Monadic Concurrent Linear Logic Programming

Pablo Lopez
Universidad de
Malaga

lopez@lcc.uma.es

Frank Pfenning
Carnegie Mellon
University

fp@cs.cmu.edu

ABSTRACT

Lolli is a logic programming language based on the asyn-
chronous propositions of intuitionistic linear logic. It uses
a backward chaining, backtracking operational semantics.
In this paper we extend Lolli with the remaining connec-
tives of intuitionistic linear logic restricted to occur inside a
monad, an idea taken from the concurrent logical framework
(CLF). The resulting language, called LolliMon, has a natural
forward chaining, committed choice operational semantics
inside the monad, while retaining Lolli’s semantics outside
the monad. LolliMon thereby cleanly integrates both con-
currency and saturation with logic programming search.
We illustrate its expressive power through several examples
including an implementation of the pi-calculus, a call-by-
need lambda-calculus, and several saturating algorithms
presented in logical form.

Categories and Subject Descriptors

D.1.6 [Logic Programming]; D.1.3 [Concurrent Program-
ming]

General Terms
Languages, Theory

Keywords

linear logic, committed choice concurrent logic program-
ming, operational semantics

*National Institute of Advanced Industrial Science and
Technology (AIST), Research Center for Verification and
Semantics (CVS), CREST, Japan Science and Technology
Agency (JST)

This research has been supported by the Office of Naval
Research (ONR) under grant MURI NO00014-04-1-0724:
Distributed System Security via Logical Frameworks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

PPDP’ 05, July 11-13, 2005, Lisbon, Portugal .

Copyright 2005 ACM 1-59593-090-6/05/0007 ...$5.00.

Kevin Watkins
Carnegie Mellon
University

kw@cs.cmu.edu

Jeff Polakow*
AIST, CVS, JST

j-polakow@aist.go.jp

1. INTRODUCTION

Combining computational paradigms, such as functional,
logic, imperative, concurrent, constraint, or object-oriented
programming, in a clean, uniform, and effective way is
generally quite difficult because of the deep philosophi-
cal, theoretical, and pragmatic differences that divide them.
Nevertheless, there have been many attempts to do so. One
reason is that many algorithms and computational patterns
that can be expressed naturally in one paradigm may be
quite cumbersome in others. By combining paradigms we
can hope to get the best of both worlds. An additional reason
is that applications demand increasingly richer program-
ming concepts. In particular, concurrent and distributed
programming are becoming more prevalent, and therefore
corresponding facilities are available in modern languages,
many of which were not originally conceived with concur-
rency in mind. This is reflected in the difficulties we have
in reasoning about programs written in these languages,
especially when they employ concurrency using low-level
primitives.

In this paper we advance the thesis that logic can be a
powerful unifying force in the design of multi-paradigm
languages. More concretely, we extend backward-chaining
logic programming with concurrency and saturation, employ-
ing logical concepts such as lax truth and linearity in novel
ways to obtain an elegant, minimalistic, yet general account
of these computational phenomena.

One starting point for our design is the linear logic pro-
gramming language Lolli [13]. It is based on a fragment of in-
tuitionistic linear logic [10] endowed with an operational se-
mantics in the form of backward-chaining search. It forms an
abstract logic programming language [21] and therefore permits
a natural interpretation of the logical connectives as goal-
directed search instructions. In Andreoli’s terminology [1]
we say that Lolli is based on the asynchronous connectives of
linear logic. Lolli programs use linear assumptions to encode
state and thereby capture some aspects of imperative compu-
tation in a logical manner.

The second starting point is the concurrent logical frame-
work CLF [5, 30, 31]. The aspect of CLF most relevant to
this paper is that it extends the asynchronous fragment of
intuitionistic linear logic with synchronous connectives, but
restricts them to occur inside a monad [23]. From a logical per-
spective, this monad is a modal operator satisfying the laws
of lax logic [6] in its judgmental formulation [25]. The present
paper introduces a computational perspective: the monad
represents a dividing line between the backward-chaining,
backtracking semantics with asynchronous connectives out-

side the monad, and forward-chaining, committed choice se-
mantics with synchronous connectives inside the monad.

The monadic encapsulation prevents undesirable inter-
ference between the two forms of computation and permits
their harmonious co-existence. As we will see, the two forms
of computation are closely coupled and mutually dependent,
yet predictable and clearly identifiable without destroying
the useful properties of their components. It seems difficult
if not impossible to achieve this without the use of a monad.
Monads have been employed for similar reasons in the con-
text of functional programming [29]. In logic programming,
their only use we are aware of is for higher-order program-
ming with data structures [3, 17], which is quite different
from our application.

There have been many other studies of concurrent logic
programming (see, for example, an early survey [28]), and
concurrent logic programming in fragments of linear logic
(for example, LO [2] and ACL [14]), but we are not aware
of any that combine several forms of search in the same or-
thogonal way. Perhaps most closely related is Forum [19],
which is based on classical linear logic, but to the authors’
knowledge its operational semantics and the interaction be-
tween concurrent and sequential computation in Forum has
never been fully clarified. Another notable attempt combin-
ing backward and forward chaining by Harland et al. [12] is
an interesting foundational study of proof search, but it is not
clear whether it can be realized in a practical logic program-
ming language.

Another item of related work is by Bozzano et al. [4],
who study a bottom-up logic programming semantics for
a fragment of classical linear logic in which weakening is
admissible. The proof construction procedure is oriented
toward complete forward reasoning rather than a commit-
ted choice non-deterministic operational semantics and is
therefore more suited for model-checking rather than con-
current programming. Futhermore, it does not include any
backward search. On the other hand it incorporates an as-
pect of saturation which is significantly more general than
ours in that it allows a whole set of affine states to act as a
fixpoint, terminating if any transition remains in the same
set. It would be interesting to consider if their ideas could
be applied in our setting to reason about the behavior of
LolliMon programs in a similar manner.

Our proposal has been implemented as a concrete lan-
guage we call LolliMon. We have programmed numerous
running examples, several of which are given in this paper.
From these examples one can extract certain basic program-
ming techniques, although we do not yet claim to have
full understanding of the programming methodology or
implementation challenges posed by our language.

One aspect that seems to be emerging is a close relation-
ship between concurrent and saturating computation. The
latter has been popular for some time in the treatment of
constraints (see, for example, CHR [7]) and recently in the
logical specification and complexity analysis of several algo-
rithms [8, 16]. Most recently, the deletion of facts has been
introduced into the logical algorithm framework. This ap-
pears to be modeled well by the consumption of linear as-
sumptions in LolliMon.

The remainder of the paper is structured as follows. Sec-
tion 2 introduces the syntax, judgments, and rules of the logic
on which LolliMon is based. Section 3 describes the opera-
tional semantics of LolliMon. Section 4 presents several ex-

amples of LolliMon logic programs. Section 5 summarizes
and sketches future work.

2. LOGICAL RULES

In this section we describe the basic syntactic structure of
LolliMon, the logical rules on which its proof search strategy
is based, and the basic aspects of the operational semantics
that controls the application of the rules during proof search.
Section 3 treats the design of the operational semantics and
the interesting phenomena that arise in modeling concur-
rency and saturation more completely.

2.1 Syntax

The formula language of LolliMon consists of asynchronous
connectives A, which it shares with the earlier logic program-
ming language Lolli, and synchronous connectives .S, which
were not a part of Lolli’s formula language. The distinction
between synchronous and asynchronous connectives is fun-
damental; as we will see, the proof rules for asynchronous
connectives have a natural logic programming interpretation
in terms of backwards, goal-directed search (in the style pio-
neered by the original Prolog and formalized by the notion of
uniform proofs [21]), while the synchronous connectives have
a logic programming interpretation based on undirected,
forward-chaining, concurrent execution.

The connection between these two rather different modes
of execution is mediated by the monad constructor {-}. Syn-
tactically, the monad constructor allows synchronous con-
nectives to be embedded within asynchronous formulas. Se-
mantically, the point at which the monad constructor is in-
troduced in a proof demarcates a transition from backward
to forward reasoning (thinking, as usual, of the construction
of the proof from the outermost goal upward).

The formula language of LolliMon is as follows.

A = P|T|A1&A2|
A1 0 Az | Ay D A | Vo . A | {S}
S o= A|lA|1]|S1®S2|3xT.S

As in other typed logic programming languages such as
AProlog [20], object types = are used to enforce the well-
formedness of the objects of the system being modeled. The
syntax of objects and object types is not discussed in the
present paper; it is an entirely standard (prenex) polymor-
phically typed A-calculus. The nonterminal P stands for an
atomic proposition, which must be well-formed according to
the discipline of the object type system.

In the presentation of our logic, we will make use of three
kinds of formula context, I, A, and ¥, which respectively
contain unrestricted (intuitionistic) asynchronous hypothe-
ses, linear asynchronous hypotheses, and linear synchronous
hypotheses.

r == -|IA Unrestricted context
A == |AA Linear context
v o= | S0 Synchronous context

For the purposes of this description we may take I" and A to
be multisets. We write A1, A> to denote the multiset union
of A; and A,. There will be no explicit contraction or weak-
ening rules for T', but contraction and weakening for T" are
metatheorems of LolliMon’s sequent calculus.

In the LolliMon interpreter, the order of hypotheses
is significant only in terms of which hypothesis is non-

deterministically selected for focusing. However the third
sort of context, U, is not only linear but ordered; the ordering
of ¥ helps to control the sequence of invertible left rules
applied to its elements, as we will see below.

We present the logical rules of LolliMon in a sequent calcu-
lus formulation intended to bring out most clearly the rela-
tionship of the rules to LolliMon’s operational semantics. For
a natural-deduction-style presentation, see the technical re-
port on CLF (the dependent type theory of which LolliMon’s
logic is a fragment) [30].

We classify the logical rules of LolliMon into three basic
kinds: inversion, focusing, and transition. Inversion rules
are always applied eagerly; their use can never cause proof
search to fail. Focusing rules are those which entail a signif-
icant choice; their use can cause a particular branch in proof
search to fail. All inversion and focusing rules act either
on a specific hypothesis (left) or on the conclusion (right) of
the sequent, and we identify them accordingly. Lastly, we
have transition rules that initiate or terminate a sequence of
inversion or focusing rules.

Very roughly, the operational semantics of LolliMon can be
described in terms of five modes of execution. Four capture
inversion and focusing, each on the left and the right. An ad-
ditional mode is needed because of differences in the way left
focusing happens depending on whether the formula on the
right is in the monad (a synchronous formula S) or outside it
(an atomic formula P).

Our first two computation modes, right inversion and left
focusing, are associated with asynchronous formulas A, and
are inherited from the operational semantics of Lolli [13].

A=A Right inversion
I';A; A> P Leftfocusing

The other three computation modes, monadic left focusing, left
inversion, and right focusing, are associated with synchronous
formulas S. In addition, we have a transition sequent, which,
when read bottom-up, marks the end of left inversion and
precedes monadic left or right focusing. We call this a forward
chaining sequent in view of its eventual operational interpre-
tation. The transition on the other side, from right inversion
to left focusing, takes place at I'; A = P. There is no separate
sequent form for the latter transition, because there only one
kind of focusing is possible.

LA—S Forward chaining
T;A; A> S Monadic left focusing
I A; 0 — S Leftinversion
OA> S Right focusing

The operational meaning of these modes is discussed below,
along with the logical rules for each of them.

2.2 Asynchronous Formulas

As LolliMon is a conservative extension of Lolli, which is
based on the asynchronous connectives T, &, D, —o, and V,
the logical rules for these connectives are inherited essen-
tially unchanged from Lolli. For each connective, there is
a right inversion rule and a left focusing rule. The basic
search strategy decomposes the right formula using inver-
sion rules until it is atomic, then non-deterministically selects
a hypothesis, which is focused on until the same atomic for-
mula is reached. The following rules are used to select an

unrestricted or a linear hypothesis for focusing.

A A A> P AA> P

h I
raasp " TAASTP

lhyp

The following axiom rule says we are finished if the atomic
formula from the goal matches the atomic formula obtained
by focusing on a hypothesis.

— atm
I'ioP>P

The right and left rules for unrestricted implication are
standard.
A, A= B 5
TLA=A>B ¢
Note the restriction in D, that the derivation of A not require
linear hypotheses.
The right and left rules for linear implication are also stan-
dard:
IAJA= B
I'"A=A—oB

I;A;B> P ;.= A
A ADB > P

oL

IAB>P T;A,= A
T;A1L, A5 A oB>P

—OR —OL

The right and left rules for additive conjunction and unit
are as follows:
— T
LA=T n (no Tz rule)

A=A I'TA=B
A= A&B

&r

[A;A> P I5A; B> P
&1 s 5 &2

A A& B > P IA;A& B> P

Finally, we have right and left rules for universal quantifi-
cation.

A = [a/z]A
A= Ve A "

Here, a stands for a fresh parameter of type 7, the scope of
which is restricted to the subderivation above the Vg rule.
The term ¢ in the corresponding left rule must be well-formed
of type 7 with respect to all parameters that are in scope at
the point the left rule is applied. At the level of description
considered here, the term ¢ is picked non-deterministically.
In the LolliMon implementation, it is determined by unifica-
tion.

This concludes the description of the fragment of LolliMon
inherited from Lolli.

There is one additional rule associated with right inver-
sion: the right rule for the monad constructor {-}.

IA— S
;A = {S} O

This rule moves the proof search procedure from the goal-
directed inversion mode of Lolli to the forward-chaining
mode of LolliMon. The logical interpretation of the forward
chaining judgment appearing in the premise is the lax judg-
ment of lax logic [6, 25]. Because the monad constructor
connects the truth judgment and the lax judgment of the
logic, it is subject to somewhat different symmetries than the
rest of the asynchronous connectives. In particular, its left
rule does not appear among the left focusing rules treated in
this section; instead, it appears in the monadic left focusing
rules discussed in Section 2.3.

;A t/z]A > P
[A; V. A > P o

2.3 Synchronous Formulas

We now turn to the proof rules concerning the syn-
chronous connectives ®, 1, 3, and !.

Here, the right rules are not invertible, so the strategy of
first decomposing the formula on the right by inversion is in-
adequate. In general, the derivation of a sequent with a syn-
chronous goal formula S must first allow for some forward
reasoning from hypotheses before applying non-invertible
right rules to break down the goal S; see Andreoli’s analy-
sis of linear logic proof search [1] for more details. Exactly
which hypotheses are focused on for forward reasoning is a
non-deterministic choice.

We have the following two rules, which allow for focusing
on an unrestricted or linear hypothesis.

A A;A> S A;A>S

!
raa-s P FAASS

Ihyp’
Here the special nature of the lax judgment underlying the
forward chaining mode enters: the hypothesis selected must
have a head of the form {S’}, instead of a head of the form
P. This requirement is made explicit in the {} . rule below.
There is additional non-determinism here, compared with
the case of heads of the form P, because the formula S’ need
not match the ultimate goal formula S on the right.

The monad constructor {S’} is decomposed by the follow-
ing left rule.

A8 — S

T;A;{S'} > S

After removing the monad constructor, the formula S’ is de-

composed by left rules, which are invertible for synchronous

formulas. These left rules can add further parameters and

hypotheses to the contexts. Finally, once S’ is completely de-
composed, we return to the forward chaining judgment:

LiA—S
;A-— S

{}z

——

Thus, the overall effect of the sequence of rules beginning
with uhyp’ or lhyp’ and ending with —— is to consume
some hypotheses during left focusing by propagating them
to subgoals, and introduce others by left inversion. The goal
formula S on the right is left alone. We think of this sequence
as an atomic step in the execution of a concurrent system.
The application of the —— rule demarcates the atomic step.
As described in Section 3, the use of the —— rule forces
a commitment to all of the suspended non-deterministic
choices encountered during the atomic step.

We have seen how the forward chaining judgment allows
working on the left by reasoning forward from hypotheses.
The other way to proceed, when forward chaining, is to
choose to work on the goal S on the right, by applying non-
invertible right rules. Operationally, the decision to focus on
the goal on the right implicitly terminates forward chaining
mode. We capture this behavior with the following rule.

;A S

IA— S >

This rule corresponds to the coercion from the truth judg-
ment to the lax judgment in lax logic.

Note that all three forward chaining rules, uhyp’, Ihyp’,
and >>—, are applicable whenever the search procedure is
in forward chaining mode. For the purposes of the logical

description of LolliMon, we are content to leave as a non-
deterministic choice which forward chaining rule should be
applied. The operational semantics described in Section 3
imposes further structure on these choices.

2.3.1 Monadic Left Focusing

The rules associated with the monadic left focusing judg-
ment T'; A; A > S are very similar to those described pre-
viously for I'; A; A >> P. In both cases, non-invertible left
rules are applied to the formula A until its head ({S} or P/,
respectively) is reached. However, the two sequent forms
differ, in that the head P’ of the latter is forced to be equal
to the atomic goal P produced by right inversion, while the
head {S’} of the former does not have to be equal to the for-
mula S on the right.

Here we show the modified left rule for linear implication;
the other left rules for asynchronous connectives are modi-
fied along the same lines.

A B> S A=A
ALARAoB>S O F

2.3.2 Left Inversion

The rules for invertibly decomposing a synchronous for-
mula on the left are simple adaptations of the usual sequent
calculus left rules for each connective to our setting. When
inversion begins, the context ¥ contains a single formula S’.
The context ¥ can contain more than one formula after some
left rules have been applied. Invertibility allows us to force
the decomposition to occur in a left-to-right order. This
avoids permutations of the left rules that would otherwise
lead to an unwanted explosion in the number of proofs.
Thus, each rule decomposes the leftmost synchronous for-
mula in the context ¥. When an asynchronous formula
becomes leftmost, it is moved to the linear context, because
there are no more invertible left rules to apply to it. Finally,
at some point the context ¥ becomes empty, and forward
chaining resumes.

The left rules for multiplicative conjunction and unit are as
follows:

;A0 — S
ALY — S E

I A;81,5,0 — S 2
LA Si®S2,0 8 ~F

The left rule for the existential quantifier is the following:
I;A;[a/z]S", ¥ — S
;A 328", 0 — S

As in the Vg rule, the parameter a has type = and its scope is
the subderivation above the 3y, rule.

The left rule for the unrestricted modality adds a hypoth-
esis to the unrestricted context. The syntax of LolliMon
requires the formula underneath the modality to be asyn-
chronous.

L

A A — S |
LA AU — §
Finally, the rule for moving an asynchronous formula to
the linear context is as follows:
A AP — S

2 T TP asyne
A A0 — S

2.3.3 Right Focusing

At some point the derivation transitions from forward
chaining to right focusing mode, which applies non-invertible
right rules to search for a proof of the synchronous goal for-
mula. Each of these rules is a simple adaptation of the
corresponding right rule from linear logic.

The right rules for multiplicative conjunction and unit are
as follows:

A > 5 Iy Ay > 5o

1
R AL, A2 > S1®5: on

The right rule for the existential quantifier is the following:

A > [t/x]S
Iy A > Ja:r.S "

r;->1

As in the Vy, rule, we require ¢ to have type T and determine
it by unification.
The right rule for the unrestricted modality is the follow-
ing:
r, = A
I;->14 "%

The syntax of LolliMon requires an asynchronous formula
under the unrestricted modality, so at the point the right rule
for the modality is applied, the right focusing stage ends.

Finally, when an asynchronous formula appears as a sub-
formula of a synchronous formula, the right focusing stage
ends, and a new right inversion stage begins.

A=A

TASA

The logical rules of LolliMon enjoy the admissibility of cut.
This is a consequence of a corresponding theorem for the nat-
ural deduction formulation of CLF [30].

For reference, appendix A contains a summary of the logi-
cal rules underlying LolliMon.

3. OPERATIONAL SEMANTICS

Designing an operational semantics for the proof rules
given in Section 2 is non-trivial. There is a great deal of
non-determinism to be removed, and there are many choices
to be taken, potentially leading to different operational be-
havior. In this section, we informally describe an operational
semantics for LolliMon which results in a language integrat-
ing both committed choice concurrency and backtracking
goal-directed search.

A number of design decisions guided our specification.
Since LolliMon is conceived as a concurrent logic program-
ming language, completeness of the proof search procedure
is not a concern. More concretely, committed choice and qui-
escence (to be described below) lead to a strategy that will
not explore all of the search space. In addition, the oper-
ational semantics must be compatible with Lolli’s over the
fragment that Lolli and LolliMon share.

The operational semantics of LolliMon is a bidirectional
proof search procedure. When LolliMon proofs contain
no monadic goals, the proof search procedure is similar
to that of other logic languages such as AProlog or Lolli:
a backward-chaining, backtracking search for a uniform
proof. In contrast, when a monadic goal is found, a forward-
chaining, committed choice strategy is applied. Thus the
monad affects the basic mode of proof search, and can be

interpreted as staging the LolliMon computation. In the
remainder of this section we detail the different stages of this
computation: goal-directed search, backward-chaining and
forward-chaining.

3.1 Example: Asynchronous =-Calculus

In order to make the discussion of LolliMon’s operational
semantics more concrete, we will be using a representation
of an asynchronous! variant of Milner’s 7-calculus [22] as a
running example. The w-calculus is based on a syntax for
concurrently executing processes P. The processes interact by
sending and receiving messages along named channels c.

The basic process constructors are parallel composition
P | @ and its unit 0 (representing a process that is finished).
There is also a construct vc. P(c) for binding a new channel
name within a process. In traditional presentations of the
m-calculus, scope extrusion is used to propagate the bound
channel name from its initial scope to more global scopes. In
LolliMon, we will see that fresh parameters introduced by
the 3, rule fulfill the same function.

The process constructors concerned with communication
are ¢(z).P(x) for inputting a value along the channel ¢ (with
the process P(z) continuing to execute using the communi-
cated value in place of the variable), and &{v) for outputting
the value v along the channel c¢. In this simple variant of
the w-calculus, the only values are the channel names them-
selves.

In addition, there is a replicated variant !c(z).P(z) of the
input construction, which allows arbitrarily many values
to be received along channel ¢, each spawning a new copy
of P(z) with the received value subsituted for z. The repli-
cated input process itself persists forever, once it has been
introduced.

This concludes the syntax of the w-calculus. In the Lol-
liMon implementation, each of these process constructors is
represented by a term constructor in LolliMon’s term lan-
guage.

expr : type. chan : type.
par : expr — expr — expr.
Zero : expr.

new : (chan — expr) — expr.

in : chan — (chan — expr) — expr.
rin : chan — (chan — expr) — expr.
out : chan — chan — expr.

Note the use of higher-order abstract syntax to represent the
w-calculus binding constructs. There is a bijective representa-
tion function ™-7 mapping w-calculus process expressions to
well-typed, canonical LolliMon terms having type expr.

I_P | Q—\ — par V—P—\ I_Q—\

0" = zero

"ve.P(c)™ = new (Ac:chan.” P(c)™)
Te(z).P(x)? = inc(Az:chan." P(z)™)
Cle(z).P(x)™ = rine (Az:chan." P(x)™)
re(v)? = outcw

3.2 Goal-Directed Proof Search

The right inversion rules of LolliMon are exactly those
of Lolli, except for {} . These rules are applied from the

'The use of “asynchronous” here is not related to our earlier
uses of the term.

bottom up to decompose a goal into atomic and/or monadic
subgoals. It should be noted that rules other than the right
rules are only considered when the goal is either atomic
or monadic. When there are no monadic goals involved,
LolliMon proofs are uniform [21]. When there are monadic
goals, this strategy can be seen as an extension of uniform
proofs, where the monad introduces an intermediate stage,
forward chaining, before the goal is further decomposed.
Forward chaining, which corresponds to the lax judgment of
lax logic, is particular to LolliMon.

The non-determinism implicit in the choice of a term ¢ in
the 3 rule (as well as the vV, rule) is handled as usual by
generating a logic variable and relying upon unification to
appropriately instantiate this variable. Since our term calcu-
lus is a A-calculus, we use a deterministic version of higher-
order unification that suspends any non-pattern [18] unifica-
tion problems until they are further instantiated. Any sus-
pended unification problems remaining at the end of a query
are reported as leftover constraints.

The non-deterministic splitting of the linear context im-
plicit in the ® g, —or, and —o’, rules is common to traditional
linear logic programming languages [13, 26]. The low-level
management of linear hypotheses turns out to be unaffected
by the addition of a forward chaining phase to proof search.
Our strategy for managing linear hypotheses is a new vari-
ation of the 170 system for Lolli [13]. The new strategy is
described in detail in [15].

3.3 Backward Chaining

When an atomic goal is encountered in right inversion
mode, a hypothesis with an atomic head must be chosen to
focus on. Following the behavior of Lolli, our implemen-
tation keeps track of the order in which hypotheses?, both
linear and unrestricted, were assumed and tries to focus
first on the most recent ones whose heads unify with the
atomic goal; see Section 3.7 for more discussion on clause
ordering in LolliMon. The usual Prolog backtracking seman-
tics is used when a particular choice fails, or to search for
alternative solutions.

Upon choosing a hypothesis, the system switches to left
focusing mode and applies left rules to the selected hypothe-
sis, keeping track of any new subgoals generated (by the D,
and —oy, rules) along the way. When the head of the selected
hypothesis is finally exposed, it is unified with the original
atomic goal, and unless unification fails, proof search will
continue by solving any pending subgoals. This strategy is
the usual backchaining mechanism of Prolog.

If left focusing encounters the & connective, two rules, & .1
and &2, might be applied. The resolution of this choice is
made by the same mechanism that chooses a hypothesis to
focus on in the first place, as though there were two clauses,
one for each branch of the &.

3.4 Forward Chaining

As mentioned in Section 2.2, in order to construct a proof
of {S}, the LolliMon system enters a forward chaining mode
and tries to derive I'; A — S. The most important differ-
ence between goal-directed search (as in Lolli) and forward
chaining is that for forward chaining, the formula S on the
right does not have to match the head of a clause selected
for focusing on the left. In fact, it is perfectly acceptable for

2\We think of program clauses as hypotheses assumed at the
beginning of each query.

a program clause to be selected that doesn’t mention S at
all. However, only program clauses having some monadic
formula {S’} at their heads can be selected.

As Section 2.3 hints, we think of the forward chaining
phase of proof search as a sequence of atomic steps. Each
atomic step begins with an application of the uhyp’ or Ihyp’
rule that selects a hypothesis A to focus on, leading to a
sequent of the form

A A> S

Next, the system breaks down A by applying a series of
non-invertible left rules, postponing any new subgoals in
the manner described in Section 3.3. Eventually, the head of
A, which must be a formula of the form {5}, is reached:

;A {S} > 8.

Here A’ is the subset of A remaining after the context is split
between this branch of the proof and any subgoals. The Lol-
liMon implementation determines A’ lazily.

At this point, after establishing that the chosen clause is in-
deed monadic, any pending subgoals are solved. If a subgoal
cannot be solved, then the system backtracks to the begin-
ning of the forward chaining cycle and looks for a new clause
to focus on. The procedure up to this point is the same as that
employed for backward chaining, except that no unification
is involved.

Next, supposing any pending subgoals have been solved,
the {} . rule is applied, leading to

A S — 8,

and after applying a series of invertible left rules to S’, we
have a sequent of the form

F7FO;AI7AO; =S

where I'p and A are any new assumptions added during the
decomposition of S’. Finally, the rule —— is applied to finish
the atomic step, and we are left with

F7FO; A/7A0 - 57

which is again in the forward chaining mode. The appli-
cation of —— additionally causes the system to commit to
this atomic step by removing all the choice points generated
while focusing on the original A or solving subgoals gener-
ated during focusing.

Thus, the overall effect of the atomic step is to possibly
consume some linear hypotheses and possibly introduce
new unrestricted or linear hypotheses. In addition, the pro-
cess of proving the atomic step may have had a side effect
on the state of the unification store.

The other way to proceed when in forward chaining mode

IA— S

is to focus on the right-hand formula S using the >>— rule,
leading to

IA> S,

This terminates the forward chaining phase, and the Lol-
liMon interpreter proceeds by applying non-invertible right
rules to S. Sections 3.5 and 3.6 describe strategies for decid-
ing when to end forward chaining in this way.

EXAMPLE. Using the syntax introduced earlier for the -
calculus, we can set up a forward-chaining interpreter for -

calculus processes. First, we introduce the following predi-
cates:

proc : expr — o.
msg : chan — chan — o.

These two predicates correspond to the message and pro-
cess types of Kobayashi and Yonezawa’s ACL [14]. The idea
of the interpreter is that the state of the w-calculus execu-
tion will be represented by the multiset of linear hypotheses
available in forward chaining mode. The goal on the right-
hand side while the interpreter is running will always be 1.
Suppose we want to initialize the interpreter with a process

P = Tela)]e(y).0"
= par(outcz) (inc(A\y.zero)).

Initially, we have only the linear hypothesis proc P, in the
context. By adding the rule

Ao = VPNVQ.proc (par P Q) —o {proc P ® procQ}

to our logic program, we enable a forward chaining step that
consumes the hypothesis proc P, and introduces two new
hypotheses, namely proc (outcx) and proc (in ¢ (\y.zero)).

Suppose, then, that we start with just P, running, which
according to the invariant of the interpreter, means that we
are searching for a LolliMon proof of the sequent

I';proc Py — 1.

Here T" includes all the rules of our logic program for the in-
terpreter. The first step is to focus on the program clause Ao
above, using the uhyp’ rule, leaving

T'; proc Po; Ap > 1.

At this point we need to apply the rule V', twice to get rid of

the universal quantifiers at the outside of Ay. The LolliMon

system will instantiate the bound variables P and @ of the

universal quantifiers by unification, but we know what the

instantiation will ultimately be, namely P = outcxz and Q =

in ¢ (\y.zero), so for this discussion we use it from the start.
We are then left with the sequent

I'; proc Py; proc (par P Q) —o {proc P @ procQ} > 1

with P and Q as above. The next step is to use —o, to elimi-
nate the linear implication. This leaves us with

I {procP ® procQ} > 1
while the second premise
I'; proc Py = proc (par P Q)

is stored on the subgoal stack. Here we’ve also anticipated
the partitioning the linear hypotheses in the only way that
can succeed: namely, the single linear hypothesis proc Py is
allocated to the second subgoal.

Since we now have formula of the form {5’} on the left,
we suspend left focusing and apply inversion to the stored
subgoal:

I'; proc Py = proc (par P Q),

which is quickly dealt with, since P, = par P Q.
We then return to the main focusing proof. The only rule
that can be used is {} ., which leads to

I';-;proc P ® proc@ — 1.

At this point, several left inversion rules are applied, and we
end up with

I'; proc P, procQ;- — 1.

Now the only applicable rule is ——, which leaves us with
I';proc P,proc@ — 1

to prove. There were no non-deterministic choices involved
in the execution of this atomic step, because our program
had only one clause, but in general, there might be choice
points created between the use of uhyp’ or lhyp’ and the use
of ——.

It is perhaps worth noting at this point that we are not at all
interested in the question of completeness; that is, the possibil-
ity of finding any proof admitted by the logical rules. Such
a notion of completeness might be useful in model check-
ing, or some other analysis intended to explore the entire
state space of the concurrent system. But LolliMon is not a
model checker; the aim here is to execute a concurrent sys-
tem, not to map its entire state space. Accordingly, just after
each forward step is taken, any choice points introduced dur-
ing the the proof of the forward step are dropped; LolliMon
commits to the forward step. Also, once the decision to stop
forward chaining has been taken, LolliMon commits to that
decision, never going back to consider executions that might
have lasted longer.

3.5 Quiescence

We have seen how LolliMon takes each atomic step in for-
ward chaining mode. There remain the issues of which for-
ward chaining steps it should take, and when to stop taking
forward chaining steps and return to a goal-directed search
strategy. The underlying logic on which LolliMon is based
does not constrain these choices at all. In this section, and
the following, we discuss the termination criterion, the de-
cision about when to finish forward chaining and return to
goal-directed proof search. Section 3.7 treats the question of
which forward steps should be taken.

Since the intended semantics of forward chaining mode
is the simulation of various concurrent object systems, the
decision about when to finish forward chaining is equiva-
lent to deciding how to terminate a concurrent system. The
strategies which turn out to be most useful in practice are
based purely on the behavior of the concurrent system,; that
is, they are based only on what forward steps are available
to be taken. One might also imagine a criterion based on the
goal formula S that will be proved on the right once forward
chaining ends, but this turns out to be fraught with difficul-
ties. The current LolliMon implementation never looks at the
formula on the right when in forward chaining mode, either
to decide which forward steps should be taken, or to decide
when to stop taking forward steps. This reduces further the
space of possible proofs found by the LolliMon interpreter.

The simplest strategy depending only on what forward
steps are available to be taken is quiescence: the concurrent
execution (that is, the forward chaining phase) ends when no
forward step is available to be taken.

EXAMPLE. We can illustrate the notion of quiescence by
completing the simple w-calculus execution begun above.
First, we reveal the remaining clauses in the w-calculus

interpreter’s logic program:

proc zero —o {1}.
VP.proc (new (Ac.P ¢)) —o {3e.proc (Pc)}.

VC.¥V.proc (outCV) —o{msgC V}.
VC.VP.proc(inC (Az.Px))

—- {VV.msgC'V —o {proc (PV)} }.
VC.VYP.proc(rinC (Az.P z))

—- {IYV.msgC'V —o {proc(PV)}}.

The first two clauses are similar to the clause we have already
seen for processes of the form par P Q. In each case a pro-
cess is interpreted by LolliMon’s own logical connectives—
concurrent composition becomes ®, the unit zero of compo-
sition becomes 1, and the channel-binding construct becomes
3. In the last case, the 3, rule will introduce a fresh parame-
ter to stand for the name of the new channel.

The final three clauses are concerned with asynchronous
communication. Each message containing the value V and
flowing along a channel C is represented by a linear hypoth-
esis of the form msgC' V. The clause for out creates such
messages. The clauses for in and rin use the powerful tech-
nique of forward-generating new clauses. In this case, the clause

VV.msgC'V —o {proc (P V)}

is introduced as a new linear (for in) or unrestricted (for rin)
hypothesis.

Continuing the example execution of Section 3.4, the se-
quent

I'; proc (outcz), proc (inc (\y.zero)) — 1,
after several atomic steps, will eventually reach
I';msgez, (VV.msgcV —o {proczero}) — 1.

At this point, none of the clauses in I' can be successfully
focused on, so the only choice is to use the second linear hy-
pothesis. This leads to

I';msgcx; VV.msg eV —o {proc zero} > 1,

and the atomic step is finished by applying left rules and
solving the subgoal msg cz using the other linear hypoth-
esis. At this point we have

I'; proczero — 1,
and finally, after one more atomic step, we have
F7 = 17

at which point no atomic forward chaining step is possible,
so quiescence has been reached. Accordingly, the LolliMon
system ends the forward chaining phase by applying >>—,
and the proof is completed with 1x.

3.6 Saturation

The last section introduced quiescence, defined as a state
in which no further forward steps are possible. But some-
times it is more useful to consider saturation: a state in which
forward steps may be possible, but they do not lead to any
new information.

For example, we may want to execute bottom-up logic pro-
grams that repeatedly apply forward reasoning steps to a set
of facts, each step extending the set of known facts, until
no further facts can be deduced from those that are already
known.

EXAMPLE. A simple example is a program to compute
the transitive closure of a finite relation. Suppose we have
a finite number of unrestricted hypotheses of the formr A B
for various pairs A and B. We can then generate the transi-
tive closure rr A B by the following program.

VAVB.rAB D {Irr AB}.
VAVBYNYCIrABDrrBC D{lrrAC}.

Each forward step taken by this program uses some facts
concerning r and rr to derive a new fact about rr and add it
to the unrestricted context. If we ran the program under the
quiescence criterion for termination, it would execute forever
(assuming we start with at least one fact concerning r), be-
cause more forward steps can always be taken, even if they
only regenerate facts that were already known.

The saturation criterion, on the other hand, disallows for-
ward reasoning steps that either have no effect on the set of
available linear and unrestricted hypotheses, or simply rein-
troduce unrestricted hypotheses that were already known.
We define a non-trivial step to be an atomic forward chaining
step which causes a change to either of the logical contexts,
or to the state of the unification store. We then define satura-
tion to mean that no non-trivial step is possible.

Assuming there is at least one axiom concerning r, the pro-
gram above saturates in a finite number of steps, because all
the hypotheses introduced are unrestricted and rr is finite.
Once every deducible consequence rr A B ends up in the
unrestricted context, no non-trivial steps are possible, and
saturation is reached. We exhibit realistic examples of this
bottom-up technique in Section 4.

The LolliMon implementation always uses saturation to
decide when to stop forward chaining. This is not observ-
ably different from quiescence, except that a concurrent exe-
cution might run forever under quiescence (after some point
always returning to the same state), while terminating under
saturation.

3.7 ClauseOrdering

Saturation checking is implemented by term indexing.
Specifically, LolliMon unifies unrestricted and linear hy-
potheses, distinguished by appropriate tags, in one context,
which is implemented as a discrimination tree [27]. The dis-
crimination tree allows the system to efficiently (i.e. without
scanning the entire context) check whether a given formula
is already in the context, and thus whether a step is non-
trivial. However, it also complicates keeping track of clause
order.

As specified in Section 3.3, during backchaining the sys-
tem will try predicate clauses, starting from the most recently
assumed, and working back to the least recent. Such behav-
ior, though standard in traditional logic programming lan-
guages, is too limiting for some natural LolliMon programs,
such as our w-calculus encoding or the meta-circular inter-
preter.3 To this end, LolliMon has another directive, #f ai r,
which declares the programmer’s intent to have the clauses
of a particular predicate chosen fairly, rather than in a fixed
order. The implementation approximates fairness by trying
clauses in a random order.

Including the idea of fair choice is important when we
want to be able to simulate a concurrent system in such a
way that any given run of the LolliMon program will give

3 Available with the LolliMon distribution.

us a “typical” execution, rather than some “special” execu-
tion. For example, in the w-calculus interpreter described
above, the fair-choice model allows both possible outcomes,
P and @), for the process

ve.éle) | (e(z).P) | (e(x).Q),

whereas the fixed-order mode would rule out one or the
other of P and Q.

When in the monadic left focusing judgment, any clauses
having heads of the form {S}, rather than an atomic predi-
cate, are eligible to be selected. The implementation always
chooses from among these clauses in a fair way. Only for
atomic predicates P is the fixed-order mode available.

4. EXAMPLES

In this section we present three concrete examples of Lol-
liMon specifications. We use t ypewr i t er font for LolliMon
code. All of these examples, and many more, are bundled
with the prototype distribution of LolliMon.*

We summarize LolliMon concrete syntax as follows:

&=&
1=one

—-0=-0 D==> ® =,
{}={1 r=1 T=top

Additionally we have

Ar:TM = x \ M
Ve:r. A = pi x \ A
Jx:7.S = sigma x \ 'S

where M A and S are the concrete representations of M, A
and S. The type of bound variables x is automatically in-
ferred by the system. This is always possible, since all con-
stants are declared and types are restricted to prenex poly-
morphism.

LolliMon also provides several built-in predicates and
terms including lists (ni | for empty list and : : for cons),
basic integer arithmetic (i s, +, etc.), and output (wi t e and
nl).

We allow clauses of the form (A, B) -o {C}, which
stands for B -0 (A -0 {C}), and, in a similar manner,
(A, B) => {C}, which stands for B => (A => {(}).
Because of the subgoal selection strategy, both of these will
first match A, then B, and then commit the forward chaining
step.

We also use the standard convention that (unbound) up-
percase letters represent logic variables that are implicitly
universally quantified at the outermost level.

41 CKY Parsing

We present a LolliMon specification of a CKY parser based
on McAllester’s logical algorithm [16]. This example only
uses the unrestricted context and relies upon forward chain-
ing and saturation.

The main predicate is parse X | J which asserts that
the input substring from position 7 to position j, inclusive,
is of syntactic category X.

Starting from an input list, we assert s i ¢ for each character
of input ¢ at position i. When the list becomes empty, we
initiate a forward chaining computation, as indicated by the
monad brackets in the first clause below. When the forward
chaining computation saturates, we test if the whole string

*http://ww. cs. cnu. edu/ ~fp/lollinon/

(which goes from 1 to n) is of category .S and succeed if that
is so.

load Nnil S <= {parse S 1 N}.
load I (C.:Cs) S <=
JisI+l, (sJ C=>1]o0ad J Cs S).

start Cs S <= load 0 Cs S.

Grammar productions are in normal form of either X — ¢
for a character c or X — Y Z for non-terminals Y and Z.
These are represented in the formrul e X (char C) and
rule X (jux Y Z), respectively. We just run these gram-
mar rules from right to left, for example asserting we have
an X from ¢ to k if we already know that the substring from
i1to jisaY and the substring fromj + 1tokisa Z.

rule X (char G, s | C=> {lparse X1 1}.

rule X (jux Y 2Z), parse Y I J, J is J+1,
parse Z J' K => {!parse X | K}.

This concludes the parser. Note that it does not use the lin-
ear context and relies entirely on saturation for termination.

4.2 Call-by-Name and Futures

We present a LolliMon implementation of a A-calculus
with a call-by-name semantics, then add futures, a sim-
ple construct for parallel evaluation [11]. This core can be
extended to functional languages with features such as re-
cursion, polymorphism, mutable reference, continuations,
exceptions, concurrency in the style of Concurrent ML, and
distributed computation. Some of these can be found with
the prototype distribution of LolliMon or as sample specifi-
cations in an earlier report on CLF [5].

Our presentation uses linear destination-passing style [24],
which is based on three main syntactic categories: expressions
to be evaluated, frames for suspended computations, and des-
tinations for values.

Destinations are special in that they are just abstract names
and have no further structure. They will be represented as
parameters in our implementation.

Corresponding to the three syntactic categories we have
three predicates: eval evaluates an expression, given a des-
tination, conp captures a suspended computation together
with the eventual destination of its result, and return
records the value returned to a destination.

Unlike the usual techniques from (higher-order) logic pro-
gramming languages, these predicates will take on their ap-
propriate operational meaning in the linear context, and we
execute using forward chaining with only trivial backward
chaining to match atomic formulas. We start with a linear
context containing only eval e dy for an expression e to be
evaluated and an initial destination do and reach quiescence
in a state with return v dy for a value v. In this example,
values are just expressions, although in some examples it is
clearer to separate them out in their own syntactic class.

As a first simple example, consider call-by-name evalua-
tion. We represent expressions using higher-order abstract
syntax.

lam: (exp -> exp) -> exp.
app : exp -> exp -> exp.

A \-abstraction is a value, so we return it directly to the
given destination D.

eval (lamx \ E x) D
-0 {return (lamx \ E x) D}.

The right-hand side of the linear implication is a monadic
formula, which enforces that this rule is used only during
forward chaining. This will be true for all other rules in this
implementation, except for one at the top level.

An application is evaluated by first evaluating the func-
tion, while a frame waits for the evaluation’s result. The re-
sult must be passed in a fresh destination d1, which is a pa-
rameter created by the 3, rule.

eval (app E1 E2) D
-0 {sigma dl1 \ eval E1 di,
conp (appl dl1 E2) D}.

The destination D of the new frame is the same as the original
destination for the application.

Finally, when evaluation of the function is complete, we
can substitute the argument into the function body and eval-
uate the result. This substitution is modeled by meta-level
application, a standard technique with higher-order abstract
syntax. Here we need to coordinate two linear assumptions:
one returns a value, while the other is the waiting frame.

return (lamx \ E1' x) D1,
conp (appl D1 E2) D
-o {eval (E1' E2) D}.

This completes the main program. In order to invoke it at
the top level, we have a predicate eval uat e which evalu-
ates an expression e and prints its value. To print the result
we use the built-in predicateswr i t e and nl , the latter start-
ing a new line.

evaluate E
o- (pi do\ eval E dO
-0 {sigma V\ return V dO,
wite V, nl}).

A query eval uat e e now starts with backward chaining
(note the direction o- of the outermost implication), creating
the initial destination dy and linear assumption eval e dy be-
fore entering the monad and initiating forward chaining. We
continue to forward chain until we reach quiescence, which
is the case precisely when we are returning a value to the
initial destination, or the Mini-ML computation gets stuck.
This cannot happen for a well-typed Mini-ML term, but we
have elided the necessary type-checking predicate here, so it
is possible for an eval uat e query to fail.

As a generalization of the above we consider futures de-
rived from Multilisp [11]: the construct f ut ur e e immedi-
ately returns with a promise and starts a new thread evaluat-
ing e in parallel. If the promise is ever evaluated (touched)
we block until the evaluation of e completes, which will give
us the value of the promise.

The most straightforward implementation in linear destination-

passing style uses new expression forms future e and
promi se p where p is a destination. We also use a new
frame futurel d; to await the completion of the future.
Evaluating f uture e then creates two new destinations:
one, called d;, to stand for the value of e directly, and one,
called p, to represent the promise.

eval (future E) D

-0 {sigma d1 \ sigma p \
eval E d1, conp (futurel dl) p,
return (pronmise p) D}.

If evaluation of £ completes with value V, we install V' as
the value of the future p. This must occur in the unrestricted
context: the promise p may actually be replicated many times
via substitution, or it may never be needed at all, violating
linearity in both cases.

return V D1,
conp (futurel D1) P
-0 {!return V P}.

If we ever evaluate (touch) a promise, we create a frame wait-
ing for its value.

eval (promse P) D
-0 {comp (promnisel P) D}.

Finally, if the value of the promise is both available and
needed, we pass it to the proper destination.

lreturn V1 P,
conp (pronisel P) D
-0 {return V1 D}.

Thus, futures can be explained in four rules, without af-
fecting the rules for functions and applications previously
introduced. Such semantic modularity is a an elegant prop-
erty of linear destination-passing style, and it is immediately
reflected in the LolliMon encoding.

4.3 Checking Graph Bipartiteness

We now present a LolliMon specification of graph bipar-
titeness checking based on the logical algorithms in the for-
mulation of Ganzinger and McAllester [9].

A graph is represented by a set of unrestricted assump-
tions edge u v for nodes w and v, indicating an edge from
u to v. We also start with a linear assumption unl abel ed u
for every node u. We further have constant labels a and b to
represent two partitions.

The outer loop of the algorithm picks an arbitrary unla-
beled node, labels it (arbitrarily) with a, and then propagates
information by labeling all neighbors of a nodes with b and
vice versa. When this propagation saturates, we check if
there are any nodes labeled both a and b. If so, the graph
cannot be bipartite. If not, we pick another unlabeled node,
label it with a and repeat the propagation step. If there are
no unlabeled nodes left we know the graph is bipartite.

First, the top-level iteration. In order to cut off unnecessary
iterations, we check for a node labeled both a and b first. So
i t er at e succeeds if the graph is not bipartite.

iterate o- sigma U\

!labeled U a, !labeled Ub, top.
iterate o- sigma U\

unl abeled U, (labeled Ua => {iterate}).

By the structure of the second clause, the overall computa-
tion consists of a variable number of stages, each of which
is a computation run to saturation. Assumptions of the
form | abel ed « are always unrestricted, indicated by the
form A => {B} rather than linear implication A -o {B}.
unl abel ed assumptions are always linear, so the second
line consumes one. We use t op in the first clause so we can
stop iterating even if there are unlabeled nodes left.

The next three rules are for label propagation, including
one to remove linear assumptions unl abel ed Uin case the
node Uwas labeled during the saturation process.

Il abel ed U a,
Il abeled U b,
'l abel ed U K,

ledge UV -0 {!labeled V b}.
ledge UV -0 {!labeled V a}.
unl abel ed U -0 {one}.

Finally we have a rule to generate the symmetric closure
of the initial edge relation, again relying on saturation.

ledge UV -0 {ledge V U}.

This completes the implementation. An interesting aspect
of it is the use of linearity to avoid explicit deletions. These
are present in Ganzinger and McAllester’s specification, but
have no discernible logical justification.

5. CONCLUSION

We have presented a programming language, LolliMon,
based on intuitionistic linear logic augmented with a monad.
Computation in LolliMon proceeds via proof construction.
In the asynchronous fragment (outside the monad), compu-
tation uses backward chaining and backtracking as in the
Lolli language [13]. In the synchronous fragment (inside the
monad) computation uses forward chaining and committed
choice, which allows natural models of concurrency and
saturation-based algorithms. The interaction between these
strategies is rich, yet the monadic structure of the underly-
ing logic keeps it manageable. We have presented several
examples, and more are provided with the implementation.

On the logical side, the first items of future work are to
gain a better understanding of additive disjunction (¢) and
falsehood (0), and to extend the operational semantics to the
fully dependent type theory CLF [30].

On the computational side, we plan to consider issues of
fair scheduling and the difficulties that arise from free vari-
ables during forward chaining and, in particular, with re-
spect to saturation. We also plan to give a more thorough
analysis of unification and unification constraints.

As far as the implementation is concerned, the most press-
ing need is to devise techniques for more efficient forward
chaining.

Finally, we are interested in developing analysis tools for
LolliMon programs, such as mode or termination checkers.
This should be particularly interesting for forward chain-
ing, where it may be possible to use model checking for
state-space exploration to establish temporal properties of
LolliMon program executions, or to support automatic com-
plexity analysis in the style advocated by Ganzinger and
McAllester [8].

6. REFERENCES

[1] J.-M. Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):297-347, 1992.

[2] J.-M. Andreoli and R. Pareschi. LO and behold! Concurrent structured

processes. In OOPSLA/ECOOP ’90: Proceedings on object-oriented

programming systems, languages, and applications, pages 44-56, Ottawa,

Canada, 1990. ACM Press.

Y. Bekkers and P. Tarau. Monadic constructs for logic programming. In

J.Lloyd, editor, Proceedings of the International Symposium on Logic

Programming (ILPS’95), pages 51-65, Portland, Oregon, Dec. 1995. MIT

Press.

M. Bozzano, G. Delzanno, and M. Martelli. Model checking linear logic

specifications. Theory and Practice of Logic Programming, 4(5-6):573-619,

2004,

I. Cervesato, F. Pfenning, D. Walker, and K. Watkins. A concurrent

logical framework 11: Examples and applications. Technical Report

CMU-CS-02-102, Department of Computer Science, Carnegie Mellon

University, 2002. Revised May 2003.

M. Fairtlough and M. Mendler. Propositional lax logic. Information and

Computation, 137(1):1-33, Aug. 1997.

[3

=

[4

[l

[5

id}

[6

—_

(71

(8]

[°]

[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[311

T. Fruhwirth. Theory and practice of constraint handling rules. Journal
of Logic Programming, 37(1-3):95-138, Oct. 1998. Special Issue on
Constraint Logic Programming.

H. Ganzinger and D. A. McAllester. A new meta-complexity theorem
for bottom-up logic programs. In T. R.Goré, A.Leitsch, editor,
Proceedings of the First International Joint Conference on ArAutomated
Reasoning (JCAR’01), pages 514-528, Siena, Italy, June 2001.
Springer-Verlag LNCS 2083.

H. Ganzinger and D. A. McAllester. Logical algorithms. In P.Stuckey,
editor, Proceedings of the 18th International Conference on Logic
Programming, pages 209-223, Copenhagen, Denmark, July 2002.
Springer-Verlag LNCS 2401.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.
R. H. Halstead. Multilisp: A language for parallel symbolic
computation. ACM Transactions on Programming Languages and Systems,
7(4):501-539, Oct. 1985.

J. Harland, D. Pym, and M. Winikoff. Forward and backward chaining
in linear logic. In D. Galmiche, editor, Proceedings of the Workshop on
Type-Theoretic Languages: Proof Search and Semantics, volume 37 of
Electronic Notes in Theoretical Computer Science, Pittsburgh,
Pennsylvania, June 2000. Elsevier Science.

J. Hodas and D. Miller. Logic programming in a fragment of
intuitionistic linear logic. Information and Computation, 110(2):327-365,
1994.

N. Kobayashi and A. Yonezawa. Typed higher-order concurrent linear
logic programming. Technical Report 94-12, Department of
Information Science, University of Tokyo, July 1994.

P. Lopez and J. Polakow. Implementing efficient resource management
for linear logic programming. In F. Baader and A. Voronkoy, editors,
Eleventh International Conference on Logic for Programming Artificial
Intelligence and Reasoning (LPAR’04), pages 528-543, Montevideo,
Uruguay, Mar. 2005. Springer-Verlag LNAI 3452.

D. A. McAllester. On the complexity analysis of static analyses. Journal
of the ACM, 49(4):512-537, 2002.

R. McGrail. Monads and Control in Logic Programming. PhD thesis,
Wesleyan University, 1997.

D. Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of Logic and
Computation, 1(4):497-536, 1991.

D. Miller. Forum: A multiple-conclusion specification logic. Theoretical
Computer Science, 165(1):201-232, 1996.

D. Miller and G. Nadathur. Higher-order logic programming. In

E. Shapiro, editor, Proceedings of the Third International Logic
Programming Conference, pages 448-462, London, June 1986.

D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as
a foundation for logic programming. Annals of Pure and Applied Logic,
51:125-157, 1991.

R. Milner. Communicating and Mobile Systems: the 7-Calculus.
Cambridge University Press, 1999.

E. Moggi. Notions of computation and monads. Information and
Computation, 93(1):55-92, 1991.

F. Pfenning. Substructural operational semantics and linear
destination-passing style. In W.-N. Chin, editor, Proceedings of the 2nd
Asian Symposium on Programming Languages and Systems (APLAS’04),
page 196, Taipei, Taiwan, Nov. 2004. Springer-Verlag LNCS 3302.

F. Pfenning and R. Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11:511-540, 2001.

D. Pym and J. Harland. A uniform proof-theoretic investigation of
linear logic programming. Journal of Logic and Computation,
4(2):175-207, April 1994.

I. Ramakrishnan, R. Sekar, and A. Voronkov. Term indexing. In
Handbook of Automated Reasoning, vol. 2, pages 1853-1965. Elsevier
Science and MIT Press, 2001.

E. Y. Shapiro. The family of concurrent logic programming languages.
ACM Computing Surveys, 21(3):413-510, Sept. 1989.

P. Wadler. The essence of functional programming. In Conference Record
of the 19th Symposium on Principles of Programming Languages, pages
1-14, Albuquerque, Jan. 1992. ACM Press.

K. Watkins, |. Cervesato, F. Pfenning, and D. Walker. A concurrent
logical framework I: Judgments and properties. Technical Report
CMU-CS-02-101, Department of Computer Science, Carnegie Mellon
University, 2002. Revised May 2003.

K. Watkins, |. Cervesato, F. Pfenning, and D. Walker. A concurrent
logical framework: The propositional fragment. In S. Berardi,

M. Coppo, and F. Damiani, editors, Types for Proofs and Programs, pages
355-377. Springer-Verlag LNCS 3085, 2004. Revised selected papers
from the Third International Workshop on Types for Proofs and Programs,
Torino, Italy, April 2003.

APPENDIX
A. LOGICAL RULESSUMMARY

SYNTAX:

b
I

P|T|A & Az
A1 -0 Az | Ay D A | Va:T. A | {S}

AITA|1] 51 ® S | Fzer.S

—

El

& >
I
>

T, A
A A
5, w

n
I
W

)

SEQUENT FORMS:

— S Forward chaining

;A > {S} Monadic left focusing
;W — S Leftinversion

> 5 Right focusing

A=A Right inversion
T;A; A> P Leftfocusing

ieReieie!

> B>

RULES FOR BACKWARD CHAINING:
F,A;A;A>>Puh F;A;A>>P| atm L A—=S 0
rassp P TAaasp ™ Top=p T A= (5} V%

INA;A=B 5 I5A; B> P .= A
TA=A>B " IAN;ADB> P

oL

IAJA= B > A B> P A= A
IA=A-oB ¢ [;AL, A2 A oB>P

A=T Tr (no Tz rule)

A= A I'"A=B ;A A> P I;A;B> P
A= A& B B O TyAA&B>P " T;AA&B>P

&L2

A = [a/z]A L A;[t/z]A > P
A = Vot A " I A;Var. A > P o

RULES FOR FORWARD CHAINING:
F,A;A;A>Suh , ;A A>S Ihvo' A S — S O
TLAASS WP TAA-s"™P T aA{s)>s
IiA—S A> S
_ —— _ >
r;A;-— S LA—S
(Modified left rules for asynchronous connectives)

A B> P I,-= A
A AD B> P

, A B> P A= A
IA1,A; Ao B> P

AOL,

oL

IA;A> P , IA; B> P , [A;[t/z]A > P ,
;A A&B>P “ M TyA;A& B> P “F T;AVzrA> P ¢ (no T’ rule)

LA — S A S5:,S52,0— S ® L5 A fa/x]S, ¥ — S AA 0 — S
ALY — S g A0S ® 52,0 — S r ;A 3.8, 0 — S v F;A;!A,\II—>S'L
A AP — S async

A A0 — S

RIGHT RULES FOR SYNCHRONOUS FORMULAS:

;AL > 5 T A2 > 5, ;A > [t/z]S

lr " A > 7.8 "

r->1 DAL A > 51 ® 52

= A F;A:>A:>
I;->14"% T;,A> A

>

