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Abstract. We present a study comparing the cost and efficiency trade-
offs of multiple features for multimedia event detection. Low-level as well
as semantic features are a critical part of contemporary multimedia and
computer vision research. Arguably, combinations of multiple feature sets
have been a major reason for recent progress in the field, not just as a
low dimensional representations of multimedia data, but also as a means
to semantically summarize images and videos. However, their efficacy
for complex event recognition in unconstrained videos on standardized
datasets has not been systematically studied. In this paper, we evalu-
ate the accuracy and contribution of more than 10 multi-modality fea-
tures, including semantic and low-level video representations, using two
newly released NIST TRECVID Multimedia Event Detection (MED)
open source datasets, i.e. MEDTEST and KINDREDTEST, which con-
tain more than 1000 hours of videos. Contrasting multiple performance
metrics, such as average precision, probability of missed detection and
minimum normalized detection cost, we propose a framework to balance
the trade-off between accuracy and computational cost. This study pro-
vides an empirical foundation for selecting feature sets that are capable
of dealing with large-scale data with limited computational resources and
are likely to produce superior multimedia event detection accuracy. This
framework also applies to other resource limited multimedia analysis
such as selecting/fusing multiple classifiers and different representations
of each feature set.

Keywords: Multimedia Event Detection, Limited Resource, Feature
Selection

1 Introduction

Multimedia data have proliferated in the past few years, ranging from ever-
growing personal video collections to films and professional documentary archives.
Numerous tools and applications have been invented to describe, organize, and
manage video data. Previous research mainly focuses on recognizing scene, object
and action, which are building blocks of events and defined as atomic concepts
in this paper. However, these atomic concepts are too primitive to be used for
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users to search videos from data collections. When searching through online video
communities such as YouTube, Hulu etc., people tend to use event description
such as ”birthday party”, ”playing a board trick” or ”mountain climbing” in-
stead of simple scene, object or action words such as ”indoor”, ”cake” or ”walk”.
In this paper, we define an event as a combination of various actions, scenes and
objects, which is more descriptive and meaningful.

The TRECVID MED evaluation [16], which is hosted by National Institute
of Standards and Technology (NIST) and part of the TRECVID evaluation, is
aimed at addressing above problems by assembling state-of-the-art technologies
into a system that can quickly and accurately search a multimedia collection for
user-defined events. Since 2010, NIST has collected one of the largest and most
challenging labelled video datasets, which contains a total of 144049 video clips.
These videos contain more than 30 events such as ’making a sandwich’, ’parkour’
and ’parade’, which are illustrated in Fig. 1. Participants from various organi-
zations have made significant progress on MED in terms of accuracy. However,
most of the progress researchers have made comes from adding more and more
features into their MED systems. While promising results can be achieved on
such systems, they are too expensive to be deployed in real-world applications
with large-scale data.

Fig. 1: Example Key-frame for
Event in MED.

Another problem of TRECVID MED
that has been discussed among partici-
pants and organizers for a long time is
that NIST did not provide a validation set
with labels, researchers from around the
world publish MED related papers with
their own splitting of TRECVID MED
into testing and training sets. Because of
these independent splits, comparing dif-
ferent research groups’ results becomes
very hard. To deal with these difficulties,
NIST recently released two standard val-
idation datasets, namely MEDTEST and
KINDREDTEST. It is important to have
some baseline results on these two datasets that can be compared by researchers
from all over the world.

This paper attempts to address the above issues by thoroughly evaluating
more than 10 multimedia features’ performances and their contributions on the
MEDTEST and KINDREDTEST datasets. Relying on this evaluation, we also
propose a framework to select a subset of features to make a trade-off between
accuracy and computational cost.

The remaining sections are organized as follows. We discuss related work in
Section 2 and we elaborate our MED system including features, feature represen-
tations and evaluation metrics section 3. In Section 4, we discuss experimental
results. Finally, we summarize our paper in Section 5.
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2 Related Work

Compared with action recognition, recognizing a “complex event” is a new topic
that has been introduced to take multimedia analysis to its next level of diffi-
culty. Previous work [14] [17] [6] [13] on video event recognition can be divided
in two main categories whether they rely on low-level features or high-level se-
mantic concepts. Yang et al. [20] and Tamrakar et al. [17] proposed to evaluate
the individual performance of different low-level visual features (SIFT, STIP,
Trajectories. . . ) as well as their combination. Meler et al. [14], Ebadollahi et
al. [6] and Liu et al. [13] focus on testing high-level features performance on
event recognition. In contrast to those works, this paper evaluates the perfor-
mance of multi-modal features extracted from different streams associated with
the multimedia data (image, audio, text), including both low-level and high-level
features, leading to a more complete description. Moreover, most previous work
only evaluates each feature’s single performance. In contrast, we focus on each
feature’s contribution to the combined system. We show that the single feature
performance, although important, do not necessarily reflect its contribution to
the overall performance.

In terms of efficiency, most previous work focuses on improving one compo-
nent of a classification or recognition system with faster algorithms. For example,
Bay et al. [3] introduced SURF as an faster alternative of SIFT. Moosmann et
al. [15] proposed to use random forest to replace Support Vector Machine (SVM).
Jiang [7] conducted an interesting study to evaluate and combine a number of
speed-up strategies to get a fast event recognition system. Different from pre-
vious work, we offer a resource constrained solution that can be customized by
users who have different needs and resources.

Fig. 2: MED system illustration.
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3 MED System

Fig. 2 shows a simplified version of our MED system which is used for this paper.
Given a set of training and testing videos, we first extract features in different
modalities from the videos and then train a χ2 SVM classifier for each feature. A
simple average late fusion is used to combine the prediction results each feature.
More complex fusion methods may lead to better performance, but this is beyond
the scope of this paper: providing a baseline for NITS’s two newly released MED
datasets and illustrating a framework for designing resource constrained MED
system.

3.1 Features

To build a good MED system, it is important to have features that capture var-
ious aspects of an event. In our MED system, we explore five different feature
modalities which are computed from different sources. Image features captur-
ing appearance information are computed from key-frames. Video features are
extracted from videos directly and collect motion information. Audio features
characterizes acoustic information. Text features and semantic features can bor-
row domain knowledge from other datasets such as Flickr and give semantically
meaningful representations for events.

Image Features: We use three image features that are computed from the
keyframes extracted as described in [10]. The three images feature are SIFT,
Color SIFT (CSIFT) and Transformed Color Histogram (TCH) [18].

After detecting key points using harris-laplace key point detectors from key
frames, we use three different feature descriptors to generate SIFT, CSIFT and
TCH features, which hopefully are complementary. From the key points de-
scriptors, a k-means algorithm generates a codebook which has 4096 words for
each feature. Next, a soft-mapping strategy, in which we choose the ten nearest
clusters and assign a rank weight ( 1

rank ) for them, maps key points into the
codebook. Spatial pyramid matching as described in [9] compensates for spa-
tial information lost in the bag-of-words representation. We then aggregate the
image representation into video representations by averaging all the image rep-
resentations in one video and normalize the video representation using an L2
normalization.

Video Features: We have three visual video features, namely Dense Trajec-
tory (Traj) [19], MoSIFT [4] and STIP [11], which are computed directly from
videos. Traj is a feature that uses dense optical flow to track feature points up
to 15 frames to get trajectories, which are described by Histogram of Oriented
Gradient (HOG) [5], Histogram of Optical Flow (HOF) and Motion Boundary
Histogram (MBH) [19]. By computing MBH along the dense trajectories, Traj
has an efficient solution to compensate for camera motion. MoSIFT, as a three
dimensional extension of SIFT features, uses a Difference of Gaussian (DoG)
based detector and is represented by a descriptor combining SIFT and HOF.
STIP uses 3D Harris corner detectors and its interest points are represented
as the combination of HOG and HOF. After getting the key point descriptors,
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the same bag-of words and spatial pyramid matching as with image features is
adopted to cast key point representation into a video-level representation.

Audio Features: Audio features are another important resource to de-
tect events in videos. To represent general audio information, we use the Mel-
frequency cepstral coefficients (MFCCs) feature, which is very popular in speech
recognition systems. We compute 20 dimensional MFCCs for every 10ms over a
32ms sliding window. Given the raw features, we compute a 4096 word codebook
and aggregate all MFCC features from one video into a 4096 dimensional bag-of-
words representation. In addition to MFCC, we also use have Automatic Speech
Recognition (ASR) features as described in [2] to capture semantic information
in audio.

Semantic Features: In our MED system, three semantic features are used.
The first one called SIN346 is defined by the TRECVID Semantic Indexing (SIN)
track. This feature has 346 dimensions representing the 346 concepts in SIN [2].
The second one is Object Bank feature (ObjBank) introduced by Li et.al. [12], in
which we extended the original 176 objects to 1000 objects by using the Imagenet
challenge 2012 dataset (ILSVRC2012) [8]. Another semantic feature that is also
trained on the ILSVRC2012 dataset is the Deep Convolutional Neural Network
feature (DCNN), in which we trained a Deep Convolutional Neural Network
feature using the method introduced by Krizhevsky et al. [8] on a NVIDIA Tesla
K20m GPU.

Text Features: Following Bao et al. [2], we also use Optical Character
Recognition (OCR) features to represent the text feature. We use a commercial
OCR system is used to recognize the text. As OCR rarely gets a complete word
correct, we treat each trigram of characters as a token instead of each whole
word as a token.

3.2 Evaluation Metrics

For performance comparison, three evaluation metrics are used: the first one is
the Minimal Normalized Detection Cost(MinNDC) as indicated in Formula 1. It
is an evaluation criteria for NIST to evaluate MED 2010 and MED 2011. Lower
MinNDC indicates better performance.

NDC(S,E) =
CMD ∗ PMD ∗ PT + CFA ∗ PFA ∗ (1 − PT )

MINIMUM(CMD ∗ PT , CMD ∗ (1 − PT ))
(1)

where PMD is the miss detection probability while PFA is the false positive
rate. CMD = 80 is the cost for miss detection, CFA = 1 is the cost for false
alarm and PT = 0.001 is a constant defining the priori rate of event instances.

Another metric that is related to MinNDC is PMD@TER = 12.5, in which
TER = PMD

PFA
. Because MinNDC and PMD@TER = 12.5 are only used for

NIST evaluation and do not consider the ranking information or the detection
result, we will also use mean average precision (MAP) as our evaluation criterion
and use it to rank the performance of features because it is better at reflecting
features’ value due to its ranking sensitive characteristics.
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4 Experiments

4.1 Data

We evaluate our system on two standard MED datasets, i.e., MEDTEST set and
KINDREDTEST set, which both contain the same 20 events. The events and
their ids are listed in Table 1. MEDTEST contains a total of 34051 video clips
including 9094 training videos and 24957 testing videos. KINDREDTEST has
the same training set but a testing set that only contains 12388 video clips.

Table 1: MED12 event ID and name.

E06: Birthday Party E21: Attempting a bike trick

E07: Changing a vehicle tire E22: Cleaning an appliance

E08: Flash mob gathering E23: Dog show

E09: Getting a vehicle unstuck E24: Giving directions to a location

E10: Grooming an animal E25: Marriage proposal

E11: Making a sandwich E26: Renovating a home

E12: Parade E27: Rock climbing

E13: Parkour E28: Town hall meeting

E14: Repairing an appliance E29: Winning a race without a vehicle

E15: Working on a sewing project E30: Working on a metal crafts project

4.2 Computing environment

For extracting features, we use the PSC blacklight [1] machine, which is an SGI
UV 1000cc-NUMA shared-memory system comprising 256 blades. Each blade
holds 2 Intel Xeon X7560 (Nehalem) eight-core 2.27 GHz processors. Compared
to feature extraction, the classification and fusion time is minimal, so we will
only take the feature extraction time into consideration in this paper.

4.3 Single feature performance and contribution

Following the pipeline in Fig. 2, we study both single and combined features’
performance using the three evaluation metrics described in Section 4.

Fig. 3 shows the single feature accuracies on our MEDTEST and KIN-
DREDTEST sets. We order the accuracy according to their MAP. From Fig. 3,
we can see that although the rank varies for different metrics and datasets, in
general, they are consistent with each other. Specifically, the top two features
that significantly outperform other features are DCNN and Traj; the two features
that are worse than other features are ASR and OCR; others have very similar
performances and the rank order changes are due to minor performance differ-
ence. It is interesting to see that DCNN, a high-level feature, can significantly
outperform low-level features. Also, our OCR has higher recognition accuracy
than ObjBank and SIN, yet its overall performance is the worst among all eleven
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features. The reason is that these videos do not contain enough text to recognize.
The big difference between visual and audio features shows that in unconstrained
videos visual information is more distinctive than audio information.
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Fig. 3: Single feature accuracy for both datasets, ranked according to MAP. Lower score
corresponds to better performance for MinNDC and PMD@TER = 12.5, but higher is
better for MAP.

To determine the contribution of each feature, we first calculate the perfor-
mance by combining all features, then we remove one feature from the set and re-
calculate the performance. Fig. 4 shows the performance drop (leave-one-feature-
out accuracy) from removing each feature. This drop shows the importance of
each feature to the overall combined system. The ranking by performance drop
is quite different than the ranking of single feature performance. These two
rankings are statistically uncorrelated. For example, MFCC has a very poor
ranking as a single feature accuracy but is the highest ranking for leave-one-
feature-out performance. This indicates that MFCC is orthogonal to the other
features. While SIFT and CSIFT, align with most other features, they reduce
MAP because they reduce the overall weight per feature while not contributing
additional information in the average late fusion method. More sophisticated
fusion methods such as fusion by learning combination weights may be able to
avoid this problem but will inevitably give smaller weights to those redundant
features. Fig. 5 shows the Spearman rank coefficients for all of the features: it
indicates MFCC and ASR very different from the other features. Although the
Spearman rank coefficients also show OCR is very different from the other fea-
tures, its close to random individual performance indicates its negligible role
in the system. Fig. 4 demonstrates that single feature accuracy alone does not
indicate suitability for inclusion in the combined feature set. However, as long
as the leave-one-feature-out accuracy is not negative, inclusion will increase the
overall score. Unfortunately, including all features with a positive value in Fig. 4
will lead to a computationally expensive system that is generally unsuitable for
a real world applications.



8 Resource Constrained Multimedia Event Detection
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Fig. 4: Leave-one-out Accuracy for MED, Ranked According to ∆MAP. In all three
metrics, higher values means higher performance drop when we leave the feature out,
hence a higher contribution of the feature to the combined system.

4.4 Performance versus cost trade-off

In order to determine the performance versus cost trade-off, we first determine
each feature’s computational cost as shown in Table 2, which also show the
abbreviation of features for late usage in Table 3 through 6. For each feature,
the time is the number of hours to process one hour of video. Let’s assume our
goal is to process one hour of video in one hour. We then determine, for a given
number of CPUs, what the best possible performance is by a brute-force search
across all features in Table 2. Fig. 6 shows the best possible performance for the
given number of CPUs for all three metrics without using a GPU, excluding the
DCNN feature. Tables 3 and 4 show the optimal feature sets for the given number
of CPUs. Fig. 7 shows the best possible performance for the given number of
CPUs for all three metrics using a GPU, including the DCNN feature. Tables 5
and 6 give the optimal feature sets for the given number of CPUs. As we can see
from Tables 3 to 6, the MFCC feature appears in almost all configurations due
to its low computational cost (Table 2) and relatively high contribution (Fig. 4).
Although Traj has a high contribution, it does not show up in Tables 3 to 6 until
we have a minimum of 16 CPUs due to its high computational cost. We can see
from the tables that the optimal feature sets are very similar for the MEDTEST
and the KINDREDTEST, which demonstrates that it is possible to select the
optimal feature set from a smaller dataset like KINDREDEST and apply it to
a larger dataset like MEDTEST. Likewise, these optimal feature sets are fairly
similar across the three metrics. Further, we can also see from the figures that
we get a diminishing return beyond 32 CPUs. In all cases, we can get more than
92 percent of the best performance by just using 32 cores.

Comparing Fig. 4 and Tables 5 and 6, we can see that in listing the impor-
tance of features, where importance in the table is measured by the ratio of the
number of times the feature occurs to the number of possible occurrence given
timing constraints, leave-one-feature-out performance is consistent with brute-
force search results, hence very predictive in selecting the right feature set. For
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Fig. 5: Spearman’s rank correlation coefficient for features.

Table 2: Computational cost for features.

Features (Abbrev.) core hours features (Abbrev.) core hours

Traj(Tr) 12.38 Objbank(Ob) 28.43

MoSIFT(Mo) 11.23 DCNN(DC) 0.15 GPU

STIP(ST) 10.33 SIN(SIN) 78.92

SIFT(SI) 3.57 MFCC(MF) 1.36

CSIFT(CS) 5.05 ASR(AS) 4.99

TCH(TC) 2.12 OCR(OCR) 1.34
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Fig. 6: Resource specific performance for MED (without DCNN).
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Fig. 7: Resource specific performance for MED (with DCNN on a GPU).
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example, MFCC, DCNN, Traj and ASR, as the top 4 contributing features
appear in almost all of the configurations as long as we have enough compu-
tational resources in terms of MAP. For other metrics, we have the same basic
observation. The cost of computing the leave-one-feature-out accuracy is rela-
tively inexpensive for late fusion, as all the components are already computed.
In our system with 12 features, leave-one-feature-out accuracy computation is
about 300 times faster than brute-force search.

Table 3: Resource specific feature sets for MEDTEST.

CPUs Optimal Sets in Real-time Performance

MinNDC PMD@TER = 12.5 MAP

2 MF MF MF

4 TC MF SI TC MF

8 TC SI MF TC SI MF TC SI MF

16 Tr TC MF CS SI AS MF Tr TC MF

32 Mo TC CS SI AS MF Mo TC CS SI OCR AS MF Tr TC SI OCR AS MF

64 Ob ST Mo TC CS AS MF Ob Mo Tr SI OCR AS MF Ob Mo Tr TC OCR AS MF

128 Ob ST Mo TC CS OCR AS MF Ob Mo Tr CS SI OCR AS MF Ob Mo Tr TC OCR AS MF

256 SIN Ob Mo Tr CS SI OCR AS MF SIN Ob Mo Tr SI OCR AS MF SIN Ob Mo Tr TC OCR AS MF

Table 4: Resource specific feature sets for KINDREDTEST.

CPUs Optimal Sets in Real-time Performance

MinNDC PMD@TER = 12.5 MAP

2 MF MF MF

4 SI SI SI

8 TC SI MF TC SI MF TC SI MF

16 Tr MF Tr TC MF Tr TC MF

32 ST Mo SI AS MF Tr CS SI OCR AS MF Tr TC SI AS MF

64 ST Mo Tr SI OCR AS MF Ob Mo Tr SI OCR AS MF ST Mo Tr TC SI OCR AS MF

128 SIN ST Mo Tr SI OCR AS MF SIN ST Mo Tr SI OCR AS MF SIN Mo Tr TC OCR AS MF

256 SIN Ob ST Mo Tr CS SI OCR AS MF SIN Ob ST Mo Tr SI OCR AS MF SIN Mo Tr TC OCR AS MF

Table 5: Resource specific feature sets for MEDTEST (with 1 additional GPU).

CPUs Optimal Sets in Real-time Performance

MinNDC PMD@TER = 12.5 MAP

2 DC MF DC MF DC MF

4 DC MF DC MF DC TC MF

8 DC SI MF DC SI MF DC SI MF

16 DC Tr MF DC TC SI OCR AS MF DC Tr TC MF

32 DC Tr SI AS MF DC Mo TC SI OCR AS MF DC Tr CS OCR AS MF

64 DC Ob ST Mo TC SI AS MF DC ST Mo Tr TC CS SI OCR AS MF DC Ob Mo Tr TC OCR AS MF

128 SIN DC ST Mo TC SI OCR AS MF SIN DC ST Mo SI OCR AS MF DC Ob Mo Tr TC OCR AS MF

256 SIN DC Ob Mo Tr AS MF SIN DC ST Mo SI OCR AS MF DC Ob Mo Tr TC OCR AS MF

5 Conclusion

In this paper, we systematically evaluated the performance and contributions
of more than 10 multi-modality features for complex event detection on uncon-
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Table 6: Resource specific feature sets for KINDREDTEST(with 1 additional GPU).

CPUs Optimal Sets in Real-time Performance

MinNDC PMD@TER = 12.5 MAP

2 DC MF DC MF DC MF

4 DC MF DC MF DC TC MF

8 DC AS MF DC AS MF DC SI MF

16 DC Tr MF DC Tr MF DC Tr MF

32 DC Tr AS MF DC Mo Tr OCR AS MF DC Tr SI AS MF

64 DC Tr AS MF DC Mo Tr OCR AS MF DC Mo Tr SI AS MF

128 SIN DC ST Mo Tr SI OCR AS MF SIN DC Mo Tr OCR AS MF SIN DC Mo Tr TC OCR AS MF

256 SIN DC ST Mo Tr SI OCR AS MF SIN DC Mo Tr OCR AS MF SIN DC Mo Tr TC OCR AS MF

strained videos over two newly released TRECVID MED datasets: MEDTEST
and KINDREDTEST. These results can serve as a baseline for the community.

Based on the evaluation and computational cost of feature extraction, we
propose a resource constrained video analysis framework that can meet different
users’ needs. More specifically, we select feature sets that have optimal real-time
performance under various resource constraints by measuring leave-one-feature-
out performance and brute-force search performance.

A particularly important insight from above experiments is that leave-one-
feature-out feature performance is very predictive in selecting the right feature
set.

We also found that in both datasets and across the three different metrics:

– DCNN and Trajectory features are very useful features in unconstrained
video analysis. Especially DCNN, given its semantic and high accuracy char-
acteristics, is a feature that is worth paying a lot of attention to.

– Even a less accurate feature such as MFCC, if it is cheap and complementary
to other features, can be very useful.

– By selecting the right features, we can save a large amount of computational
cost with a minimum accuracy drop. For example, in our experiments, by
reducing the computational cost of 87 percent we still achieve 92 percent of
optimal performance.
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