
Adapting Handwriting Recognition for Applications  
in Algebra Learning 

Lisa Anthony, Jie Yang, Kenneth R. Koedinger 
Human-Computer Interaction Institute 

Carnegie Mellon University 
5000 Forbes Ave, Pittsburgh, PA 15213 

+1 (412) 268-8856 

{lanthony, yang+, koedinger}@cs.cmu.edu 
 

ABSTRACT 
In this paper we report the progress of our ongoing project 
exploring the adaptation of handwriting recognition-based 
interfaces for applications in intelligent tutoring systems for 
students learning algebra equation-solving. The research is 
motivated by the hypothesis that handwriting as an input modality 
may be able to provide significant advantages over typing in the 
mathematics learning domain. We review the literature of existing 
handwriting systems for mathematic applications and evaluations 
of handwriting recognition accuracy. We describe our approach 
and report results to date in exploring the use of handwriting 
recognition in interfaces for math learning, from both a technical 
and a pedagogical perspective. We have found that handwriting 
input can provide benefits to students learning math, and continue 
to pursue further technical and pedagogical enhancements. 

Categories and Subject Descriptors 
H.5.m [Information Interfaces and Presentation, e.g., HCI]: 
Miscellaneous.  

General Terms 
Algorithms, Human Factors. 

Keywords 
Handwriting input, handwriting recognition, mathematics 
learning, recognition accuracy evaluation. 

1. INTRODUCTION 
This paper reports the progress of our ongoing project in 
exploring the adaptation of handwriting recognition technologies 
to improve interfaces of intelligent tutoring systems for students 
learning algebra equation-solving. Many schools throughout the 
United States now incorporate computers as a regular part of 
classroom instruction [37] and use intelligent tutoring systems as 
supplements to traditional classroom instruction. An intelligent 
tutoring system is educational software that can monitor the 

student as he/she works at his/her own pace, and tailor feedback, 
step-by-step hints, and even the curriculum to address the 
student’s particular needs. This self-pacing provides an 
opportunity for teachers to give more individual attention to 
students that need it most. Intelligent tutoring systems provide a 
unique opportunity to enhance the learning experience, by 
providing an online environment in which students can work at 
their own pace and at a time convenient to them.  

The best human tutors can achieve a two-standard deviation 
improvement versus standard classroom instruction alone, 
effectively turning C students into A students; Cognitive Tutors, 
one type of intelligent tutoring system, have been shown to raise 
student achievement one standard deviation over traditional 
classroom instruction [11]. Our goal is to improve mathematics 
learning in Cognitive Tutors even further, narrowing that two-
sigma gap via use of multimodal and multimedia interface 
technologies. 

Although intelligent tutors for math have been improved with 
respect to pedagogical style and overall effectiveness over the last 
15 years (e.g., [10]), their interfaces have remained more or less 
the same: keyboard-and-mouse windows-icons-menus-pointing 
(WIMP) interfaces. Output modality contrasts have been studied 
with respect to learning, including the use of animations, 
diagrams and talking heads (e.g., [15], [26]), but the literature has 
been silent on the effects of input modality on learning1. We 
believe that the input modality is extraneous to the problem-
solving process and learning. It may interfere with problem-
solving, but the input modality is not itself relevant to the 
mathematic concept being practiced. WIMP interfaces may 
impose extraneous cognitive load on the student, because 
representing and manipulating mathematics equations can be 
cumbersome in a typing interface. An interface that can more 
directly support the standard notations for the mathematics that 
the student is learning would reduce extraneous cognitive load 
and lead to increased learning (c.f., [34]). 

This paper reports progress of our ongoing project exploring the 
adaptation of handwriting recognition-based interfaces for 
applications in intelligent tutoring systems for students learning 
algebra equation-solving progress, as well as evidence in favor of 
handwriting-based interfaces with respect to learning in the 

                                                                 
1 Note that input modality here refers to the modality of generation by the 

student, and the output modality is the modality presented to the student 
by the system. 
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domain of algebra equation solving. Our results to date show that 
handwriting input has benefits both for general usability and for 
learning. While this work is in the domain of high school algebra 
learning, it is likely to generalize to other types of math and to 
other levels of students. The rest of the paper is organized as 
follows: Section 2 introduces our motivation and approach. 
Section 3 describes the background and related work to this 
research. Section 4 discusses evaluation of the handwriting 
component used in our system. Section 5 presents the 
handwriting–based intelligent tutor and user study results. Section 
6 summarizes the paper and proposes the future work.   

2. MOTIVATION AND APPROACH 
2.1 Math Learning Challenges 
Mathematics is a key building block for high-performing 
careers in science, engineering, and information technologies. 
In a recent survey, it was found that American high school 
students have a poorer mastery of basic math concepts than 
their counterparts in most other leading industrialized nations 
[30]. There are many theories on why U.S. students lag behind 
their peers abroad in math. One of the major reasons is a 
shortage of teachers, which may be addressable by 
supplementing classroom instruction with one-on-one tutoring. 
Bloom found that the best human tutors can raise the grade of a 
‘C’ student to an ‘A,’ known as the “two-sigma effect” [7]. 
However, it is clearly not feasible from either a financial or 
human resources perspective to provide every student in 
America with an expert human tutor. A potential solution to the 
lack of human teachers and tutors is to use intelligent software 
math tutors, as many classrooms now are doing. By collecting 
information on a particular student's performance as s/he 
problem-solves, the software can make inferences about his/her 
strengths and weaknesses, tailor the curriculum to address 
his/her needs, and let them work at their own pace and practice 
specific concepts. Intelligent tutors for math have been shown 
to improve student performance one standard-deviation above 
traditional classroom instruction [11]. We aim to further 
improve this effect via the exploration of alternative input 
modalities, specifically handwriting input, and its effect on 
learning in the domain of high school algebra equation solving. 

2.2 Enhancing Intelligent Math Tutors Using 
Handwriting  
Our previous work has shown that handwriting provides usability 
benefits for math input in that the speed of entry increases, user 
error decreases, and user satisfaction increases. There is evidence 
that the use of handwriting interfaces could also have pedagogical 
advantages in the domain of math learning environments. In a 
prior study we conducted, students solving the same problems by 
handwriting as others who were typing experienced similar 
learning gains in half the time [5]. We hypothesize that one or 
both of two specific factors may be responsible for this advantage 
of using handwriting. The first is that the affordance of 
handwriting for more direct manipulation may result in a 
reduction in extraneous cognitive load. Further, students practice 
in the classroom and on homework and take tests on paper using 
handwriting; this modality becomes more fluent for students when 
solving algebra equations. An interface that takes this into 
account will therefore impose less extraneous cognitive load. 

The second factor is the improved support for the two-
dimensional spatial information which is inherently meaningful in 
mathematics (i.e., vertical fraction notation). For example, the 
placement of the x in the following two expressions significantly 
changes the meaning of the expression: “2x” vs. “2x”. 
Handwriting is a much more flexible and robust modality for 
representing and manipulating such spatial relationships, which 
become more prevalent as students advance in math training to 
calculus and beyond.  

2.3 Getting Handwriting Input to Work 
One concern with the use of handwriting in intelligent tutoring 
systems, however, is that the recognition technology is not 
perfect. To the extent that the system cannot be confident of 
correctly recognizing what the student is writing, it cannot 
provide detailed, step-targeted feedback (as Cognitive Tutors 
currently do). Therefore, a trade-off is clear between difficulties 
with improving recognition accuracy and the need to support step-
targeted feedback. One strategy to address this trade-off is 
modifying the instructional paradigm to include time for students 
to study worked examples, which may provide a sort of feed-
forward to guide learners. A second strategy is to investigate 
technical approaches to improving handwriting recognition 
accuracy. We are exploring two methods: performing in-advance 
training of the recognition engine on a data corpus of student 
writing; and adapting machine learning techniques similar to co-
training [8]. Co-training allows recognition to be enhanced by 
using alternate sources of information and learning from 
unlabeled examples, which are easier to obtain than labeled ones. 
In this paper we report our progress in using the first strategy. 

We have developed a prototype of an intelligent tutoring system 
(ITS) that allows students to solve algebraic equations via 
handwriting input. This paper describes the system architecture 
and some ways we have already explored to improve the 
handwriting recognition accuracy such that it is usable by 
students. We reduce, if not entirely eliminate, the need for user 
repair of recognition errors by collecting a large corpus of student 
handwriting samples in the target domain and training the engine 
in advance in a variety of ways.  

Training the engine in advance requires a large corpus of domain-
specific samples of handwriting that resemble the input the 
system will see in actual use of the application. Collecting data of 
this type involves gathering data under certain conditions and 
labeling the data to provide “ground truth” labels. This process is 
costly in terms of user hours. Therefore, as part of our 
contribution, we explored alternative ways of training the 
recognition engine on our corpus in order to discover how much 
data is sufficient for this type of application. To this end, we have 
reported previously results of data-driven training experiments 
with a number of off-the-shelf handwriting recognition engines 
[6], in which we found that varying the number of samples per 
symbol in the alphabet per user leads to the best possible a priori 
recognition accuracy. Only a few samples per symbol per user are 
needed in this method, which leads to the least overall required 
data collection resulting in the highest accuracy. Future 
application developers can use these guidelines to help determine 
how much data to collect for her own application. 
In our application domain, we are also exploring the possibility 
that, due to the special nature of a learning task and the needs of a 
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learner, students may not require the system to immediately 
output a recognition hypothesis. We are investigating how the 
design of the instructional paradigm used in the ITS can mitigate 
the need for immediate recognition feedback. Our current 
paradigm is based on worked examples instruction, in which 
students copy and study example problems whose solutions are 
already worked out for them before solving their own problems. 
This provides a sort of feed-forward rather than feedback to 
students. Figure 1 shows two sample worked examples as they 
would be shown to students, one with annotations and one 
without. The use of worked example-based problem-solving is a 
common approach in educational literature, beginning with [34]. 

2.4 Testing Human Learning 
A fundamental goal of this project is to determine the ways in 
which the use of handwriting input will create a more natural 
and unconstrained modality for students to input their problem-
solving process, thereby leading to increased learning gains. 
Therefore, user studies measuring students engaged in learning 
are critical to our approach. We have conducted a number of 
studies in this line of research to date. The early studies 
designed to motivate further research were conducted in the 
laboratory. As part of our affiliation with the Pittsburgh Science 
of Learning Center (PSLC), in vivo classroom studies are 
emphasized. These user studies take place in a real-world 
classroom setting in which the experimental system is compared 
to an authentic control condition in which students use the tools 
they normally would. The classrooms in which these studies 
take place use the Cognitive Tutor Algebra curriculum all year 
long, and only some classes or students switch to the 
experimental system during the study. This is an emerging trend 
in educational research, which has often in the past been 
confined to laboratory studies, which are not accurate with 
respect to classroom culture, interactions, and motivational 
elements, and have sometimes has their real-world validity 
called into question. Being part of the PSLC provides us with 
this unique opportunity to conduct more real-world applied 
studies and see the experimental software and technology in use 
in the field. 

The types of measures we can collect during these classroom 
studies include pre-test to post-test gains, errors during training 
(use of the ITS), skill mastery, time on task, requests for help, 
qualitative observations of student behavior, and subjective 
questionnaire responses. 

3. BACKGROUND 
3.1 Handwriting Recognition Research 
Handwriting recognition has been an active area of research since 
the 1960s, even for mathematics (e.g., [2]). Techniques for the 
recognition of handwritten mathematics range from the 
recognition of a page of notes after it has already been written 
(offline, OCR), to the recognition of a user’s handwriting even 
while he/she is in the process of writing (online). Many different 
algorithms have been explored, from neural networks, to Support 
Vector Machines (SVMs), to Hidden Markov Models (HMMs), 
and more. Because the focus of this research is not to create new 
algorithms or techniques for handwriting recognition, interested 
readers are referred to [9] for an excellent survey of the field. 

Our prior work has found that for the domain of math, 
handwriting is better than typing and menus in terms of speed and 
user satisfaction [3]. This result helps motivate continued effort to 
develop handwriting-based intelligent math tutors. Several 
research and commercial systems exist that allow users to input 
and/or edit mathematical expressions via handwriting input. 
MathPad2 [21] is among the most robust and complex. In 
MathPad2, users can write out mathematics equations and the 
system animates the physical relationships given by these 
equations, for example, an oscillating sine curve. Other systems 
such as xThink’s MathJournal [38] allow the sketching and 
writing of mathematics, but rely on in-context menus to allow 
users to perform manipulations. Even traditional keyboard-based 
math software such as Microsoft’s Equation Editor and Maple 10 
are now offering handwriting-based input, although limited in the 
amount of the equation that can be written or in what can be done 
as far as manipulation of the equation once it is input. InftyEditor 
[19], Natural Log [25], the Freehand Formula Entry System [33], 
and JMathNotes (e.g., [35]) are simple equation entry/editing 
programs without the added benefit of sketching or graphing. 

The added-value of our prototype over these simple input systems 
is that we are focusing on learning mathematics. Most other 
systems focus only on letting users input mathematics; they do 
not provide a structured approach to learning to perform 
mathematical operations, they assume their users already know 
how. There is at least one system that does consider education: 
Jumping Minds’ Practice series [18]. The Jumping Minds series is 
a simple interface in the style of first-generation Computer-Aided 
Instruction (CAI), in which problems are provided to the students. 
However, there is no tailored feedback or model of student 
learning, both of which have been shown to contribute 
significantly to the advantage of Cognitive Tutors and other third-
generation CAI (c.f., [1]). 

A technical limitation of recognition technologies such as 
handwriting is that recognition accuracies are not perfect. It has 
been shown that humans will tolerate accuracy rates in 
handwriting recognition for a variety of tasks only as low as 97% 
[20] (note that human recognition rates are around 96.8% [32]). 
This is difficult to achieve in current systems. While higher 

(a) 

 

(b) 

 
Figure 1. Sample worked examples as they would be displayed to 

students: (a) no annotations, (b) annotations. 
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recognition accuracies may manifest in the domain of beginning 
algebra equation solving due to the limited symbol set and 
grammar used, the fact that middle and high school students are 
the target audience may be another challenge. Children’s 
handwriting may be less legible and/or consistent than the adults 
on which the systems have been trained in the past. Additionally, 
children may be less likely to tolerate system recognition errors 
and cooperate in repairing them. We attempt to address this via 
in-advance training on labeled datasets of handwritten character 
samples from the target population of middle and high school 
math learners. 

3.2 Evaluation of Handwriting Recognition 
Few rigorous evaluations have been done from a user 
perspective on handwriting recognizers for any domain, a 
weakness identified early on in the literature [14] but never 
pursued. Typically developers report accuracy numbers without 
much context or detail. Many of the evaluations that do exist 
are now out-of-date ([23], [32]), as recognition technology has 
continued to advance over the past 10-15 years. Handwriting 
recognition systems for math are especially lacking in formal 
evaluations. MathPad2 is one of the few recent systems to 
perform a complete user study designed to gauge both user 
performance and satisfaction and interface ease-of-use and 
learnability along with recognition engine performance [21]. 
The study reported in that paper involved only 7 users and did 
not report statistical significance of findings because it had only 
one condition, although other, more rigorous studies are 
planned. Other recent studies have similarly small numbers of 
users or report system accuracy as a foot-note in the context of 
a larger discussion of a new algorithm or technique [33]. 

User-centered design requires that both halves of the equation be 
considered when developing an application to use handwriting 
input: both the accuracy of the system itself and how a user reacts 
to and interacts with the system. [13] explored the relationship 
between recognition accuracy and user’s satisfaction and found 
that it was highly task-dependent: some tasks (such as a form-
filling task) were rated as very suitable for pen-based input no 
matter what the recognition accuracy level was, whereas others 
(such as a diary task) were only rated highly when accuracy was 
also high. The type of recognition supported may have also 
impacted these results; the system only accepted isolated 
characters printed within boundary boxes. As newer, more natural 
methods of handwriting input become available, it is important to 
re-evaluate them from a user perspective. 

Some handwriting recognition researchers have implied that some 
of the burden is on the user to “adapt” his/her handwriting style as 
he/she learns its idiosyncrasies (c.f., [13]). In contrast, the focus of 
our work is on adapting the recognizer to individual writing styles 
over time. In fact, several researchers have pointed out that errors 
in handwriting input tend to be constant over time [23], implying 
that users will not actually adapt to specific recognizers.  

The Lipi Toolkit is a project to provide tools to allow data 
processing and annotation, and adapting recognizer engines to use 
in applications [24]. It is in the early stages of development and 
therefore can currently only support a limited set of recognition 
algorithms and isolated characters (with bounding boxes, for 
instance). A formal set of evaluations on a Hidden Markov Model 
recognizer is reported in [22], but the domain is off-line 

handwriting recognition of cursive handwriting. Its methodology 
can be informative but must be extended in order to apply to 
online (real-time) recognition applications. 

3.3 Intelligent Tutoring Systems  
Intelligent tutoring environments for problem solving have proven 
to be highly effective learning tools ([1], [36]). Many of these 
environments present complex, multi-step problems and provide 
the individualized support that students need to complete them: 
step-by-step accuracy feedback and context-specific problem-
solving advice. They are two or three times as effective as typical 
human tutors, but only half as effective as the best human tutors 
[11], which can improve student learning by two standard 
deviations [7]. This means there is still room for improvement, 
which I hope to accomplish by making the interfaces more 
suitable and effective for learning in certain domains. 

Cognitive Tutors are a class of intelligent tutoring systems that 
are designed based on cognitive psychology theory and methods 
that pose authentic problems to students (learn-by-doing) [1]. In 
Cognitive Tutor Algebra, students represent the situation 
algebraically in the worksheet, graph the functions, and solve 
equations with a symbol manipulation tool. Each Cognitive Tutor 
is constructed around a cognitive model of the knowledge 
students are acquiring, and can provide step-by-step accuracy 
feedback and help. They have been created for a variety of 
learning domains, including algebra, geometry, foreign languages, 
chemistry, computer programming and more. Cognitive Tutors 
for mathematics are in use in about 2000 schools in the United 
States, and have been shown to raise student achievement one 
standard deviation over traditional classroom instruction [12]. I 
will use Cognitive Tutors as the intelligent tutor foundation of my 
system, and will add a handwriting interface to already-existing 
lessons that have been previously developed and field-tested 
extensively.  

Although Cognitive Tutors, and other intelligent tutoring systems, 
have begun to explore other interface styles, most systems still 
currently rely on standard WIMP interfaces. This is due in part to 
the fact that the technology available to most students in the 
classroom is limited to keyboard-and-mouse—this situation is 
changing however, as students receive PDAs or TabletPCs in the 
classroom instead ([17], [37]). However, while advantages of pen-
based input have been explored for the math domain in terms of 
usability measures such as speed and user satisfaction [3], very 
little work has been done analyzing the effect of modality on 
learning. One study has reported results comparing a variety of 
pen-based interfaces for solving geometry problems with students 
[28], but it assumes that handwriting is beneficial and does not 
provide a current practice (typing) control condition for 
comparison.  

4. EVALUATION OF THE HANDWRITING 
COMPONENT  
4.1 Recognition Engine Description 
Our prototype uses an off-the-shelf recognizer called 
FFES/DRACULAE because it relieves us of the technical burden of 
developing a robust recognizer from scratch and blazes a trail for 
using handwriting engines in more real-world applications. We 
actually explored two other possible engines and chose FFES 
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because it had the highest accuracy rates in our data-driven 
experiments, discussed in section 4.2.2. FFES has reported character 
recognition accuracy rates of about 77%, for both expert and novice 
users who had not trained the system to their style of writing [33]. 
With training, FFES can yield accuracy rates as high as 95%.  

The Freehand Formula Entry System [33] is based on the CIT 
character recognizer written by Jim Arvo. It uses a nearest-
neighbor classification based on a 48-dimensional feature space 
and is implemented in C++ under the Gnu Public License. In 
total there are almost 45,000 lines of code in 191 source files. 
Its dependencies include a Unix-like environment (or cygwin on 
Windows) and ActiveTcl. As it is typical of many research 
systems, its documentation is minimal and there is no usable 
API.  

FFES recognizes mathematical equations via two components: 
character recognition (CIT) [33], and mathematical expression 
parsing (DRACULAE) [39]. The main advantage of this 
handwriting recognizer is that its features are designed to be 
effective for mathematical symbols and numbers. Stroke grouping 
(character segmentation) is performed via an algorithm that finds 
the highest confidence grouping of a set of m recently drawn 
strokes, where m is the maximum number of strokes in any 
symbol in the recognizer’s symbol set (m=4).  

4.2 User-Independent Accuracy 
In recognition technology, user-independent typically means 
that the system or engine has been trained on samples from a 
number of different users, in contrast to user-dependent, which 
means the training samples all come from the same user who 
will be using or testing the system. User-dependent accuracy 
rates tend to be higher than user-independent rates in most 
recognition technologies because differences in handwriting (or 
speech, etc.) vary more widely across users than within users. A 
particular user normally has a particular style of writing which 
does not vary much over time. For example, someone might 
write a “4” with one connected stroke vs. with two separate 
strokes, but is unlikely to vary their dominant style. User-
dependent recognition represents the “ideal” case for the 
recognizer: data consists of a set of similarly constructed 
symbols rather than differing styles. 

However, in certain domains, such as learning environments in 
classrooms, it is not feasible for the user (i.e., student) to spend time 
training the system with no learning objectives. Training 
handwriting recognition engines to be user-dependent usually 
involves a large upfront time commitment during which the user 
inputs many (20+) examples of each character the recognizer is to 
understand (called enrollment). On the other hand, it is difficult to 
embed the handwriting training task into other, more learning-
oriented tasks because the system cannot provide adequate feedback 
on the learning aspects without good a priori recognition accuracy. 
Therefore, it is important to attempt to improve recognition without 
upfront training for each particular student. User-independent 
training results in a more walk-up-and-use interaction style. 

Baseline recognition accuracy also differed depending on the type 
of samples on which the engine is tested. Usually recognizers are 
tested on either letters or words. In our domain, the distinction is 
better characterized by symbols or equations. The problem of 
symbol segmentation, that is, telling which strokes belong to what 
character, is a challenge that real-time recognition applications 
must address. It is not a realistic estimate of accuracy rate to test 
the engine on single characters one at a time. It is important to 
consider accuracy on full equations (streams of characters) when 
judging how well a recognition engine will perform for real users. 
To do this, the engine is given a set of strokes that make up a full 
equation, and is iteratively asked to identify subsets of them 
which make up individual characters. 

4.2.1 Corpus Used 
We have collected a corpus of data from over 40 high school and 
middle school algebra learners copying out equations. The data 
have been hand-segmented and hand-labeled. They are grouped 
by equation as originally written by the users in order to allow 
real-world equation testing; they can also be separated into 
individual symbols. 

The corpus contains 16,191 characters grouped into 1,738 
equations. The symbol set includes 21 symbols: {0, 1, 2, 3, 4, 5, 
6, 7, 8, 9, a, b, c, x, y, +, -, __, (, ), =}. Each user wrote on 
average 404 samples (min=227, max=471) and 17 samples per 
symbol (min=0 (“__”), max=44 (“=”)). There are on average 770 
samples per symbol (min=569 (“9”), max=1581 (“=”)).  

We chose this population of users based on our target application 
domain: intelligent tutoring systems for algebra equation solving. 
It is likely that character form and legibility will be quite different 
from the adult corpora on which handwriting engines may have 
been trained by their developers. Depending on the domain, other 
data may be required. Our work aims to provide methodological 
recommendations to future application developers. 

4.2.2 Results of Data-Driven Experiments 
We ran these experiments on two engines: FFES (based on the 
nearest-neighbor algorithm) and JMathNotes (based on the multi-
class SVM algorithm). In papers published on FFES, accuracy 
measures on simple experiments involving 5 users were reported. 
Symbol-level accuracies of 77% were achieved for users to whom 
the system had not been specifically trained (user-independent), 
and rates as high as 95% were achieved for users to whom the 
system had been trained (user-dependent) [33]. 
The theoretically optimal way to vary the training set of 
controlling two factors: the number of samples per symbol and the 
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number of samples per user or writing style. Our data-driven 
experiments confirmed this for FFES, and although JMN reached 
best accuracy at similar levels of total data for multiple training 
styles, following the strategy of controlling the number of 
samples per symbol per user/style will still converge to JMN’s 
best accuracy quickly. Figure 2 shows the convergence points for 
each training style given in number of total samples needed 
before amount of accuracy gain per additional data sample 
dropped below a given threshold. Ensuring an equal 
representation of symbols is important to provide the recognizer 
with a balanced model. In beginning algebra equation solving, the 
most common character may be the equals sign, but otherwise 
most symbols are evenly represented. Also, ensuring an equal 
representation of each user’s handwriting will prevent the system 
from having a bias toward a particular style of writing. A user-
independent system has been exposed to many styles and will use 
these to classify new users’ writing. In cases where different 
training styles result in similar convergence points, training in 
terms of samples per symbol per user minimizes demands on 
users’ time, which can be costly and scarce. With FFES, each of 
40 users had to write just two samples per symbol. 

5. APPLICATION OF TUTORING 
SYSTEMS FOR MATH LEARNING 

5.1 System Details 
We are in the process of developing a prototype system to allow 
students to solve mathematical equations via handwriting input. 
As mentioned, to increase the possibility of success, we have built 

our system with a foundation of state-of-the-art intelligent 
tutoring system and handwriting recognition components. 
Cognitive Tutors have been an active area of research at Carnegie 
Mellon University since the 1980s [12]. They have been created 
for a variety of domains, including LISP programming, algebra, 
geometry, foreign language learning, and genetics. Cognitive 
Tutors for mathematics are in use in over 2000 schools in the 
United States. In the algebra tutoring lessons, students represent 
the situation algebraically in a spreadsheet-like worksheet and 
solve equations in a separate space with a symbol manipulation 
tool involving typing and menu-based operator selection. Each 
Cognitive Tutor is constructed around a cognitive model of the 
knowledge students are acquiring, and can provide step-by-step 
accuracy feedback and help as students solve problems. Carnegie 
Learning’s Cognitive Tutors are implemented in Java. In our 
prototype, we replaced part of the Java interface with a 
handwriting input space that has the handwriting recognizer 
behind it. Figure 3 shows a screenshot of the prototype system in 
which the student is solving the problem “4069.64 + 434.17y = 
262.47y + (-3804.02)” by referring to the worked example on the 
lefthand side of the screen. The student enters his/her solution 
process in handwriting and types in the final answer in the text 
field at the bottom of the screen. 

The Cognitive Tutor Algebra I curriculum has over 25 units, at 
least 5 of which are pure equation-solving units. We can deploy 
our prototype for any of these units. Some of the problem types 
we have used in our studies include ax+b=c, x/a + b=c, a/x=c, 
ax+bx=c, ax+bx+c=d, etc. 

 

 
Figure 3. A screenshot of our current prototype system.
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The goal of this research is to use multimodal and multimedia 
technologies to improve mathematics learning for high school 
students. Besides handwriting, we consider using speech as an 
additional modality for error repair. Systems actually perform 
better when the modality of repair is different than the modality 
of entry, in part because users tend to over-enunciate (in speech) 
or trace heavily (in writing) and these patterns do not match the 
system’s model (c.f., [27]). Speech seems logical because it can 
be highly accurate when the symbol vocabulary is small (as in 
simple algebraic expressions), and because it does not require a 
return to the keyboard. We also consider using multimedia output. 
Our system may present to the student animated diagrams helping 
to explain the problem-solving process when the student needs a 
hint. Besides visual output, synthesized voice will be used when 
needed. Mayer’s work exploring the principles of multimedia 
learning [26] will serve as design guidelines for when to include 
multimedia output and what this output should contain. 

5.2 User Studies 
As mentioned, we have the opportunity to conduct real-world 
classroom studies as part of our affiliation with the PSLC. Our 
first few studies took place in the laboratory, to help us lay the 
foundation for motivating further research into this line of 
inquiry. Once we had a theoretical basis and good preliminary 
evidence showing that our interventions would most likely help 
students, we moved to the classroom. 

The hardware we have used for our classroom studies is the EZ-
Canvas by Navisis. It is a device that can attach to any monitor 
and allow users to write with the provided stylus directly on the 
interfaces they are using. It uses ultrasonic sensing technology to 
triangulate the stylus coordinates between two sensors at the top 
corners of the monitor. The stylus then controls the mouse 
pointer, so any software expecting mouse input, drawing, or 
writing, can be used with the EZ-Canvas device. Despite some 
technical limitations of the devices (e.g., they cannot be placed 
too close to each other due to interference), the price of about 
US$125 makes this a low-cost solution to getting handwriting 
input into classrooms, since it can attach to the computers already 
in the schools, rather than requiring the purchase of a lab full of 
expensive TabletPCs. 

We have run several studies in this line of research; two were 
preliminary laboratory studies establishing a grounds for further 
exploration of these issues within the classroom itself, and one 
was an in vivo classroom study. Table 1 shows an overview of the 
studies we have run to date and their primary conclusions. 

The first study, the Math Input Study, was a motivating study 
designed to explore what advantages, if any, handwriting-based 
input has for mathematics entry on the computer. Learning in a 
classroom setting is characterized by constraints on time, varying 
student motivation and engagement, and other factors not directly 
related to test scores. Our study showed that students who entered 
math equations via handwriting input were three times faster, 
were less prone to errors in input, and enjoyed their experience 
more. In the classroom, this can translate to increased depth or 
breadth of coverage by virtue of the extra time afforded, and to 
improve student motivation by virtue of their increased 
engagement. See [3] for more details. 

The second study, the Preliminary Learning Study, took the first 
study’s results one step further and applied handwriting-based 

input to a learning situation. In this study we compared students 
solving problems in a simple type-in interface with a handwriting 
input space; instruction was in the form of worked examples 
interspersed with problem solving, and feedback was answer-only 
(“Correct”/“Incorrect”). This was a laboratory study to determine 
whether or not novice math students engaged in a learning task 
would experience the same positive effects of using a handwriting 
interface over a typing interface. The typing interface looked just 
like the handwriting interface: a worked example and a free-form 
input space into which students could type their solution (see 
Figure 3) on a standard keyboard. No special-purpose math menus 
were provided in either modality. 

Results from this study showed that students in the handwriting 
condition finished the learning session in half the time of their 
typing counterparts (F2,35=11.05, p<0.0005). Yet there was no 
significant difference in their pre- to post-test score gains between 
conditions (F2,35=0.293, n.s.). Students appear to have learned just 
as much in about half the time! In a classroom situation, this 
would allow teachers to give students more practice or move on to 
more advanced material in the curriculum sooner. There was also 
a significant interaction between modality and the appearance of 
fractions in a problem (F2,36=5.25, p<0.01), shown in Figure 4, 
which implies that the advantages we’ve seen for handwriting 
only improve as the math gets more complex. In their own words, 
students commented that handwriting “made it easier” and “takes 
a shorter time”—statements that lend support to the hypothesis 

 

Table 1. Overview of the studies we have conducted to date. 

 Study 1 Study 2 Study 3 

Name Math Input 
Study 

Preliminary 
Learning 
Study 

Worked 
Examples 
Paradigm 
Study 

Research 
Goal 

Establish 
usability 
characteristics 
of math input 
modalities 

Compare 
impact of  
math input 
modalities 
on human 
learning  

Compare 
instruction 
with worked 
examples vs 
pure problem 
solving 

Type Lab Lab Classroom 

Modalities Typing, 
Handwriting, 
Handwriting+
speaking 

Typing, 
Handwriting
, 
Handwriting
+speaking 

Typing, 
Handwriting 

Measures Speed, User 
preferences, 
Errors 

Speed, 
Learning 
gains 

Speed, Errors 
during 
Training, 
Learning gains 

Conclusion Handwriting 
faster and 
better liked 
than other 
modalities. 

Handwriting 
students 
learned just 
as much in 
half the 
time. 

Results in 
progress. 

 

53



that handwriting involves less extraneous cognitive load. While 
this is only a preliminary result, we plan to explore this further in 
later studies by including a structured self-report of student-
perceived cognitive load, modeled after [29], in which they asked 
students to rate their perceived amount of mental effort during 
various instructional paradigms.  

All students were exposed to all three conditions during the 
copying phase. Students showed a strong preference for 
handwriting. Out of 38 total students, only 21% said 
keyboard/typing was their favorite method, while over 78% 
preferred one of the methods with handwriting. A variety of 
typical qualitative comments from some of the students are 
included in Table 2. 

Despite taking about half the time during the learning phase, the 
handwriting students learned just as much as the typing students. 
There was no significant difference among the conditions with 
respect to the learning gain from pre-test to post-test (F2,35=0.293, 
n.s.). This means that, even though students solved the same 
amount of problems and took less time in handwriting than in 
typing, their learning as measured by performance improved 
about the same amount (mean=11.75%, stdev=17.34). This 
measure of learning is relatively coarse; in future studies we 
intend to analyze in more detail the concepts students mastered 
rather than purely raw gain scores which do not reflect how the 
learning may have differed among conditions. Although learning 
gains appeared to be of the same magnitude based on pre- to post-
test scores, the fact that the time spent per condition was so 

different suggests that perhaps handwriting was a more efficient 
learning modality than typing. The concept of learning efficiency 
has been used in, for example, [31], to explore how students may 
be able to achieve similar levels of mastery but do fewer 
problems. This is an area we plan to pursue in future work. 

One of our hypothesized advantages of using the handwriting 
modality is that handwriting will allow a greater degree of 
transfer to paper than using typing interfaces. In this study we 
attempted to assess level of transfer in each condition by 
correlating the pre-test score and post-test score with performance 
during training. We hypothesized that the cases in which there 
was a modality switch (i.e., writing on the pre-test to typing in the 
interface to writing on the post-test) should have a lower 
correlation in performance during training vs. on the tests. Our 
results confirmed this. We ran bivariate correlations of percent of 
problems solved on the first try during training and the post-test 
score, grouped by condition. The Pearson correlation for the 
typing condition was not statistically significant (0.320, p=0.310), 
whereas for the two handwriting conditions, there was a 
significant correlation (0.708, p<0.01 for handwriting; 0.553, 
p=0.05 for handwriting-plus-speaking). These results show that 
handwriting does indeed afford students a higher degree of 
transfer to paper. Performance during testing more closely 
matches performance during training when the modality of testing 
is similar to that of training (or vice versa). 

Students in the handwriting-plus-speaking condition in this study 
performed just as well as students in the other two conditions. 
This multimodal condition may have both pedagogical and 
technical advantages over pure handwriting. Prior educational 
literature has demonstrated that students learn better when they 
self-explain, and even further, that they learn better when their 
self-explanations are spoken rather than typed [16]. In addition, 
overall recognition accuracy can be better when the system is 
provided with input from two modalities, each of which would be 
too error-prone on their own to be accurate enough [27]. 

The third study, the Worked Examples Study, is currently 
ongoing. It is an in vivo study taking place in the LearnLab. 
Intelligent tutoring systems such as Cognitive Tutors have long 
incorporated directed step-by-step feedback throughout the 
problem-solving process; while this is considered to be the 
strength of the method, it has not been shown to be critical to 
effective learning. If such detailed feedback is not necessary for 
student success, the instructional paradigm can be altered 
significantly when using handwriting input to prevent recognition 
errors from interrupting the student. For example, we could rely 
more heavily on worked examples as a method of feed-forward to 

 

Table 2. Comments made by students on the post-session questionnaire about each modality. 

Typing Handwriting Handwriting-plus-speaking 

“It took too long and was hard to get 
everything where I wanted.” 

“It takes me longer to type math problems 
[as opposed to] to [writing] them.” 

“Yes, because it is how I'm used to doing 
problems in math class, by writing them 
out.” 

“It is easier than typing.” 

“It was better than typing.” 

“It was a lot easier and I finished quickly.” 

“It made it easier to think it out when I said 
it while doing it.” 

“[It’s] easier to understand when you talk 
through the problems.” 

“I like talking through the problems it made 
me focus more.” 
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95% confidence interval. 
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help students. The study underway is designed to begin to address 
this concern by comparing existing Cognitive Tutors that provide 
detailed feedback to the same systems that also provide worked 
examples during problem solving. We intend to analyze student 
learning as well as student hint and help-seeking during use of the 
tutoring system to determine whether students that are provided 
with worked examples use the hint facilities of the tutor less 
frequently. This study will help shed light on how to effectively 
design instructional paradigms that can take advantage of the 
benefits of handwriting input for learning. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper we have presented an approach to adapting, 
deploying and testing handwriting-based interfaces in the domain 
of intelligent tutoring systems for algebra equation solving. The 
studies we have conducted have given the first positive evidence 
in favor of handwriting interfaces for learning applications. 
Students can learn the same amount in half the time using 
handwriting input vs typing-based interfaces. This, combined with 
the expected decrease in extraneous cognitive load, can allow 
students to focus more directly on the mathematics, achieving 
farther curricular goals and finishing with a deeper understanding 
of the material. 

Our next steps will involve exploring other strategies for 
enhancing recognition accuracy, for instance, by adapting 
machine learning techniques such as co-training to this 
application domain [8]. In co-training, two independent labelers 
(for instance, one which reads the text on a website and one that 
reads the text of links pointing to a website) can each use the 
other’s guesses to boost their own confidence, thus resulting in a 
classifier with greater overall accuracy than either one alone. We 
believe that similar techniques could be applied to our 
application, in which the handwriting engine is treated as one 
“labeler” and we combine it with various other “labelers” to 
achieve more accurate results. Potential labelers include the 
context of the problem we know the student is solving (which 
means we know what the student should be inputting), and also 
knowledge about common student errors as well as this student’s 
current skills (which means we know what the student might be 
inputting instead). Once these engine enhancements are in place, a 
summative user study will compare the handwriting-based tutor to 
the standard Cognitive Tutor classroom practice, focusing on 
differences in learning and cognitive load. 

While this work is in the domain of high school algebra learning, 
it is likely to generalize to other types of math and to other levels 
of students. Future efforts in this line of work will explore other 
domains such as calculus and geometry, which rely even more on 
spatial information in annotations.  
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