes the co-occurrence time of tm
and tn in the topic zj , and calculated as:

cnt(tm, tn|zj) =
∑
H

1{tm,tn∈H ∧ z(tm|H)=z(tn|H)=zj}, (18)

where 1{} is an indicator function, and z(tm|H) is the topic
assigned to tm in the pseudo-document H, which can be
obtained from the result of LDA in the previous step. Then
we utilize a global language model to smooth P̂ (tl|zj , tk):

P̃ (tl|zj , tk) =
cnt(tk, tl|zj) + µ1P (tk)P (tl)∑

n cnt(tk, tn|zj) + µ1P (tk)
, (19)

where P (t) = cnt(t)∑
ti

cnt(ti)
is the global probability of term t

in the query log data, cnt(t) denotes the frequency of t.
Note that we do not directly apply the probability P (tk|zj)

generated by LDA as P̂ (tk|zj) in Equation 15. The reason is

that P̂ (tl|zj , tk) should satisfy the constraint of
∑

l P̂ (tl|zj , tk) =
1, and using P (tk|zj) may violate this constraint.

4.3.3 Latent Topic Parameter Estimation
To conduct the training process, we refine the standard

Baum-Welch algorithm [2]. Given a set of historical queries,
we preprocess them so that the frequency of distinct queries
is aggregated and collected. Since we assume that each
query is independent of the others, the intermediate calcula-
tion can be illustrated with a single query. Then, the inter-
mediate results for each single query are aggregated to ob-
tain the final updating formulas with the similar way in [25].

For a query q : t1 · · · tn, we define backward variable βr(i):

βr(i) , P (tr+1:n|zr = zi, t
r), (20)

which is the score of partial query tr+1 · · · tn given zr and
tr. We define βn(i) = 1. The recursive calculation of β is:

βr(i) =
∑
zj∈Z

P (zj |zi)P (tr+1|tr, zj)βr+1(j). (21)

Then the joint probability of a query q and zr = zi can be
derived as:

P (q, zr = zi) = P (t1:r−1, tr+1:n|tr, zr = zi)P (tr, zr = zi)

= P (t1:r−1, tr, zr = zi)P (tr+1:n|zr = zi, t
r)

= αr(i)βr(i). (22)

Therefore, P (q) can also be computed by
∑

i αr(i)βr(i).
Now we introduce two conditional probabilities. P (zr =

zi|q) is the probability that zr takes the value zi in q, which
can be calculated as:

P (zr = zi|q) =
αr(i)βr(i)

P (q)
. (23)

The joint probability of zr = zi and zr+1 = zj in a given q
is P (zr = zi, z

r+1 = zj |q):

P (zr = zi, z
r+1 = zj |q) =

αr(i)P (zj |zi)P (tr+1|tr, zj)βr+1(j)

P (q)
.

(24)

http://gibbslda.sourceforge.net/


The next step is to aggregate the intermediate results and
obtain the final updating formulas of P ′(tl|zj , tk), P ′(zj |zi)
and P ′(zi). P

′(tl|zj , tk) is designed as follows:

P
′
(tl|zj , tk) = µ2

∑
q∈Q

(
n−1∑
r=1

s.t. tr=tk,tr+1=tl

P (zr+1 = zj |q)F (q)

)

∑
q∈Q

(
n−1∑
r=1

s.t. tr=tk

P (zr+1 = zj |q)F (q)

)

+(1− µ2)P̃ (tl|zj , tk), (25)

where Q is the set of training queries, and F (q) is the
frequency of q, µ2 is used to control the weights of two
parts, namely the initial value P̃ (tl|zj , tk), and the newly
estimated part. In this way, the value of P ′(tl|zj , tk) does
not solely depend on the queries which have sub-sequence
(tk, tl), a proportion of the initial P̃ (tl|zj , tk) is also kept
in P ′(tl|zj , tk). Therefore, when a new query contains term
sequence (tk, tl), and no previous queries contain (tk, tl),
the value of P ′(tl|zj , tk) can still be calculated relying on

P̃ (tl|zj , tk), and the score of the new query is still reliable.
The updating formulas of P ′(zj |zi) and P ′(zi) are straight-
forward and they are given as follows:

P ′(zj |zi) =

∑
q∈Q

∑n−1
r=1 P (zr = zi, z

r+1 = zj |q)F (q)∑
q∈Q

∑n−1
r=1 P (zr = zi|q)F (q)

, (26)

P ′(zi) =
1

|Q|
∑
q∈Q

P (z1 = zi|q)F (q), (27)

After one iteration, new parameters, namely, P ′(tl|zj , tk),
P ′(zj |zi), and P ′(zi), will be used in the next iteration. This
iterative procedure will stop when a pre-defined condition is
satisfied.

5. DATA PREPROCESSING AND EXPERI-
MENT SETUP

5.1 Data Sets and Preprocessing
The query log data used in our experiments is the AOL

data [27] spanning three months from 1 March, 2006 to
31 May, 2006. The raw data is composed of queries and
clicks recorded by a search engine. Since it contains a lot
of noise, we first clean the raw data as done by most of the
existing works. If a query contains non-alphabetical char-
acter, or is a host navigation query such as “google.com”
and “www.yahoo.com”, it is removed. Then, the stop words
are removed from the remaining queries. We adopt a hy-
brid method to detect user session boundary [19]. First,
consecutive queries in the same session have to share at
least one term. Second, the interval between two consec-
utive queries should be less than 10 minutes. After sessions
are detected, we remove those sessions without any clicked
URL. In each session, we remove the queries which are at the
end of the session and have no clicked URL. Finally we ob-
tain 7, 041, 319 sessions, in which 1, 276, 498 are multi-query
sessions. There are 4, 315, 124 unique queries and 673, 073
distinct terms.

The data set is split into two subsets by the time stamp:
the historical set and the test set. The historical set con-
tains the first two months’ log, and the test set contains the
third month’s log. The pseudo-documents for latent topic
analysis are constructed with the historical set as mentioned

in Section 4.3. If a host involves less than 5 queries, it will
be eliminated. Then all pseudo-documents are ranked in
descending order according to the number of distinct terms
they have. In order to filter out those Web sites that are too
general, we remove URLs from the top 0.1% of the pseudo-
documents. Finally, 189,670 pseudo-documents are retained
and fed into the latent topic discovery algorithm, where the
number of topics is set to 30. In the historical set, 1,882,638
queries with at least one clicked URL are used to build the
training set, which is used in the parameter estimation.

Currently, the largest existing bookmark data collection
is provided by Wetzker et al. [34]. In our experiment, we
use a subset of the data spanning two years, namely, 2006
and 2007. In this period, 101,485,670 bookmarks were as-
signed to 39,232,530 distinct URLs by 891,479 users, includ-
ing 2,523,190 distinct tags. To tackle the vocabulary gap
between the AOL log and bookmark data, we filter out the
tags that are not contained by the query log such as “so-
cialsoftware”, “visualstudio”, etc. To tackle the problem of
data sparseness, we only consider the URLs which are tagged
by at least five users. After this filtering, 1,910,547 URLs
are collected and used in candidate term generation. And
the similarity threshold value used is 0.19 when filtering the
noise. The smoothing parameter value of µ1 is 3,000 in
Equation 19.

5.2 Experiment Setup
For conducting the comparison, we implement a context

based term association (CTA) method proposed by Wang
and Zhai [32], and follow the advice of the authors on some
implementation details. This method is based on an obser-
vation that terms with similar meaning tend to co-occur with
the same or similar terms in the queries. For example, both
“auto” and “car” often occur with “rental”, “pricing”, etc.
Therefore, both candidate term generation and query scor-
ing in CTA are conducted by exploiting the association of
term contexts in the historical queries. A contextual model
is defined to capture context similarity, and a translation
model is defined to score the quality of a candidate query.
We denote the two steps of CTA, namely, candidate term
generation, and query scoring, as “CTA-CAND” and “CTA-
SCR” respectively. We generate the contextual and transla-
tion models for the top 100,000 terms in the historical set.
Then the threshold given in [32] is applied to filter out the
noise. We mainly compare the performance of our frame-
work and CTA for query term substitution. A conservative
strategy is adopted, specifically, only one term in the origi-
nal query will be replaced. This is also the strategy adopted
by some previous works such as [32].

Because manual evaluation of the output of query refine-
ment methods is time-consuming and very labor intensive,
we conduct an automatic evaluation by utilizing the session
information of query log. In a search session, when users
feel unsatisfied with the results of current query, they may
refine current query and search again. After obtaining satis-
factory results, they may stop searching. The importance of
the terminal URL was well discussed in previous works [14,
35]. Therefore, an automatic and reliable evaluation can
be conducted based on this observation. We introduce the
definitions of two kinds of query as follows:

definition 2 (Satisfied query). In a user session, the
query which causes at least one URL clicked and is located
in the end of the session is called a satisfied query.



Table 3: Substitution term pairs generated by our method.
air birthday car cd children health

cand. NMI cand. NMI cand. NMI cand. NMI cand. NMI cand. NMI
apollo 0.135 birthdays 0.085 cars 0.319 dvd 0.130 kids 0.207 medical 0.135
airline 0.127 greeting 0.061 auto 0.260 cds 0.081 parenting 0.136 fitness 0.131
airlines 0.113 ecards 0.059 automotive 0.176 iso 0.077 child 0.080 medicine 0.126
flights 0.105 anniversary 0.053 automobile 0.132 burning 0.071 baby 0.072 nutrition 0.124
flight 0.100 ecard 0.043 vehicle 0.082 cdrom 0.064 parents 0.053 diet 0.103

house lotto mail msn music pc
cand. NMI cand. NMI cand. NMI cand. NMI cand. NMI cand. NMI
houses 0.161 lottery 0.321 email 0.267 messenger 0.219 audio 0.135 computer 0.092
housing 0.122 lotteries 0.127 webmail 0.099 im 0.115 musica 0.118 computers 0.088

realestate 0.104 loto 0.085 smtp 0.096 icq 0.105 musik 0.087 hardware 0.074
estate 0.079 powerball 0.081 gmail 0.091 aim 0.103 bands 0.076 windows 0.069

property 0.063 lotterie 0.042 spam 0.090 chat 0.074 rock 0.060 xp 0.060

Table 4: Comparison of substitution pair generation for high frequency terms.
google yahoo county lyrics school myspace

Our CTA Our CTA Our CTA Our CTA Our CTA Our CTA
googlemaps goggle yui msn berks count songs lyric education schools facebook space

search yahoo msn aol orange couty lyric listen college speed socialnetworking xanga
seo googl google google counties parish song song schools heels socialnetworks profile

gmail satellite pipes aim speedway township letras lryics teaching scool socialnetwork html
maps googles search voice carfax couny chords titles university heel sns premade

searchengine gogle searchengine ako alamo conty canciones lyrcis learning scholl friendster glitter
googleearth goole messenger yaho hertz dade paroles lyricks educational shool socialsoftware cool

map virtual woman electronic kia coutny tablature lyics teacher fiber profile page
mashup planet engine yhoo armored okeechobee tabs remix students cholesterol social background
adsense msn aim monkey towing twp songtexte album edu protein socialmedia website

university ebay college bank city mapquest
Our CTA Our CTA Our CTA Our CTA Our CTA Our CTA

college college auction outboard university colleges banking bankof cities yankees drivingdirections maps
universities univ auctions trolling colleges collage banks holland urban knicks onlinemapping defensive
academic athletics sell general school colege money morning urbanism mets navteq drunk

uni univeristy selling boat universities webshots finance guns oklahoma jets sidesearch mcnally
school colleges paypal mitsubishi schools colleg cash scouts urbanplan ciy teleatlas quest

academia unversity ecommerce kia education outreach savings mid chicago aviation routeplanners google
colleges fullerton shipping crate students collge finances mall newyork ave routefinder petty

education parks marketplace rebuilt highered colledge payment mbna miami cty direcciones aaa
edu universtiy sale clock academia policing account reserve nyc blvd kaardid drinking

gradschool prisons sales yamaha edu helpers hsbc latin places counties strade directions

definition 3 (Unsatisfied query). The query which
is located just ahead of the satisfied query in the same user
session.

We collect a set of unsatisfied queries used as the input,
and collect their corresponding satisfied queries treated as
the benchmark query set of the refinement task. Note that
this requirement is only for conducting automatic evalua-
tion, and our framework can take any query as input.

6. EXPERIMENTAL RESULTS

6.1 Candidate Term Generation
The candidate terms for 12 selected terms are given in Ta-

ble 3. For each term, the top 5 candidates are given along
with their NMI scores. In general, there are four kinds of
relations between the terms in a substitution pair. The first
kind refers to the fact that the candidates’ meaning is iden-
tical with input terms’ meaning such as “automotive” and
“auto” for “car”, “kids” for “children”, “lottery” for ”lotto”,
etc. The second kind is that the candidate terms’ meaning
is related to the input term’s meaning, such as “dvd” for
“cd”, “fitness” for “health”, “estate” for “house”, “messenger”
for “msn”. etc. The third kind refers to the fact that the
candidate terms have a similar property of the input terms
such as “icq” and “aim” for “msn”. The last kind refers to

other types of strongly associated relation. In the last case,
although the candidate terms do not have similar meaning
or property of the inputs, the relationship between them is
quite obvious. For example, “powerball” is a kind of lottery
ticket, “rock” is a genre of popular music. Interestingly, two
non-English terms are suggested for “music”, namely, “mu-
sica” from Spanish and “musik” from Swedish, and both are
correct. We can see that social tagging data can provide us
some useful term pairs with similar or related meaning.

We find that when dealing with high frequency terms,
CTA suggests a lot from typos. The candidates of the top
12 most frequent terms in the AOL log are given in Ta-
ble 4. It can been seen that typos are recommended by
CTA for 8 input terms, except for “myspace”, “ebay”, “bank”
and “mapquest”. After the filtering is performed with the
threshold given in [32], the top 5 remaining candidates for
“county” are “count”, “couty”, “couny”, “conty” and “dade”,
and for “lyrics” are “listen”, “song”, “lryics”, “lyrcis” and “ly-
ics”. The main reason of this observation is that their can-
didate generation method is context based, and the filtering
method relies on the co-occurrence of two terms among dif-
ferent sessions. After users issue a query containing typo
terms and cannot get satisfied results, they may correct it
manually. But this typo is already recorded in the query log.
Worse still, most of search engines can return some results
even for a query with typo. So after users click any one of
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Figure 4: Comparison of scoring performance be-
tween CTA-SCR and Our-SCR.

the results for the query with typo, we cannot easily filter
out this query. Therefore, the typo and its corresponding
correct term have very similar context and often co-occur
in the sessions. In contrast, our method utilizes the book-
mark data, which has a better quality compared with the
query log. When a user provides a typo tag, it may be
corrected when the user comes back to maintain his or her
bookmarks. On the other hand, the bookmark data also has
its own shortcoming. A user may connect several terms as a
single tag, such as “googlemaps” and “searchengine”. Fortu-
nately, it is not difficult to split this kind of tags into single
terms.

6.2 Comparison of Scoring Performance
Recall that our framework contains two major compo-

nents, namely, the graphical model for scoring and the can-
didate term generation from social tagging data, and they
aim at solving different steps or tasks in query refinement.
To compare the performance of query scoring between our
graphical model and CTA, we randomly select 1,000 multi-
query sessions from the test set of the query log, and the
unsatisfied queries in these sessions are used as input of the
query refinement task. This query set is named as Query Set
1 (QS1). As mentioned before, the corresponding satisfied
queries in these sessions are used as the benchmark results.

The scoring component of CTA, i.e. CTA-SCR, is a term
context based method, and it is designed to score the candi-
date query generated from the context based candidate gen-
eration method, i.e. CTA-CAND. To compare the perfor-
mance of two scoring methods, namely, CTA-SCR, and our
graphical model (called Our-SCR), we apply CTA-CAND to
generate candidate terms from the historical query set for
them. For a query q in QS1, CTA-CAND outputs a list of
candidate terms for each term of q. Then, each candidate
term is used to generate a candidate query. All candidate
queries of q are fed into one scoring method to assess the
quality. Then, according to their score, the top candidates
are determined as the final output results for q.

We adopt the metrics P@K (precision at K) to evaluate
the result, and K is the number of top result queries given by
the model. For each method, at most 25 result queries are
considered here. The performance of both models is given in
Figure 4, where CCOS denotes the scoring performance of
our graphical model. It can be observed that our graphical
model outperforms CTA (denoted by CCCS) significantly
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Figure 5: Refinement performance of different com-
binations on QS2.

when K is small. The P@5 value of our graphical model is
0.085, while the P@5 value of CTA is 0.062. The differences
between the performances of our method and CTA are sig-
nificant with significance level 0.05. The major reason for
the different performance is that our graphical model scores
a query taking into account the semantic consistency of the
terms, which cannot be captured by the comparison base-
line. Because most of the input queries have less than 25
candidate queries, both methods achieve similar P@25.

The effect of the parameter µ2 is depicted in Figure 6. In
general, a large value of µ2 can achieve better result than
a small value. Recall that we randomly generate QS1 from
the test set. Commonly used queries have more chance to
be selected, because they are issued many times by users.
Therefore, there is more information from historical queries
that can be used in scoring their candidate queries. Refer
to Equation 25, a large value of µ2 reserves small amount
of initial estimation value of P̃ (tl|zj , tk), and the value of
P ′(tl|zj , tk) depends more on the re-estimation part from the
historical queries. This weight distribution is preferred when
dealing with queries in QS1. If the value of P ′(tl|zj , tk) only
depends on the re-estimation part, i.e., µ2 = 1.0, the result
is worse than that when we reserve some initial estimation of
P̃ (tl|zj , tk), for example, µ2 = 0.7. It shows that the initial
estimation from the latent topic analysis can capture some
intrinsic feature of the queries in Web search.

6.3 Performance of Unfamiliar Query Refine-
ment

To investigate the efficacy of our candidate term genera-
tion method based on social tagging data, we select another
query set from the test set in a similar way of selecting QS1,
named as Query Set 2 (QS2). The only difference is that
the queries in QS2 are unfamiliar, so that we can investi-
gate whether social tagging data can help solve the problem
of lacking information.

The queries in QS2 are unfamiliar, therefore, this poses
some challenges in both tasks of query refinement as we
discussed in Section 1. Figure 5 depicts the results of differ-
ent combinations. Our-CAND denotes the candidate term
generation component of our framework. It can be ob-
served that the combination OCOS performs the best, and
followed by combination OCCS. Combinations CCOS and
CCCS achieve similar performance. In summary, the com-
binations with Our-CAND as the candidate term genera-
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Figure 6: The effect of µ2 under the CCOS method
in the comparison of the scoring performance.
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Figure 7: The effect of µ2 under the OCOS method
in unfamiliar query refinement.

tion component can perform better. This is mainly due to
the lack of information for these unfamiliar query, and good
candidate terms cannot be generated by CTA-CAND. Fur-
thermore, Our-SCR performs better than CTA-SCR. Our
graphical model scores the query in a latent semantic space.
Therefore, even when the term context information is very
sparse, Our-SCR can still achieve a reliable score.

The effect of parameter µ2 in the combination OCOS is
given in Figure 7. It can be observed that when refining the
unfamiliar queries, a small value of µ2, say 0.3, can achieve
a better performance in query scoring, because a small value
of µ2 reserves larger amount of initial estimation value, i.e.
P̃ (tl|zj , tk). When the historical query information is sparse,

reserving more of P̃ (tl|zj , tk) value can offer a reliable score.

6.4 Case Study of Refined Queries
We conduct some case studies to analyze the query refine-

ment result qualitatively. Table 5 depicts the top 5 output
queries from our model for 4 input queries, namely “dutch
folklore”and“racing logistics”from QS2, and“kids anger dis-
orders” and “discount gucci eyeglasses” from QS1. To refine
“dutch folklore” and “racing logistics”, the main difficulty is
the generation of candidate terms. For example, “folklore”
is not a frequently used term in the historical query set, but
in the bookmark data it is employed to tag many URLs.
Our candidate generation method can figure out some very
good candidate terms such as “myths”, “mythology”, and
“legend”. On the other hand, to refine“kids anger disorders”,
the main difficulty is to detect and maintain the semantic
meaning consistency of the candidate queries. Because each
term in“kids anger disorders”has tens of candidate substitu-
tion terms, the semantic consistency is not easy to maintain
when generating a new query.

7. RELATED WORK
Huang et al. analyzed and evaluated different types of

query refinement in the query log [20]. Except the three

Table 5: Some examples of query refinements.
dutch folklore kids anger disorders

dutch literature kids feelings disorders
dutch myths kids anxiety disorders

dutch mythology kids emotions disorders
dutch legend kids mental disorders

holland folklore teens anger disorders
racing logistics discount gucci eyeglasses
sports logistics discount gucci sunglasses
sport logistics discount vuitton eyeglasses

racing operations discount gucci glasses
race logistics discount versace eyeglasses

playing logistics discount chanel eyeglasses

mentioned types, namely, substitutions, expansion, and dele-
tions, they also investigated some other fine-grained types
such as stemming [28], spelling correction [10], abbreviation
expansion [33], etc. In [17], a Conditional Random Field
model is proposed to conduct these fine-grained refinement
operations. Chirita et al. exploited user’s personal informa-
tion repository such as text documents, emails and cached
Web pages to implicitly personalize the query expansion for
the user [9]. Sadikov et al. conducted an investigation on
clustering the refinements of the same original query [30].
The clusters provide a summary of the possible diverse in-
terests of the users who issue the same original query. Their
method can also be used to achieve a better personalized
query refinement. Some works investigated the effectiveness
of using anchor texts in query refinement [12, 23]. They find
that anchor text is also an effective resource.

In query suggestion, a commonly used method is mining
the click graph [13, 26]. In [26], a sub-bipartite graph of
queries and URLs is generated for a particular input query.
Then the hitting time of each node is computed by perform-
ing a random walk on the subgraph. After that, the query
nodes which have the top n earliest hitting time are used as
the suggestions. Deng et al. constructed a query-to-query
graph instead of the bipartite graph, and the random walk is
conducted on the entire graph [13]. They also proposed an
entropy based method to calculate the weight of the edges.
Cao et al. investigated context aware query suggestion by
mining query log [8]. They used a clustering method on the
bipartite graph to summarize queries into concepts. Then
user sessions are employed to mine the concept patterns,
which can help to provide more precise suggestions.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we present a framework for performing

query refinement, and this framework mainly has two contri-
butions. First, a graphical model is proposed to score can-
didate queries, and this model can detect and maintain the
semantic consistency of terms in queries. Second, a method
is presented to mine term pairs with similar meaning from
social tagging data. From the experimental results, we ob-
serve that taking the semantic consistency into account can
help to give a more reliable prediction of query quality. Fur-
thermore, social tagging data can provide useful information
in generating similar term pairs, which is especially impor-
tant for some unfamiliar terms in previous queries.

Currently, phases are separated into single words in our
framework in both latent topic analysis and term depen-
dency estimation. One future direction is to promote our
model from single word level to phrase level. Some models



such as topical N-grams model [31] and phrase translation
model [15] have attested the efficacy of the phrase level so-
lution. In our current model, the score of a candidate query
is independent of the current session in which the original
query locates and the user who issues the original query.
Therefore, another future direction is to consider more per-
sonalized or other available information in scoring queries
such as the users’ Web search history, existing queries in the
current user session, etc.
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