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Abstract. Anomaly based intrusion detection has been held out as the
best (perhaps only) hope for detecting previously unknown exploits. We
examine two anomaly detectors based on the analysis of sequences of sys-
tem calls and demonstrate that the general information hiding paradigm
applies in this area also. Given even a fairly restrictive definition of nor-
mal behavior, we were able to devise versions of several exploits that
escape detection. This is done in several ways: by modifying the exploit
so that its manifestations match “normal,” by making a serious attack
have the manifestations of a less serious but similar attack, and by mak-
ing the attack look like an entirely different attack. We speculate that
similar attacks are possible against other anomaly based IDS and that
the results have implications for other areas of information hiding.

1 Introduction

For some time a primary dictum of the intrusion detection field has held that
anomalous and intrusive activities are necessarily equivalent.1 Insofar as we have
been able to determine, most previous activity in the anomaly based intrusion
detection area has concentrated on demonstrating that anomalous manifesta-
tions, detectable by whatever detection scheme was being used, often occur at
the same time an intrusion is being carried out. This has led many researchers
in the intrusion detection field to assume that anomaly detection is the same as
intrusion detection. As a consequence, many investigators have failed to exam-
ine the underlying causes and characteristics of the anomalous behaviors that
1 This view is clearly enunciated by Dorothy Denning [1] who said:

The model is based on the hypothesis that exploitation of a system’s vul-
nerabilities involves abnormal use of the system; therefore, security violations
could be detected from abnormal patterns of system usage. ...

Similar, though often less clear, statements appear in many recent papers.

F.A.P. Petitcolas (Ed.): IH 2002, LNCS 2578, pp. 1–17, 2003.
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they observe. In particular, they often fail to demonstrate that the anomalous
manifestation is a necessary consequence of the intrusive activity.

Recently, we discovered techniques whereby intrusive activities with anoma-
lous manifestations could be modified in such a way as to be indistinguishable
from arguably normal activities. We have also discovered techniques that can be
used to modify other anomalous, intrusive activities so that, while still anoma-
lous, they fall into the blind spot[2] of one commonly used anomaly detector
(stide[3]) and become undetectable. We view both of these transformations as
forms of information hiding and are beginning to suspect that the lessons that
we are learning may be relevant to other areas of information hiding.

As the paper continues, we will explain just enough about intrusion detection
and anomaly based intrusion detection so that the reader has some context
into which to place our results. Key to this effort is the notion that a sensor
associated with the system being monitored abstracts system activity into a trace
of data items on which analysis is performed. In this context, we will discuss the
problems involved in establishing “normal” behavior in general, and the classes of
sensors used for anomaly based intrusion detection in particular. Recent work [2]
has characterized these sensors and has demonstrated that they may suffer from
blind spots, that is regions in which they are unable to recognize anomalous data.
With this background established, we will provide several examples of anomalous
intrusions, concentrating on the characteristics that make them anomalous in
the context of our observed “normal.” We then show how the intrusions can be
transformed so that their traces either appear normal or fall into the blind spots
of the anomaly detector. In passing, we also note that similar techniques could
be used to produce traces that are anomalous but benign, overloading operators
with false alarms that offer a further opportunity for hiding anomalous intrusive
activity. At this point, we enter the realm of speculation.

Much of information hiding depends on the unsuspecting observer remain-
ing unsuspecting. Once the observer knows that hidden information is present
and understands how the information was hidden, its extraction (or erasure) is
relatively simple. Unlike cryptography, information hiding techniques depend on
the hider doing a good enough job to operate below the suspicion / detection
threshold of observer. In the case of the IDS, we know the detector character-
istics and have been able to shape our activities so as to produce traces that
avoid them. We speculate that, in general, knowledge of the detection algorithm
enables the development of techniques that avoid detection. As a simple exam-
ple, the Stegdetect package by Niels Provos [4, 5] assumes that the details of the
steganographic algorithm are known, but appears not to detect that for which
it has not been specifically provisioned.

1.1 Intrusions, Intrusive Activities, Penetrations, and Exploits

From the earliest days of computer security, the possibility that malicious users
could defeat protection mechanisms was an area of serious concern. Due to the
relatively limited networking of early systems and the prevalence of multiuser
batch systems, coupled with the fact that publicly accessible services (such as
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present day web servers) were almost unknown, most of the early efforts con-
centrated on mechanisms that untrusted insiders could use to access sensitive
materials on multi-level secure systems2. Under this model, the primary threat
is from legitimate users of the system who try to gain access to material for
which they do not have authorization.

Although there are earlier discussions of the issues associated with malicious
users, James P. Anderson’s 1980 report, “Computer Security Threat Monitoring
and Surveillance”[6] sets up the first coherent framework for a of intrusions and
intrusion detection.

Anderson classifies threats as shown in Figure 1. The first task faced by
an external penetrator is gaining access to the system in question. Note that
the true external penetrator may be either an outsider with no connection to
the organization that owns or controls the system being attacked or it may
be someone associated with the organization who is not authorized to use the
system. In todays world of networked systems, it could also be someone who has
legitimate access to systems on the network, but not to the target of the attack.

1.2 Intrusions and Anomalous Behavior

Anderson (and later Denning [1]) assumed that the statistical behavior of users
could be characterized with sufficient accuracy so that departures from normal
behavior would be indicative of intrusions. After a number of attempts, it was
realized that the problem is not that simple, but the notion that some charac-
terization of normal can be found that allows intrusive activity to be recognized
persists. In general, anomaly based intrusion detectors comprise a sensor that
2 A multi-level secure computing system is one that is capable of supporting a manda-
tory access control policy that bases access decisions on the classifications assigned
to the information objects that it stores and clearances given to users on whose
behalf processes seek access.
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monitors some aspects of system behavior and a decision process that decides if
the sensed data is consistent with a predefined notion of normal. The latter is
typically defined by observing the data under circumstances where it is certain
that intrusive activity is not present. The sensed data may be complex, involving
numerous variables and their temporal relationships or it may be fairly simple.
The detectors that we examine for this study monitor the system call activity of
privileged processes operating on Unix systems. After the system calls have been
collected for a sufficiently long period of normal activity (the training data) and
characterized as shown below, the system is monitored to look for departures
from normal under the assumption that this will indicate an intrusion.

2 Description of the Anomaly Detectors

For our purposes, we choose two relatively simple detectors, stide [3] and
t-stide [7]. Both use as input the system calls3 made by privileged UNIX pro-
grams such as lpr (the line printer server), sendmail (the mail delivery pro-
gram), etc. These programs typically operate with special privileges because
they must be able to read and write files belonging to many users. They are
attractive targets for intruders because they can sometimes be abused in such
a way that the abuser acquires their privileges. As they operate, these programs
may spawn multiple processes. The data used for analysis consists of the lists
(or traces) of system calls that each process associated with the program makes
from its initial creation to its termination. The system calls may be thought of
as unique symbols, each representing a particular system function invoked by
the program, in effect, an alphabet consisting of several hundred characters.

Stide makes a binary decision based on whether or not a fixed length subse-
quence of test data is in its “normal” database. T-stide takes into account the
frequency with which such sequences occur in the training data, allowing se-
quences that occur infrequently in the normal data to be considered as possibly
intrusive.

2.1 Description of Stide

Stide acquires a model of normal behavior by segmenting training data into
fixed-size sequences [7]. This is done by sliding a detector window of fixed size
DW over the training data, one symbol at a time, producing a series of overlap-
ping samples, each a sequence containing DW symbols. Each unique size DW
sequence obtained from the data stream is stored in a “normal database.” Se-
quences of size DW are also obtained from the test data using a sliding window
and tested to see whether or not they are present in the normal database. If
a test sequence is found in the normal database, it is assigned an anomaly score
of 0. Sequences that do not exist in the normal database are assigned an anomaly
score of 1. In this manner, a sequence of overlapping, fixed length, samples is
converted to a sequence of 0s and 1s.
3 The calls are captured by instrumenting the system call interface to the Unix kernel.
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The detector’s final response to the test data, the anomaly signal, is the sum
of the anomaly scores for the most recent N test sequences. For example, if N ,
the size of the locality frame is set to 20, then for each sequence of test data
the number of mismatches in the last 20 (overlapping) test sequences, including
the current one, is calculated. The number of mismatches that occur within
a locality frame is referred to as the locality frame count and is used to determine
how anomalous the test data is in that region. The size of the locality frame is
a user-defined parameter that is independent of the size of the detector-window.
See [3, 7] for additional detail.

2.2 Description of T-stide

Warrender et al.[7] observed that some anomaly detection algorithms regarded
rare sequences as suspicious events. T-stide (“stide with frequency threshold”)
was designed to test this premise. T-stide involves a simple modification to the
basic stide algorithm. As the normal database is built, counts are maintained
of the total number of samples examined and the number of times each sample
was seen. This allows the relative frequency of occurrence of each sample to
be determined. Rare sequences were defined as those sequences with relative
frequencies that fall at or below a user-defined threshold (0.001% in this case).
Sequences in the database that are not rare are called “common.” In determining
the anomaly scores for a sequence of test samples, t-stide treats samples found
to be rare in the normal database as though they were not present and returns
an anomaly score of 1.

2.3 A Description of an Anomaly-Based Evaluation Strategy

We define a foreign sequence (of any length) as a subsequence of a trace of test
data that is not a subsequence of any trace of the normal data. We define a foreign
test sequence as a sequence of length DW obtained from the test data that does
not appear in the normal database. It is not difficult to see that stide will only
detect foreign test sequences, and t-stide will detect both foreign and rare test
sequences. Testing the detectors involves injecting foreign (or rare) sequences
into normal data, a nontrivial process that is discussed in [8] which establishes a
evaluation framework that focuses on the structure of anomalous sequences and
provides a means to describe the interaction between the anomalous sequences
and the sliding window of anomaly detection algorithms like stide.

2.4 Stide’s Performance

The most significant result provided by the evaluation of stide was that the detec-
tor is completely blind to a particular kind of foreign sequence, a minimal foreign
sequence, that was found to exist (in abundance) in real-world intrusion data [2].
A minimal foreign sequence is foreign sequence whose proper subsequences all
exist in the normal data, i.e. it contains no smaller foreign sequences.
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Fig. 2. The detector coverage (detection map) for stide; A comparison of the
size of the detector window (rows) with the ability to detect different sizes of
minimal foreign sequence (columns). A star indicates detection

For stide to detect4 a minimal foreign sequence, its detector window size, DW
must be larger than the size of the minimal foreign sequence. This phenomenon
can be seen in Figure 2. The graph in the figure plots the size of the minimal
foreign sequence on the x-axis and the size of the detector window on the y-
axis. Each star marks the size of the detector window that successfully detected
a minimal foreign sequence whose corresponding size is marked on the x-axis.

The diagonal line shows the relationship between the detector window size
and size of the minimal foreign sequence, a relationship that can be described
by the function, y = x. Figure 2 also shows an area of blindness in the detection
capabilities of stide with respect to the minimal foreign sequence. This means
that it is possible for a foreign sequence to exist in the data in such a way as to
be completely invisible to stide. This weakness will be shown to be exploitable
by an attacker in the subsequent sections.

2.5 T-stide’s Performance Results from the Anomaly-Based
Evaluation Strategy

The most significant result provided by the anomaly-based evaluation of t-stide
was that there were conditions that caused the detector to be completely blind to
4 The term detect for stide means that the minimal foreign sequence must have caused
as at least one sequence mismatch as it passed through the detector window.
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both the minimal foreign and rare sequences. Like the minimal foreign sequence,
a minimal rare sequence is rare sequence whose proper subsequences are all
common sequences in the normal data.

Although t-stide will be able to detect a minimal foreign sequence when
the detector window is equal to or larger than the size of the minimal foreign
sequence, it is possible for t-stide to detect a minimal foreign sequence when the
detector window is smaller than the size of the minimal foreign sequence if the
minimal foreign sequence contains at least one rare subsequence the size of the
detector window. However, if the minimal foreign sequence is composed entirely
of common subsequences, then t-stide exhibits the same behavior as stide, i.e.
an area of detection blindness, identical to the one displayed in Figure 2, exists
in the performance map. It is the t-stide’s blindness to minimal foreign or rare
sequences composed entirely of common subsequences that can be exploited to
hide the presence of attacks from the detector.

3 The Victim Programs, Normal Data, and Attacks

The attacks selected for this study are typical of those that stide is intended
to detect, i.e., attacks that exploit privileged UNIX system programs. UNIX
system programs typically run with elevated privileges in order perform tasks
that require the authority of the system administrator, privileges that ordinary
users are not usually afforded. Exploiting vulnerabilities in privileged system
programs can result in the attacker acquiring its privileges[7].

We chose the three attacks examined in this study because they can be
used to illustrate the types of information hiding with which we are concerned.
The three attacks are called restore, tmpwatch, and kernel after the programs
which are exploited during the attacks. Each of the attacks successfully allows an
attacker with an unprivileged local account on a system to elevate his privileges
to those of the system administrator, giving total control over the victimized
host.

For each of these programs, it is necessary to establish a baseline of normal
behavior against which the attacks can be compared. Typically, this would be
done by the administrator of the system being protected and would reflect the
typical usage of that installation. An attacker wishing to hide an attack needs
to know a reasonable approximation of the normal behavior as well.

For anomaly detectors that monitor system programs, training data can eas-
ily be approximated because system programs typically have limited behaviors
and it is possible to make reasonable assumptions about their typical usage.
Program documentation and experience supplement these assumptions. It is im-
portant to note, however, that the success of this method for undermining stide
and t-stide is reliant on the attacker being able to estimate the normal usage of
the system program, however the attacker does not need to obtain every possible
example of normal behavior for a given system program in order to undermine
stide.
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When an exploit is performed, we need to determine whether the actions as-
sociated with the attack are actually manifested in the sensor data, and whether
the manifestation is an anomalous event detectable by stide. The former is done
by inspecting the system call trace captured and examining the source code of
the attacked program to determine the execution path that produced it in re-
sponse to the attack command. The later requires identifying the minimal foreign
sequence(s) in the trace that associated with stide detection. In our evaluation,
we used window sizes from 1 through 15 with both stide and t-stide.

3.1 The restore Attack

restore is a program used to restore corrupted or deleted files from a backup
copy. In order to allow normal users to access tape devices used to perform
backups and restores, the program must run with administrative privileges. In
addition, the restore program allows the retrieval of backups from a remote,
the backup server. In this case, the user of the restore program may be required
to authenticate to the backup server. To support this authentication as well as
the network connection required, restore executes a helper program, typically
a “remote shell” on behalf of the user. A vulnerability exists in restore that
passes its privileges to the helper program. The helper program can be specified
by the user, allowing an attacker to create an arbitrary program and then use
restore to execute it with root privileges. One example of such an attack pro-
gram creates a “suid root” shell which the attacker can use to regain root access
even if the vulnerability in restore is fixed.

For the restore system program, normal data was obtained by monitoring
a regular user executing the restore system program to retrieve backup data
from a remote backup server. A second computer is set up to act as this backup
server and maintain regular backups of the files on the target computer system
which the user could access using ssh as detailed in [9].

The restore attack was simply downloaded from [10] and run. The successful
execution of the exploit was confirmed by noting the elevated privileges given
the command shell created and run during the attack.

The manifestation of the restore attack was determined manually. An in-
spection of the source code for the restore program and its exploit script iden-
tified the system calls which are attributable to the attack. This sequence of
system calls is

dup2, close, close, dup2, getpid, setpgid, execve.

In addition to the system calls of the child process, the sequence of system
calls made by the restore process after it forks the child consists of failed
attempts to interact with the attacker’s program. These system calls,

fork, close, close, fstat, mmap, ioctl, write, getuid,
setuid, write, read, write, munmap, exit,
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are also considered part of the manifestation of the attack. The attack was
detectable by stide and t-stide at all detector window sizes greater than one
because the pair write, munmap is a minimal foreign sequence of size 2.

3.2 The tmpwatch Attack

tmpwatch is a program which is intended to periodically clean up the temporary
files left in the tmp file system by both users and system programs. The tmpwatch
program must be run by the administrator in order to remove files created by ar-
bitrary users. Since removing a file which is currently open by another processes
might put that process in an unstable state, tmpwatch uses another program,
fuser, to determine whether the file is currently open by another process. If it
is, the file is not removed. The manner by which tmpwatch invokes fuser is un-
safe from a security standpoint. tmpwatch program assembles a shell command
from the fuser program name and the name of the file to be tested.t tmpwatch
does not check the filename for special characters that will be interpreted by the
shell as something other than part of the file name. For example, an attacker
can create a filename containing a semicolon. When the filename is passed to
the shell, the semicolon will be interpreted as the end of one command and the
beginning of another and the rest of the filename will be treated as a command
and executed with the administrative privileges inherited from tmpwatch. In our
example, the attacker forces tmpwatch to run a sequence of commands which
creates a “setuid root” shell.

For the tmpwatch[11] system program, normal data was obtained by pop-
ulating the /tmp file system with a small directory hierarchy containing five
directories and thirteen files, the access times of five of which are set to be more
than five days old. Then the system calls of the tmpwatch program are logged
while it is invoked by the system administrator to clean the /tmp directory of
all files older than five days, using the fuser program to protect the files which
are currently open by any other processes.

The tmpwatch exploit was created based on the description [12]. The attack
script creates a file in the tmp directory which will cause a root compromise
the next time tmpwatch is run as root. The success of the attack is confirmed
with the creation of a shell with administrative privileges by the tmpwatch. The
sequence of system calls which constitutes the manifestation of the attack is:

lstat, access, rt sigaction, rt sigaction, rt sigprocmask, vfork,
wait4, rt sigaction, rt sigaction, rt sigprocmask, unlink.

The vfork in this sequence is the creation of the child process which in turn
executes the fuser program. Since it is in that execution which leads to the
creation of the “root” shell, the sequence of system calls made by that process
constitute the rest of the manifestation of the attack:

rt sigaction, rt sigaction, rt sigprocmask, execve.

The attack was detectable by both stide and t-stide at all detector window
sizes greater than thirteen because the first part of the manifestation, listed
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above, formed a minimal foreign sequence of size thirteen when combined with
the preceeding two (which are not part of the manifestation).

3.3 The kernel Attack

The Linux kernel enforces the security and access control policies of the system.
One aspect of this is ensuring that the kernel support for debugger programs
cannot be misused. Debuggers are programs which allow a developer to interac-
tively control the execution of another program in order to analyze its behavior.
The kernel mediates this interaction and must restrict these capabilities to au-
thorized processes. For example, were an unprivileged process able to attach to
and control a privileged program, the unprivileged program would be able sub-
vert the privileged program and force it to take arbitrary actions. Unfortunately,
a serialization error in the kernel creates an interval in which any process is able
to attach to and control any other process before an authorization check is made.
In our example, an attacker takes control of traceroute, a network diagnostic
tool, and redirects it to create a “setuid root” shell.

For the traceroute system program, normal data was obtained by executing
it to acquire diagnostic information regarding the network connectivity between
the local host and the Internet site nist.nsf.org5.

The kernel exploit was downloaded from [14]. Since the exploitation of the
vulnerability in the kernel requires the execution of a privileged system pro-
gram, the exploit was configured to take advantage of the traceroute system
program. The sequence of system calls that comprise the manifestation of the
attack embodied by the kernel exploit is:

setuid, setgid, execve.

It was found that the attack was detectable at all detector window sizes by both
stide and t-stide. More precisely, the attack was detectable by stide and t-stide
because setgid and execve are foreign symbols (i.e. they do not appear in the
normal data at all).

4 Hiding Attacks by Modifying Exploits

Thus far, we have established some limitations on the detection abilities of stide
and t-stide but have shown that they easily detect our example exploits. Knowing
that stide is running on the host system and will alarm if any of the exploits are
used, we wonder if they can be modified to hide their manifestations.

The detection map shown in figure 2 is the key to this process. Effectively,
we have two choices: 1) ensure that the attack appears to be normal or 2) ensure
that the attack falls into the detector’s blind region. This means ensuring that
the attack either manifests no foreign sequences at all or manifests only minimal
foreign sequences longer that the detector window, DW . If this is not possible,
the consequences of detection may be reduced by making the attack appear to
5 Chosen because it is the simplest example in the documentation[13].



Hiding Intrusions: From the Abnormal to the Normal and Beyond 11

be either a less devastating attack; or another random attack altogether. We
give examples for each of the approaches and each of the later alternatives.

4.1 Hiding in Normal

The restore attack can be hidden by making it appear normal. We do this
by comparing the evidence left by the attack with what is left by a normal
usage of the program and modifying the attack so that the evidence left is
no different than what would have appeared normally. A comparison of the
system call sequence made during the attack with that made during the normal
restoration of files shows that the attack data can be distinguished from the
normal data because the attack does not set up a communication channel to a
remote host and the restore program fails. The system calls made when the
restore program fails contain the foreign sequence that allows detection of the
attack. In order to make the attack look normal, the helper program used must
retrieve the backup file from the remote host, and at the same time perform its
malicious activity. We modified the attack so that the program run by restore
serves the dual purpose of giving the attacker elevated privileges and making
the ssh connection to the backup server. Since the restore program receives
the backup file and completes successfully, it never enters the error state and the
evidence of the attack is hidden in what appears to be a normal run of restore.

The sequence of system calls observed when the modified attack is made
exactly match the sequence of system calls observed when the restore program
is run normally as described above. Note that the helper program is specified
by the user, so that there is no way to include its activities in the definition of
normal for restore.

4.2 Hiding in the Blind Spot

In addition to the exploits described above, we have discovered another exploit
against traceroute that can be modified to produce arbitrarily long minimal
foreign sequences[15]. traceroute must have unrestricted access to the network
interface, a resource only provided to privileged system programs. A logic error
in traceroute allows an attacker to corrupt the process’ memory by specifying
multiple network gateways on the command line[15]. The attack uses this mem-
ory corruption to redirect the process to instructions that execute a command
shell with the elevated privileges of the traceroute system program. The at-
tack can be confirmed from the system call trace of traceroute and observing
that the attack has caused the process to launched a shell with administrative
privileges.

The result of this modification is illustrated graphically in Figure 3. The x-
axis for Figure 3, represents the size of the minimal foreign sequence anomaly,
and the y-axis represents the size of the detector window. Each star marks the
size of the detector window that successfully detected a minimal foreign sequence
whose corresponding size is marked on the x-axis.
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Fig. 3. Modifying traceroute exploit for an arbitrarily large Minimal Foreign
Sequence

As expected the graph mirrors the detection map for stide, showing that the
larger the minimal foreign sequence that is the manifestation of an exploit, the
larger is the detector window required to detect that exploit. The circles and
arrows illustrate the following scenario. If stide were deployed with a detector
window of size 6, then it is possible to modify the traceroute exploit so that
it manifests as a minimal foreign sequence of successively larger sizes until size
7 is reached where the exploit falls into the detector’s blind spot. This shows
that it is very possible to exert control over a common exploit so that its man-
ifestation is moved from an anomaly detector’s detection region, to its region
of complete blindness. Such movement of an exploit’s manifestation effectively
hides the exploit from the detector’s view.

Achieving an attacker’s objectives is not affected by the modification to the
exploit programs, and neither is the training data tampered with in order to
render an anomaly detector blind to the attacks. While it would not be in the
attacker’s interests to modify an attack to make it more easily visible, this may
also be possible. These results have implications for both detector design and
for detector evaluation.

4.3 Hiding in a Less Serious Attack

An example of an attack being made to look like a less devastating attack is
the tmpwatch attack. We consider an alternative attack using tmpwatch which
performs a denial of service on the host. This is arguably less damaging that al-



Hiding Intrusions: From the Abnormal to the Normal and Beyond 13

��
��
��
��
��
��
��
��

����
����
����
����
��
��
��

��
��
��

��
��
��

��
��
��

����
����
����
����
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
��
��
��

��
��
��

����
����
����
����

����
����
����
����
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����
��
��
��

��
��
��

��
��
��

��
��
��

����
����
����
����
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
��
��
��

��
��
��

����
����
����
����

����
����
����
����
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

5 10 15 20 3025

System Calls used in Attack

Manifestation of "Kernel" Attack Impersonating "Traceroute" Attack

"Kernel" Attack

Modified "Kernel" Attack

"Traceroute" Attack

Fig. 4. A comparison of the manifestations of the kernel attack, the modified
kernel attack, and the attack it was modified to impersonate

lowing a root compromise. The evidence left by this lesser attack will be collected
and analyzed and the original tmpwatch attack modified so that the evidence it
leaves is made to look like the evidence left by the alternative attack.

In order to recursively clean every subdirectory of the /tmp file system, the
tmpwatch process forks a new process, copying itself. If an attacker can create
a large number of subdirectories, the tmpwatch program will have to create a new
process for each subdirectory. It is possible for the number of tmpwatch processes
to grow until it reaches a system-wide limit on the number of running processes,
typically crashing the system.

An exploit based around this approach was created, also based on the de-
scription of the vulnerability available at [12]. When the tmpwatch process is
run, the success of the attack is confirmed when tmpwatch reports that the pro-
cess table is full. The manifestation of this denial of service attack is thousands
of sequences which look exactly like the manifestation of the root compromise
attack.

If both attacks are launched against a system, the elevation of privileges
attack may go unnoticed by the intrusion detection system. Evaluating the evi-
dence left by just the denial-of-service attack and then the evidence left by both
the denial-of-service and the elevation of privilege attacks launched in parallel,
it can be confirmed that the detection system reports the same number and type
of anomalous sequences in both attacks. Hence, the more devastating attack has
been hidden within the less devastating one.

4.4 Hiding as Another Attack

The kernel attack can be made to look like a very different attack. The evidence
from an attack that exploits a vulnerability in the traceroute program is de-
scribed. The kernel attack is then modified so that the evidence it leaves exactly
matches that left by the traceroute attack which is described in Section 4.2
above.

As described above, the kernel attack does not require any particular system
program to be present on the system, most every system program which runs
with administrative privileges works equally well. In this experiment, the kernel
attack uses the traceroute program.
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Figure 4 shows that the system calls issued by the impersonating (kernel)
and impersonated (traceroute) attacks are identical. Each patterned block in-
dicates a system call in the sequence of system calls that will be logged during
the attack. This is possible because the traceroute attack contains the sequence
of calls used in the kernal attack. It is possible to pad the kernal attack so
that it takes on the appearance of the traceroute attack while preserving its
own semantics.

4.5 Attack Hiding Results

The procedures described in the previous sections, designed to modify attacks
to hide them, were all successful. For each of the attacks and for each of the two
intrusion detection systems, stide and t-stide, the detection system is used to
detect the attack at all window sizes from 1 through 15 and the number of alerts
is recorded. The number of alerts produced by the attack is compared with the
number of alerts produced by the target event which the attack is being modified
to impersonate i.e. normal, a less devastating attack, or a totally different attack.
A typical comparison is shown in Figure 5 in which it is shown that the kernel
attack can be modified to successfully impersonate the traceroute attack to
the t-stide anomaly-based intrusion detector. The top graph shows the alerts
produced by the original kernel attack. The middle graph shows the alerts
produced by the traceroute attack. And, the bottom graph shows the alerts
produced by the kernel attack modified to look like the traceroute attack.
Since the middle and bottom graphs match, T-stide is unable to distinguish
between the two attacks, at window sizes from 1 through 15, with rarity threshold
0.005.

The comparison between the restore attack modified to look like a nor-
mal run of restore and such a normal run, and the comparison between the
tmpwatch attack modified to look like a denial-of-service attack and the denial-
of-service attack itself produce results similar to Figure 5.

5 Related Work

While this paper was under review, we became aware of similar work being
performed by David Wagner [16] at Berkeley. Wagner’s approach is linguistically
based, using a mechanical search to embed an attack, padded with system calls
that have been effectively converted to “no-ops” if necessary, into strings that can
be composed from the normal stide database for the program being attacked.
This approach seems to be primarily applicable to attacks based on storage
overflows where the attacker controls the execution sequence of the attacked
program from the point of the overflow.

Preliminary results showing that intrusions can be hidden in the blind spot
of stide also appear in a paper by Tan, et. al. [17].
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T-Stide Detector Response to Attack #2 (traceroute attack)
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T-Stide Detector Response to Attack #1 Made to Look Like Attack #2

Fig. 5. A comparison of the alerts produced by different attacks. The top graph
shows the number of alerts that are produced when t-stide is used with window
sizes 1 through 15 to detect attack #1, the kernel attack. The middle graph
shows the number of alerts that are produced when t-stide is used to detect
attack #2. The bottom graph shows the number of alerts that are produced
when t-stide is used to detect attack #1 modified to look like attack #2. Since
the graphs match, the modification is successful in getting attack #1 to look like
attack #2 to t-stide
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6 Conclusions and Implications

At the very least, our work has demonstrated, through the application of a novel
information hiding paradigm, that malicious acts and anomalous manifesta-
tions from intrusion detection sensors are not necessarily synonymous. We have
demonstrated hiding serious attacks in such a way that they either appear com-
pletely normal or are likely to be confused with other attacks. We believe that
we can apply the approach with other attacks and with other sensors. A skilled
attacker who understands the detector and the environment in which it is de-
ployed may be able to devise undetectable attacks. If this result holds for a wide
variery of anomaly based intrusion detection systems, it may undermine the ef-
fectiveness of the anomaly detection approach to intrusion detection as a vehicle
for detecting unknown attacks.

At the same time, the “cat and mouse” game implied by this approach has an
unsatisfying aspect to it. The anomaly detector evaluation that led to our work
has a sound scientific basis, but the application of these detectors to intrusion
detection is very much ad hoc as has been noted by Lee and Xiang [18]. In this
respect, the work seems to have much in common with the rest of the information
hiding field and with other areas involving “slights of hand” in general. This can
be summed up as “It isn’t a trick once you understand it.” Much of the work
in information hiding has this flavor, depending on obscurity for protection. We
were hoping to gain insights that might move us toward a more theoretical basis
for understanding intrusions. Instead, we seem to have discovered an interesting
approach for serious intruders.
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