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ABSTRACT
Although the task of data record extraction from Web pages
has been studied extensively, yet it fails to handle many
pages due to their complexity in format or layout. In this
paper, we propose a unified method to tackle this task by
addressing several key issues in a uniform manner. A new
search structure, named as Record Segmentation Tree (RST),
is designed, and several efficient search pruning strategies on
the RST structure are proposed to identify the records in a
givenWeb page. Another characteristic of our method which
is significantly different from previous works is that it can
effectively handle complicated and challenging data record
regions. It is achieved by generating subtree groups dynam-
ically from the RST structure during the search process.
Furthermore, instead of using string edit distance or tree
edit distance, we propose a token-based edit distance which
takes each DOM node as a basic unit in the cost calcula-
tion. Extensive experiments are conducted on four data sets,
including flat, nested, and intertwine records. The experi-
mental results demonstrate that our method achieves higher
accuracy compared with three state-of-the-art methods.
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1. INTRODUCTION
The World Wide Web has been extensively developed

since its first appearance two decades ago. The explosive
growth and spread of the Web have resulted in a huge in-
formation repository, but yet it is still under-utilized due
to the difficulty in automated information extraction (IE)
caused by data heterogeneity. The task of Web IE differs
largely from the traditional IE task which aims at extract-
ing data from basically unstructured free text. In contrast,
Web IE processes Web documents (or Web pages) which are
semi-structured and coded with HTML tags. Furthermore,
Web sites commonly employ pre-designed templates to for-
mat and present information units, known as data records,
which have similar attributes or fields. For example, re-
tailing Web sites usually run a server-side program to fill
products’ information, retrieved from back-end databases,
in a pre-defined template to generate Web pages, which are
referred to as deep or dynamic Web pages. Organizations
also prefer to display its information in a structured way
to facilitate easy browsing, such as list of chief staff, list of
breaking events, etc. These pages are known as surface or
static Web pages. Therefore, the structured information on
the Web is tremendously popular and very valuable for var-
ious applications such as online market intelligence [5], data
mashups [1], etc.

Some existing works adopt a supervised manner to per-
form the Web IE task [15, 28]. They need some pre-labeled
pages as input to learn some extraction rules or wrappers.
Some others adopt an unsupervised manner [3, 8, 17, 20, 22],
which can extract desirable data without manually prepared
training data. Considering the availability of single or multi-
ple input pages from a particular Web site, Web IE systems
can also be classified into single-page based methods and
multiple-page based methods. Multiple-page based meth-
ods [3, 8, 15, 28] take several pages coming from the same
Web site as input, and extract the underlying template or
schema automatically by analyzing the differences and sim-
ilarities of these pages. Single-page based methods [17, 20,
22] do not need several similar pages from the same Web site.
Therefore, they are able to handle Web sites where multiple
similar pages are not available. The work introduced in this
paper is a single-page based and unsupervised framework,
and it can detect the record region (record section) and seg-
ment the records simultaneously under a unified model. One
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(b) DOM tree of the page in (a). Si is a subtree, Ri is a record.

Figure 1: A page fragment and its DOM tree.

example of such kind of page is given in Figure 1(a). In some
existing works, further post-processings are performed such
as attribute alignment [26, 30] and labeling [24, 33]. These
post-processings make the extracted data suitable for down-
stream applications.

Two basic observations on data record and record region
are as follows: 1) A group of data records describing a set
of similar objects are typically presented in a contiguous re-
gion, known as record region, of a page and are formatted
using similar HTML tags; 2) A set of similar data records
are formed by some child subtrees of the same parent node.
Based on these observations, a natural way to detect record
region and record boundary is to examine the similarity
(or distance) between subtrees. This strategy is adopted
by MDR, ViPER, and DEPTA. MDR [17] utilizes string
edit distance to assess whether two adjacent subtree groups,
named as generalized nodes, are a repetition of the same
data type. ViPER [22] is another work which also calculates
string edit distance of the subtree pairs to detect record re-
gion. Then it involves some visual information to segment
a detected region into records. DEPTA [27] calculates tree
edit distance between generalized nodes. In summary, MDR
and DEPTA calculate similarity for the pairs of neighbor-
ing generalized nodes, while ViPER calculates similarity for
every pair of subtrees.

The advantage of the above similarity-based approaches
is that they are robust against optional fields or tags in a
record, and can tackle the problem of approximate matching
to identify repeating objects. However, one disadvantage is
that the method of determining the granularity involved in
the similarity calculation is not flexible. In a record region,
records may contain different number of subtrees, as shown
in Figure 1. Thus, the number of possible subtree com-
binations to compose records is exponential with respect
to the number of subtrees. To tackle this problem, MDR
and DEPTA introduce a concept known as generalized node,
which contains several subtrees. The limitation of the MDR
family methods [17, 26, 27] is the greedy search for the best
generalized node combination, which is time consuming as

noticed by other works [20, 22]. To speed up the greedy
search, one inflexible constraint is introduced in their def-
inition of record region. This constraint specifies that all
generalized nodes must have the same length, i.e. the num-
ber of subtrees, in the same record region. This constraint
will fail to handle some cases in which the records contain
different number of subtrees. For the record region in Fig-
ure 1, MDR treats S2 · · · S7 as one record region, and misses
the record R3. Noticing this limitation, ViPER only calcu-
lates the similarity for single subtree pairs and constructs
a similarity matrix. Then with this matrix, some heuris-
tic rules are employed to detect the record region. Another
limitation of these existing methods is that they decompose
record extraction into two separate steps, namely, record
region detection, and record segmentation. The reason is
that the calculated similarity or distance in region detection,
namely, the edit distance of generalized nodes in MDR, and
the similarity of pairwise subtrees in ViPER, cannot be uti-
lized to decide record boundary directly, since the calculated
information is not necessarily boundary related.

In this paper, we propose a unified method to tackle the
record extraction task. A new search structure, named as
Record Segmentation Tree (RST), is designed. Based on
the RST structure, several key issues in record extraction
are handled in a uniform manner. For example, whether
the given region contains a record region, if so, from which
subtree it starts, where it ends, and how to segment it into
records. To obtain solutions for these issues, we develop sev-
eral efficient search pruning strategies on the RST structure
of a given region to identify the correct record segmenta-
tion. When a correct segmentation is successfully detected,
it implies that the record region is also successfully obtained.
Based on such approach, our method is able to combine the
two steps in the existing works in a unified framework. An
intuitive way to understand the advantage of our method is
that if the region can be segmented into records having high
pairwise record similarity, then we are confident that this
region is a record region. At the same time, we also have
high confidence on the record segmentation.

Another characteristic of our method which is significantly
different from previous works is that it can effectively han-
dle complicated and challenging data record regions such as
embedded region and nested region. It is achieved by gen-
erating subtree groups dynamically from the RST structure
during the search process. These groups may contain differ-
ent number of subtrees which is determined by taking into
account the records’ features in the current region, whereas
MDR and DEPTA pre-define a subtree grouping schema,
i.e. generalized node, for all record regions. Furthermore,
instead of using string edit distance or tree edit distance,
we propose a token-based edit distance. Different tag names
have different string length, thus using edit distance directly
on tag name string is not suitable. In our token-based edit
distance, each tag is counted as a basic unit in the edit cost
calculation.

2. RELATED WORK
Structured data extraction from Web pages has been stud-

ied extensively. Early works on manually constructed wrap-
pers [4, 18] were found difficult to maintain and be applied
to different Web sites, because they are very labor intensive.
Semi-automatic methods [2, 13, 14, 15, 16, 21, 28, 31, 32],
known as wrapper induction, were proposed to tackle this
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problem. These methods need some labeled pages in the tar-
get domain as input to perform the induction. Thus, they
still have limitation for large-scale applications. To over-
come the above drawbacks, fully automatic methods have
been developed. Methods such as MDR [17], DeLa [24],
ViPER [22], and DEPTA [27] were designed to tackle record-
level extraction task from a single input page. Our frame-
work falls into this category, precisely, it is an automatic,
record-level, and single-page based approach.

Techniques that address record extraction from a single
page can be categorized into five categories: early methods
based on heuristics [6, 10], repetitive pattern based meth-
ods [7, 24], similarity-based extraction methods [17, 22, 26],
tag path based methods [20], and visual feature based meth-
ods [11, 19, 29]. Methods based on heuristic rules cannot be
generalized well. Repetitive pattern based methods such as
IEPAD [7] and DeLa [24] show some potential in solving this
problem because similar templates are used in formatting
the records, which make it feasible to mine some repetitive
patterns as clues for locating records in the page. One lim-
itation of such pattern mining approaches is that it is not
robust against optional data and tags inserted into records.

The similarity-based approach tackles this limitation with
approximate matching to identify repeating objects. MDR [17]
and DEPTA [26] are such techniques, which utilize string or
tree edit distance to assess whether two adjacent subtree
groups are a repetition of the same data type. Our method
also calculates the similarity between two groups of subtrees,
but the designed RST structure makes the subtree grouping
more flexible and better aligned with the record boundary.
ViPER [22] is another work which computes the similarity
of each pair of single subtrees to detect record region, then
involves some visual perception to segment the detected re-
gions into records.

Miao et al. investigate the tag paths in a Web page to
perform record extraction [20]. They transform a DOM tree
into pieces of tag paths, and cluster the paths according to
the defined similarity measure to detect record regions. The
limitation of this method is that it cannot take into account
the record boundary information during region detection,
and needs a separate step to segment records after region de-
tection. Therefore, tag paths in the same records and paths
among different records cannot be distinguished and treated
differently. Inevitably, the accuracy of both steps will be
affected. Furthermore, this method clusters the tag paths
across the entire page, and does not consider the proximity
relations of the paths. However, the same tag path may be
used in different blocks of the page, even these blocks are
far away from each other.

Although ViPER [22] and work by Miao et al. [20] uti-
lize some visual information from rendered Web page to
assist record segmentation, they depend on tag structure
to detect record regions. In contrast, ViNTs [29] utilizes
the visual information first to identify content regularity,
and then combines it with tag structure regularity to gener-
ate wrappers. ViNTs cannot separate horizontally arranged
records, e.g., nested records in a table, and identify multiple
regions. Pure visual feature based methods include VEN-
Tex [11] and ViDE [19], and they are effective to extract
records from pages with well organized visual features. Some
other researchers employ pre-defined domain ontology [9] or
automatically generated domain ontology [23] to assist the
record extraction task.

3. BASIC OBSERVATIONS AND PROBLEM
DEFINITION

In the Web page fragment given in Figure 1(a), the com-
pany information is organized in a “table”, and each com-
pany corresponds to one data record. The table’s DOM
tree is given in Figure 1(b). We can see that the records
share some common fields such as company description, in-
vestor, and established year. One can also notice that some
records do not contain certain fields. For example, the third
record does not have URL information. Furthermore, the
records are formatted with similar HTML templates, and
each record is composed of several rows in the table. We
use T to denote the DOM tree given in Figure 1(b), and
T ’s subtree sequence is denoted by S, and an element in S
is referred to as Si. In the DOM tree in Figure 1(b), T is
“table”, and S includes S1, S2, etc. T and Si are also used
to refer to the root nodes of the corresponding DOM trees.
A fragment of the sequence S is denoted by Si..j or Si · · · Sj ,
where 1 ≤ i ≤ j ≤ |S|.

Considering the characteristics of data record and record
region, previous works rely on two basic observations which
are reviewed as follows:

Observation 1. A group of data records describing a set
of similar objects are typically presented in a particular re-
gion of a page and are formatted using similar HTML tags.

Observation 2. A group of similar data records being
placed in a specific region is reflected in the tag tree by the
fact that they are under one parent node, although we do
not know which parent. It is very unlikely that a data record
starts from an inner node of a child subtree and ends at an
inner node of another child subtree of the parent node.

Based on these two observations, existing works separate the
record extraction task into two sub-tasks, namely, record
region detection and record segmentation. In our frame-
work, we propose a unified method which can tackle these
two sub-tasks simultaneously. Returning to the example
in Figure 1, given the subtree sequence S of the table T ,
data record extraction aims at identifying the sequence Si..j

(i < j) and a set of separating indexes b in which each
bk ∈ b s.t. i < bk ≤ j. The identified sequence Si..j is a
record region, and it is separated into data records by the
indexes in b. In the above example, the record region is
S2..|S|, and separating indexes set {4, 7, 9 · · · } indicates the
boundary of records in this region. Thus, we know that the
records are S2..4, S5..7, S8..9, etc. It is important to notice
that a record region may not start from the first subtree of
T , and the length (number of subtrees) of different records
may be different. In addition, some DOM trees may contain
0 or more than one regions. If there is no record region, no
subtree sequence should be identified. If there are several
regions, several subsequences of S should be identified.

4. RECORD SEGMENTATION TREE
Given a subtree sequence S, we design a new search struc-

ture, named as Record Segmentation Tree (RST), to detect
possible records in this sequence. Based on this search struc-
ture, the proposed algorithm can search and identify data
records in the sequence. If some data records are identified,
they naturally compose record regions. Therefore, region
detection and record segmentation are performed simulta-
neously. For the convenience of interpretation, we use the
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S1 S1..2 S1..3 S1..4

S1, S2 S1, S2..3 S1, S2..4 S1, S2..5 S1..2, S3 S1..2, S3..4 S1..2, S3..5 S1..2, S3..6 S1..3, S4..5S1..3, S4 S1..3, S4..6 S1..3, S4..7 S1..4, S5..6S1..4, S5 S1..4, S5..7 S1..4, S5..8

S1..4 , S5..7 , S8..9 S1..4 , S5..7 , S8..10 S1..4 , S5..7 , S8..11S1..4 , S5..7 , S8
Figure 2: An example of basic record segmentation tree with K = 4.

subsequence starting from S1 to illustrate RST construc-
tion, as well as the subsequent algorithms. Our framework
can detect the region starting from any subtrees in S. We
assume that one record at most contains K subtrees in S.

4.1 Basic Record Segmentation Tree

Definition 1. Record segmentation tree is a search
tree with the following properties:

• Each node R represents a possible record region. The
root node represents an empty region.

• Each R covers a prefix subsequence S1..n of S, referred
to as SR, where 0 ≤ n ≤ |S|, and has a separating
indexes set b which segments S1..n into records. Each
record of R is denoted by Ri. The root has an empty
prefix subsequence, i.e. n = 0, and an empty separating
indexes set.

• Each R with S1..n and b has at most K children.
Each child of R covers S1..m where n + 1 ≤ m ≤
min {n+K, |S|}, and has a separating indexes set b∪
{m}.

From the above definition, it can been seen that each node
is recursively defined with its parent node, and contains one
more record. The record extraction task in S is transformed
into a problem that searches a node in the RST structure
which best matches with the true records in S.

The segmentation tree with K = 4 is given in Figure 2.
In this example, each node is labeled by its record set. For
instance, the node R = {S1..4,S5..7} indicates that there are
two records, namely, R1 = S1..4, and R2 = S5..7. The cov-
ered prefix is S1..7, and the separating indexes set is {4, 7}.
|Ri| denotes the length of Ri, and is equal to the number
of subtrees it contains. For instance, |R1| = 4, |R2| = 3.
We use |R| to denote the number of records in R. LR de-
notes the average length of the records in R, calculated as
(
∑

Ri∈R |Ri|)/|R| or |SR|/|R|.

4.2 Slimmed Segmentation Tree
In the same record region, it is almost impossible that

the lengths of different records are significantly different,
say some records contain only 1 subtree, while some others
contain 5 subtrees. Based on this observation, we design a
slimmed segmentation tree, in which the length of previous
records is used to predict that of the next record. Suppose
for a node R with LR = 2, we may think that it is impossi-
ble that a child of R has a new record with length 4 or more.
Therefore, we only consider the children of R in which the
new records’ length is smaller than 4. Another observation
is that when LR is large, it is more probable that different
records have a larger absolute length difference. For exam-
ple, in a page in our experiment data set, the average length
of the records is 7. Some records contain 4 subtrees, while

some others contain 9 subtrees. Taking the above two obser-
vations into consideration, we introduce a slimmed version
of segmentation tree.

Definition 2. Slimmed segmentation tree is a sub-
graph structure of the basic record segmentation tree. It
keeps the first two layers of basic RST. Each child of a non-
root node R with prefix sequence S1..n has prefix sequence
S1..m, where n+(LR −�LR/2�) ≤ m ≤ min{n+min{LR +
�LR/2	, K}, |S|}.
An example is given in Figure 3, in which K is 5. It can be
seen that in the third layer, we do not construct all possible
children of a node R in the second layer. If LR is smaller,
we construct fewer number of children for it. Otherwise, we
construct more.

4.3 Utilize RST in Record Extraction
Each node in RST is one possible segmentation of the

record region starting from S1 in the sequence S. Accord-
ing to the observation that the records in the same region
are formatted using similar tags, the correct segmentation
should be the node that achieves higher average pairwise
record similarity. If we cannot find a node with pairwise
record similarity greater than a pre-defined threshold, we
may conclude that no record region exists starting from S1.

Precisely, given a DOM tree T and its subtree sequence
S, record extraction with the RST structure of S aims at
finding a node R∗ such that:

R∗ = argmax
R∈{R|Q(R)≥θ}

|R|, (1)

where θ is a pre-defined threshold. Q(·) is the quality func-
tion of an RST node R, which is defined as the average
pairwise record similarity of records in R:

Q(R) =

∑
Ri,Rj∈R s.t. i<j sim(Ri, Rj)

|R|(|R| − 1)/2
, (2)

where sim is a similarity function between two records. Let
R

∗ denote {R|Q(R) ≥ θ}, each element in R
∗ is a node

whose quality is not less than θ. Among these nodes in R
∗,

the one with the maximum number of records is determined
as the correct record region R∗ starting from S1 in S. If
more than one nodes have the maximum number of records,
we select the one with the best quality as R∗. If R∗ = ∅, it
means that no record region exists starting from S1.

For un-slimmed RST, when we expand it to layer |S|/K,
each inner node has K children. Thus, the total number of
nodes in layer |S|/K is K|S|/K . In the slimmed version, sup-

pose each inner node has K̂ children on average, this number
is K̂|S|/K . Usually, in a possible record region, |S| is much
larger than K. Constructing and searching such a segmenta-
tion tree is extremely time and space consuming because of
its exponential size. Therefore, some search pruning strate-
gies have been developed to allow efficient utilization of the
RST structure.
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S1 S1..2 S1..3 S1..4

S1, S2 S1, S2..3 S1..2, S3 S1..2, S3..4 S1..2, S3..5

S1..5
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Figure 3: An example of slimmed segmentation tree with K = 5.

5. SEARCH PRUNING STRATEGIES
In this subsection, we introduce a threshold-based top k

search that can prune the RST significantly, and reduce the
complexity to O(|S|2) without considering pairwise similar-
ity computation of subtrees. Furthermore, instead of cal-
culating the similarity of all record pairs in Equation 2, we
may only check the similarity of a record and its nearest pre-
vious neighbors. Accordingly, the time complexity is further
reduced to O(|S|).

5.1 Threshold-Based Top k Search

5.1.1 Initialization
In the beginning of RST construction, we have no idea

about the record length in the given subtree sequence. The
only information on hand is that each record has at most K
subtrees. To attain a better starting, we fully expand the
RST in the first 2 layers as shown in Figure 2. Each non-
leaf node has K children in these layers. Then we have K2

initial candidate nodes, denoted by R̃, for future expansion
and search. Note that K is very small, and the full expan-
sion in the beginning will not cause much increasing of time
complexity.

Before proceeding to the next layer of RST, we prune the
candidates in R̃ according to their quality, which is defined
in Equation 2. For a particular node R in R̃, it will be
pruned if Q(R) < θ′. The meaning of θ′ will be clear later.
After the nodes with lower quality are pruned, if the number
of retained nodes is more than a pre-defined threshold k,
only the top k nodes with the best quality are retained, and
denoted by R. For example in Figure 2, the node {S1,S2..5}
is very likely to be pruned. If R = ∅, then no region starting
from S1 exists in S.

5.1.2 Pruning Search
Suppose R is a node in R, the last record in R is Si..n.

We construct some children of R, namely, R ∪ {Sn+1},R ∪
{Sn+1..n+2}, · · · ,R ∪ {Sn+1..n+K}. Then the similarity be-
tween newly generated records and the existing ones inR are
calculated. Precisely, for each new record Sn+1..m (n+ 1 ≤
m ≤ n+K) and each R ∈ R, sim(Sn+1..m, R) is calculated.
Then, the quality of Sn+1..m is defined as:

Q(Sn+1..m) =

∑
R∈R sim(Sn+1..m, R)

|R| . (3)

In the same way, each R in R is expanded, and the quality
of each new record is calculated.

After the RST structure is expanded one more layer, a
new pruning strategy different from that for R̃ is adopted.
For a new RST node R∪{Sn+1..m}, if Q(Sn+1..m) ≥ θ′ and
Q(R∪{Sn+1..m}) ≥ θ, R∪{Sn+1..m} is retained, otherwise
it is pruned, where θ′ is smaller than θ. The rationale behind
this strategy is that some record, say Sn+1..m, may have a
larger difference compared with the previous records. But

we assume that the difference should not be large. Precisely,
Q(Sn+1..m) should not be less than a looser threshold θ′. If
this condition is met, we continue to check the quality of R∪
{Sn+1..m}. In this way, the search procedure can overcome
the problems caused by some outlier records, meanwhile,
the quality of the outliers is also bounded by θ′. Recall that
we use θ′ instead of θ in the pruning of the initial candidate
nodes R̃, it is because each element of R̃ contains two records.
For a particular R, if no R ∪ {Sn+1..m} is retained after
pruning, R is put into R

∗. Again, if the number of retained
nodes is more than k, we keep the top k nodes with the best
quality, and construct a new R.

The above procedure is repeated on the new R until it is
empty or the end of S is reached. Then we finish building
an RST structure for S starting from S1, at the same time,
R

∗ is also built. Note that the RST structure needs not
reach S|S|, which indicates that some subtrees in the end of
S should not be included in the record region.

5.1.3 Retrospect with Short-term Memory
In the above expanding and pruning process, when ex-

amining the quality of a new record, all previous records
are considered, as shown in Equation 3. This thorough
retrospect is not only time consuming, but also unneces-
sary. Especially in the region with many records, the cost
of such exhaustive comparison outweighs the benefit gained.
We adopt a short-term memory retrospect strategy to re-
duce the computation workload. When a node is expanded
one more layer, we only calculate the similarity between a
new record and the nearest r previous records. Thus, in
Equation 3, the number of pairwise similarity calculations
is reduced from |R| to r. And in Equation 2, the cost of
evaluating one node is reduced from |R|(|R| − 1)/2 to r|R|.

5.2 Complexity Analysis
The computation workload of pairwise record similarity

calculation is related to the number of subtrees in the in-
volved records. Hence, we use a finer unit to analyze the
complexity of utilizing RST in record extraction.

In Section 5.1, when evaluating the quality of new records
with Equation 3, we need to calculate the similarity between
each existing record in R and each new record. The compu-
tation workload is:

|R|
∑

1≤l≤K

(LRl) =
K(K + 1)|SR|

2
, (4)

where LR is the average length of records in R, SR is the
subtree sequence covered by R, and LRl indicates the com-
putation needed for calculating the similarity between the
records having LR and l subtrees respectively. Thus, the
computation workload of segmenting entire S is:

∑

1≤x≤(
|S|
LR

−1)

(
x

∑

1≤l≤K

(LRl)
)
=

K(K + 1)( |S|
LR

− 1)|S|
4

, (5)
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In the top k strategy, the overall computation needed is
kK(K+1)(|S|/LR−1)|S|/4. In our framework, the method
of calculating pairwise record similarity is a variant of edit
distance. Due to the dynamic programming employed in
edit distance, when calculating the distance matrix between
two strings, the existing matrix between their prefix strings
can be reused. In Equation 3, when calculating the simi-
larity between Sn+1..m and an existing record R, the dis-
tance matrix between Sn+1..m−1 and R can be reused. Con-
sequently, the above workload can be further reduced to
k(K+1)(|S|/LR−1)|S|/4. The value of k is usually smaller
than K, and both k and K are small and can be treated as
constants. Thus, the overall time complexity is O(|S|2).

Under the strategy of short-term memory retrospect, the
workload in Equation 5 becomes:

(
|S|
LR

− 1)r
∑

1≤l≤K

(LRl) =
rK(K + 1)|S|

2
, (6)

where r is the number of records retrospected from current
layer. Similarly, the overall complexity can be further re-
duced to r(K + 1)|S|/2, which can be regarded as O(|S|).

For each sequence S, MDR [17] has time complexity of
O(|S|) to calculate the similarity among the same length
generalized node. In MDR, only the adjacent generalized
node pairs are considered in similarity calculation, which is
similar to our retrospect strategy with r = 1. ViPER [22]
has time complexity of O(|S|2) to construct the upper tri-
angular similarity matrix of all subtree pairs. Note that the
above time complexity is only the part needed by MDR or
ViPER for record region detection, and they need another
step to segment the detected region into records.

5.3 Composite Node Pruning
Suppose each subtree in S is one record, all RST nodes

with the form {S1..i,Si+1..2i,S2i+1..3i, · · · } (1 ≤ i ≤ K) have
quite high quality. The reason is that the combination of i
records is similar to that of the other i records. In some other
cases, this kind of combination may even achieve higher
quality than the correct record segmentation. For example,
there are four records in a region R = {S ′

1S2,S ′
3,S ′

4S5,S ′
6},

where the primed subtrees are matched ones in different
records. The node Rc = {S ′

1S2S ′
3,S ′

4S5S ′
6} has a higher

quality than R. We call Rc a composite node of R. Com-
posite nodes will increase the computation workload and
involve noise during RST search. To tackle this problem,
after a period of search, say when all nodes in R exceed Sn

in S, we check the relation between the nodes in R. If one
node is a composite node of any other node, it is pruned.
Note that for the node involving subtrees after Sn, we only
consider its records before Sn in the detection of composite
node.

5.4 More Challenging Record Region Discus-
sion

In this subsection, we discuss how several kinds of more
challenging record regions can be handled with the proposed
RST structure and search strategy.

5.4.1 Embedded Region and Non-continuous Region
Record region in S may not start from S1 because of the

existence of header information, one example and its DOM
tree are given in Figures 4(a) and 4(d). In the same way, the
region also may not end at S|S|. We name this kind of region

as embedded region. The way to detect embedded regions in
our framework is straightforward. In the beginning, we start
from S1, and generate an initial set R̃S1 . If all elements

in R̃S1 are pruned, we move to S2, and repeat the above
procedure. In this way, the header subtrees in the beginning
are excluded. If R = ∅ before coming to S|S|, it means that
there is some footer information which should not be treated
as part of any record.

In some other cases, there may be more than one regions
in S. For example, in an on-line shopping Web page, S
may contain two subsequences introducing new arrival prod-
ucts and featured products respectively. And they are sep-
arated by some other information. We name this kind of
region as non-continuous region. The above procedure for
dealing with embedded regions can also be applied to non-
continuous region easily. After finishing one region detec-
tion, the detection algorithm will move on to the sequence
of the remaining subtrees if there are some, and perform the
search procedure again to detect the second region.

5.4.2 Nested Region
In some Web pages, the records are formatted in a nested

manner. For example, the region formatted with <table>,
each record is packed with one <td>, each <tr> has several
<td>s. The region with <table> as root node is know as
nested region. In our framework, with a top-down manner
to scan the DOM tree, <table> is detected as a record re-
gion with <tr>s as records. Then, each <tr> is detected
as a region with <td>s as records. After the <tr>s are
detected as regions, along with the fact that these <tr>s
have been detected as records of the same root node <ta-
ble> in the preceding detection, we may postulate that the
<table> is a nested region. To inspect our postulation, we
compare the records, i.e., <td>s, from different <tr>s, and
check whether they are similar. If so, we conclude the node
<table> is a nested region. There are several other issues
such as the orphan record detection in the last “row”will not
be discussed here due to the limited space. Note that the
above “table” is used to demonstrate the detecting process,
our detection method does not rely on any particular tag.

5.4.3 Intertwine Records
Intertwine record, also known as non-continuous record

in DEPTA [27], refers to the record whose attributes inter-
twine together with other records’ attributes. One example
and its DOM tree are given in Figures 4(b) and 4(e). Each
record has 3 attributes, namely, image, title, and price, and
these attributes scattered in 3 different subtrees (<tr>s). In
our framework, the subtree sequence of <tr>s in the table
is first passed to the record detection algorithm, and each
successive non-overlapping 3-subtree segment is detected as
one record. After that, each <tr> is passed to the detec-
tion algorithm, and detected as a region with each <td>
as one record. Up to now, the above procedure resembles
that of nested region detection. We continue to check the
similarity between records in neighboring <tr>s, and they
are found dissimilar to each other. Thus, we conclude that
a intertwine region is detected, and the correct records can
be generated by reassembling the detected regions. In this
example, three regions (image 1, image 2), (title 1, title 2)
and (price 1, price 2) are reassembled to generate records
(image 1, title 1, price 1) and (image 2, title 2, price 2).
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(a) A page fragment of embedded region. (b) A page fragment of intertwine re-
gion.

(c) A page fragment of noisy subtree region.

div

R1 ……divh2 p p p div

img

div

img

div

a
b

TEXT

div

p

TEXT a

TEXT

div

R2div

div

img

div

a

……

(d) DOM tree of (a)

table

tr

td td

img img

tr

td td

h2 h2

a a

tr

td td

p p

PRICE

p p

PRICE

tr

td td

img img

……

(e) DOM tree of (b)

table

tr

td td td

tr

th th

R1 ……tr

td td td

R2 tr

td td td

R3 tr

th th

tr

td td td

R4

YEAR YEAR
…… …… …… ……

(f) DOM tree of (c)

Figure 4: Several kinds of more challenging record regions.

5.4.4 Noise Subtree Exclusion
In Figures 4(c) and 4(f), a publication list is separated

into different sections according to the published year. It
can be regarded as a non-continuous region. Theoretically,
with proper setting of thresholds, we can expect that pub-
lications in 2011 will be detected as the first region, and
publications in 2010 will be detected as the second region.
However, it is also possible that the year row 2011 fuses
into record 228, and the year row 2010 fuses into record
225. If a record contains such noise subtrees, the similarity
between this record and its context records becomes lower.
Meanwhile, the number of subtrees in this record is more
than that in others. Using these observations as clues, it
is not difficult to exclude noise subtrees from records. Due
to space limitation, we only outline the idea and omit the
details. Basically, if some subtrees in the first record are
detected as noise and excluded, we need to reexamine this
record segmentation. The reason is that the polluted first
record may lead to wrong segmentation of the region.

6. RECORD SIMILARITY MEASURE
In this section, we discuss the method used for measur-

ing the similarity between two records (sequences of sub-
trees), in sequence S. There are mainly two existing ap-
proaches. One is string edit distance based [17, 22], the
other is tree edit distance based [27]. In string edit distance
based method, each subtree is encoded with a string which
is obtained by traversing the subtree in pre-order, and ap-
pending the name of visited tag node to the string. Due
to the fact that names of different tags may have different
length, using the string of tag name directly is not suitable.
In spite of this limitation, string edit distance can tackle
repetitive fields properly by tandem repeats detection [22],
as well as optional fields. In [27], top-down distance, which
is a restricted version of tree edit distance, is employed to
measure the distance between two subtrees. Its problem is
that any crossing layers’ operation is not permitted, making
it unable to handle optional tags. On the other hand, the
tree edit distance can overcome the limitation in string edit
distance since it considers each DOM node as an inseparable

Table 1: Types of text node.
Type Name Meaning Priority

EMAIL An email address 1
URL A URL string 2

PRICE Digital number with a currency symbol 3

TIME
Time in predefined format,

4
such as hh:mm:ss

DATE
Date in predefined format,

5
such as yyyy/mm/dd

YEAR Four digits, arrange from 1900 to 2050 6
TEXT Other kinds of text 7

unit. To adopt their good points and avoid the shortcom-
ings, we propose a token-based edit distance method.

6.1 Encoding Subtree with Tokens
Aiming at fixing the ill-formatted Web pages, some ex-

isting works [26, 27] introduce visual information from ren-
dered Web page into DOM tree building. To avoid this
time consuming rendering operation, we employ an HTML
cleansing package, namely, HtmlCleaner1, to clean the Web
pages. Then the DOM structure of the cleaned page is built.

In the DOM tree, we have two kinds of nodes, namely,
tag node and text node. Each tag node has a name such as
“tr”, “div”, etc. A piece of visible text between a pair of “>”
and “<” is regarded as a basic text unit, and normalized to
a text node. Table 1 shows the types of text nodes defined
in our framework. The priority indicates the order in which
different types are attempted when normalizing a piece of
text. Each subtree in the DOM is encoded with the sequence
of node names in it, which is obtained by traversing the tree
in pre-order. Each node name in the sequence is called one
token, and it is an inseparable unit in similarity calculation.

6.2 Tandem Repeat Detection and Distance-
based Measure

A typical characteristic of data records is that they vary
in optional or repetitive fields. For example, a book record
may have discounted price or not, and one author or sev-
eral. An obvious disadvantage of edit distance computation
is that repetitive and optional fields increase the edit cost.

1http://htmlcleaner.sourceforge.net/
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As noticed by ViPER [22], similarity threshold is suitable to
solve the problem caused by optional fields, but not suitable
for repetitive fields. ViPER identifies tandem repeats in two
strings before distance calculation, and allows zero cost for
deletion and insertion inside additional repetitions.

In our token-based edit distance scenario, the above idea
is also applicable. We implement the algorithm proposed
by Gusfield et al. [12] to detect the tandem repeats. This
algorithm utilizes suffix tree structure to identify the tan-
dem repeats which are not longer than z in a sequence of
length n in O(n + z) time. The difference is that the basic
unit in our sequences is token (node name), not single char-
acter. Thus we need to perform token comparison instead
of character comparison in the detection of tandem repeats.
Furthermore, if the token sequence is originated from sev-
eral subtrees, it is constrained that tandem repeats are only
detected in the token sequence of each single subtree. We
refine the tandem repeats based edit distance proposed in
ViPER [22] and make it suitable for the token scenario in
our framework. For the details of tandem repeat detection
and its application in edit distance, we would like to direct
the readers to [12] and [22]. Then the calculated distance is
normalized into the interval [0, 1], and the negative value of
the normalized distance is added by 1. Thus, we obtain the
record similarity measure used in our framework.

7. EXPERIMENTS
For evaluating the performance of our method and con-

ducting comparison with existing methods, we attempt to
use existing data sets and available implementation of ex-
isting methods. MDR implementation is available2, which
is able to deal with flat, nested, and intertwine records.
Therefore, it was employed as the comparison baseline for
all experiments. We used two existing data sets for testing
the performance of our method on flat data record extrac-
tion. Besides MDR, we also compare with two other existing
methods, namely, TPC [20], and ViNTs [29], whose experi-
mental results are available on these data sets. Because no
existing data set for nested or intertwine records is avail-
able, we collected one data set for each of them, and only
compare our method with MDR. With respect to evaluation
metrics, we employ the commonly used precision and recall.
To avoid the evaluation bias brought in by pages with large
number of records, both micro average and macro average
are reported.

Given a Web page, our algorithm adopts a top down man-
ner to scan its DOM tree for detecting records. For some
pages, several record regions are detected. We first filter out
the regions whose record size is smaller than 3, where the
size of a record is defined as the number of leaf DOM nodes it
has. After that, we employ the single-linkage agglomerative
hierarchical clustering algorithm to cluster the remaining re-
gions into different clusters. The algorithm starts with each
region as an initial cluster which contains its records as the
elements in it. The stopping similarity threshold is set to
be θ′. After clustering, the cluster with the largest number
of records is selected as the final result. We used a number
of training pages collected separately to tune the parameter
values in our framework. Finally, θ is set to 0.75, θ′ is set
to 0.65, K is set to 10, both k and r are set to 5.

2 http://www.cs.uic.edu/~liub/WebDataExtraction/

Table 2: Experimental results on TB1.
Ground TP FP P-mi R-mi P-ma R-ma

ALL
Our 864 855 21 .976 .990 .968 .974
MDR 864 553 48 .920 .640 .594 .610

ALL/wrong
Our 851 843 16 .981 .991 .980 .977
MDR 851 553 48 .920 .650 .620 .636

TPC used
Our 781 778 16 .980 .996 .977 .984
TPC 781 NA NA NA NA .904 .931

Table 3: Experimental results on TB2.
Ground TP FP P-mi R-mi P-ma R-ma

ALL
Our 968 953 10 .990 .985 .965 .958
MDR 968 722 66 .916 .746 .693 .734
ViNTs 968 934 11 .988 .965 .973 .950

ALL/wrong
Our 863 849 10 .988 .984 .961 .956
MDR 863 722 66 .916 .837 .773 .819
ViNTs 863 830 11 .987 .962 .970 .945

7.1 Flat Record Extraction
Our first data set is the testbed collected by Yamada et

al. [25] which is available at http://daisen.cc.kyushu-u.ac.jp/TBDW/.
This testbed was also used by other works such as ViPER
and TPC [20]. The testbed data has 253 Web pages from
51 Web sites randomly drawn from 114,540 Web pages with
search forms. The data records in this testbed are manually
labeled by the collectors, and results are also available online
together with the data set. In our experiment, three sites are
excluded because of nested records, garbled code, or ambigu-
ous record annotation. Thus, we use the remaining 48 sites
including 238 pages in total. TPC also conducted experi-
ment on this testbed data set. The authors kindly provided
us the Web site IDs in the subset they used, which contains
43 sites out of 48 sites we use. Therefore, without imple-
menting their method, we can still conduct a fair compari-
son. Our second data set is the data set 3 used in ViNTs [29]
which is available at http://www.data.binghamton.edu:8080/vints/
along with the details of ViNTs’ performance on each page.
Thus, we can conduct a comparison with ViNTs in more
detail. This data set is originated from Omini [6] testbed
collected by Buttler et al., which consists of more than 2,000
Web pages collected 50 Web sites. ViNTs took one random
page per Web site to construct its data set 3. In our ex-
periment, we exclude 2 pages because of the ambiguity on
record annotation. Thus, our second data set contains 48
pages. The above two data sets are referred to as TB1 and
TB2 respectively. We run MDR on both data sets with the
default similarity threshold 60%, and extract the records re-
ported. MDR could not produce output for 2 Web sites in
TB1 and 5 pages in TB2 because the MDR program termi-
nated abnormally. We report both results with and without
these pages.

The experimental results on TB1 and TB2 are given in
Tables 2 and 3 respectively. “ALL” refers to the entire
page set used, “ALL/wrong” refers to the subset without the
pages on which MDR program terminated abnormally, and
“TPC used” refers to the subset used by the TPC method.
“Ground”denotes the number of ground truth records, “TP”
denotes the number of true positive given by a method,
and “FP” denotes the number of false positive. “P-mi”, “P-
ma”, “R-mi” and “R-ma”are the micro-averaged and macro-
averaged precision and recall values respectively. “NA”means
no corresponding result reported in TPC [20]. In P-ma cal-
culation, if both TP and FP are 0 for a particular page, its
precision is set to be 0.
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Figure 5: Extracted records for each site in TB1, the reported number is the average over the number of
pages in the site. TP number and FP number are shown by the bars above and below the axis respectively.
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Figure 6: Extracted records for each page in TB2. The legend is the same as that in Figure 5.

On TB1, our method outperforms both MDR and TPC.
The recall of our method is significantly better than that of
MDR. In addition the precision of our method outperforms
TPC about 7%. On TB2, the performance of our method is
also much better than that of MDR. Compared with ViNTs,
our method can extract more correct results, and achieve
2% improvement in R-mi. We can see that for MDR P-ma
is much smaller than P-mi. It is because for some pages,
although the MDR program terminated normally, it cannot
give any output, thus both TP and FP are 0.

The details of the extracted records on TB1 and TB2 are
given in Figure 5 and Figure 6 respectively. On TB1, our
method outputs 10 false positives for site 20. After checking
the pages manually, we find that each page in this site con-
tains 10 recommended books on the right side bar. But the
annotated ground truth only includes the books formatted
with <table> in the center of the page. For this site, MDR
only reports the books annotated. For site 35, we find that
each field of a record is packed in a single subtree in S, such
as id, title, URL, each of digest sentences, etc. Because dif-
ferent records have different number of subtrees, MDR fails
to output any correct results. For site 48, each page con-
tains more than one record regions, MDR only reports the
largest one, and misses others. In Figure 6, we can see that
for pages 17, 18 and 33, ViNTs misses some records. After
checking these pages manually, we find that each of them
has 3 or 4 regions. As reported by Zhao et al. [29], ViNTs
is designed to extract records just from the major record
region, it misses other smaller regions.

7.2 Nested and Intertwine Record Extraction
To collect data sets with nested and intertwine records, we

investigated the online shopping Web sites one by one in an
online shopping yellow page http://www.toponlineshopping.com/.
There are 22 categories such as “Art & Collectibles” and
“Beauty & Fragrances” in this page, and each category has
about 6 sub-categories on average. Under each sub-category,
we randomly selected 2 recommended Web sites. Instead
of submitting queries to retrieve record pages, we directly
clicked the navigation links in the home page, and obtained
record pages. In this way, we successfully obtained record

Table 4: Experimental results on nested pages.
Ground TP FP P-mi R-mi P-ma R-ma

ALL
Our 1293 1292 2 .998 .999 .997 .998
MDR 1293 1141 90 .927 .882 .822 .867

ALL/wrong
Our 1284 1283 2 .998 .999 .997 .998
MDR 1284 1141 90 .927 .889 .838 .884

Table 5: Experimental results on intertwine pages.
Ground TP FP P-mi R-mi P-ma R-ma

Our 262 259 0 1 .989 1 .986
MDR 262 253 50 .835 .966 .898 .967

pages from 110 sites, and there are 50 sites adopting nested
manner to present products, and 5 sites adopting intertwine
manner. We downloaded 2 pages per nested site to con-
struct the nested data set, thus it contains 100 Web pages.
MDR terminated abnormally for one page in this data set.
To construct the intertwine page set, we downloaded 3 pages
per intertwine site, thus there are 15 pages in the intertwine
data set.

The experimental results for nested and intertwine page
sets are given in Tables 4 and 5. Our method achieves nearly
perfect results, while MDR misses many records in nested
record extraction, and gives more false positives in both
nested and intertwine record extraction. After checking the
pages for which MDR misses all records manually, we found
that these pages format the records in a very complicated
manner. In 3 pages, each <td> contains another <table>
to encapsulate the information of one record. In another
page, each <td> even contains two layers of nested <ta-
ble>s. Our method can tackle these pages correctly since it
does not rely on any particular tag. Our final record selec-
tion process effectively excludes noise records, while MDR
outputs more false positives.

8. CONCLUSIONS
In this paper, we present a novel approach to extract data

records in a Web page. The proposed RST structure can be
utilized to address several key issues in the record extraction
task. The two essential sub-tasks, namely, record region de-
tection, and record segmentation, are handled in a unified
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manner with the proposed search pruning techniques on the
RST structure. Different from the existing similarity-based
methods, our method examines the similarity between the
dynamically generated subtree groups taking into account
the characteristics of the current record region. Owing to
the pruning strategies, our method has a comparative com-
plexity compared with the existing methods. Furthermore,
we propose a new similarity measure in which each DOM
node is regarded as an inseparable unit. Together with the
detected tandem repeats, our similarity measure can tackle
optional and repetitive fields in records properly. Exten-
sive experiments are conducted to evaluate the performance
of our method. The results demonstrate that our method
can achieve very superior results for the test data sets, and
different kinds of records can be tackled effectively.
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