23rd Annual Computer Security Applications Conference

Toward Realistic and Artifact-Free Insider-Threat Data

Kevin S. Killourhy

ksk@cs.cmu.edu

Roy A. Maxion

maxion@cs.cmu.edu

Dependable Systems Laboratory
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Abstract

Progress in insider-threat detection is currently limited
by a lack of realistic, publicly available, real-world data.
For reasons of privacy and confidentiality, no one wants to
expose their sensitive data to the research community. Data
can be sanitized to mitigate privacy and confidentiality con-
cerns, but the mere act of sanitizing the data may introduce
artifacts that compromise its utility for research purposes.
If sanitization artifacts change the results of insider-threat
experiments, then those results could lead to conclusions
which are not true in the real world.

The goal of this work is to investigate the consequences
of sanitization artifacts on insider-threat detection experi-
ments. We assemble a suite of tools and present a method-
ology for collecting and sanitizing data. We use these tools
and methods in an experimental evaluation of an insider-
threat detection system. We compare the results of the eval-
uation using raw data to the results using each of three types
of sanitized data, and we measure the effect of each saniti-
zation strategy.

We establish that two of the three sanitization strategies
actually alter the results of the experiment. Since these two
sanitization strategies are commonly used in practice, we
must be concerned about the consequences of sanitization
artifacts on insider-threat research. On the other hand, we
demonstrate that the third sanitization strategy addresses
these concerns, indicating that realistic, artifact-free data
sets can be created with appropriate tools and methods.

1. Introduction

An insider is a person with legitimate access to an orga-
nization, and who acts maliciously against that organization.
The insider threat is a significant and growing concern, es-
pecially in fields where espionage and fraud are profitable.

1063-9527/07 $25.00 © 2007 IEEE
DOI 10.1109/ACSAC.2007.31

87

A survey of insider incidents in the banking and finance sec-
tor found that 30% resulted in losses in excess of $500,000
each [10]. Examples of insider behavior include the unau-
thorized modification of company data for personal profit,
the compromise of other employees’ computer accounts,
and the installation of “back doors” through which the in-
sider regains access in the event he or she is terminated [4].

For almost two decades, researchers have been propos-
ing systems to detect and prevent insider threat. These sys-
tems work by monitoring users, profiling their behavior,
and identifying suspicious or anomalous activity. The earli-
est systems analyzed audit records and built profiles of the
commands each user executes [1, 12]. The conjecture was
that a legitimate user might be distinguished from an im-
postor by their distinct usage of commands (e.g., the user
used vi, the impostor runs emacs); also, an insider stray-
ing from authorized activity might be detected when he used
anomalous commands (e.g., to copy a file he does not nor-
mally access). As a result of that early work, many sys-
tems have been proposed for detecting insiders using Unix
command-line data [5, 8, 11].

These insider-threat detection systems are best evaluated
using natural, real-world data to measure, compare, and im-
prove their performance. Researchers have instrumented
computer systems to monitor the behavior of participating
users [2, 5, 11]. They collect, sanitize, and share their data
with the research community. Sanitization is the act of re-
placing sensitive data (such as passwords) with uninforma-
tive markers (such as the string <XXXXX>). Sharing the
data allows other researchers to evaluate and compare the
performance of different insider-threat detectors.

However, since a goal of these evaluations is to estimate
the “real-world” performance of a system, we must ask how
effectively the data serve this goal. When an evaluation uses
these data, how confident are we that the outcome of an
evaluation carries over to the real world? If these evalua-
tions are being used to determine which insider-threat de-
tector is deployed, then we must be confident that the eval-

IEEE
computer
psouety

uation is accurate. Deploying an insider-threat system that
under-performs is risky, increasing the already high cost of
insider-threat.

Unfortunately, because of the way existing data sets were
created, we must be wary of generalizing to the real world
on the basis of evaluations that use these data sets. First,
the data are not realistic, by which we mean that the data
do not reflect what one would find in a real-world environ-
ment. Specifically, in the real world, an insider’s choice of
commands would stem from his or her underlying malicious
intentions. Existing data sets contain no actual insider be-
havior; it is experimentally induced, typically by designat-
ing some normal users as impostors, and using their com-
mands as a substitute for insiders’ commands. Those com-
mands might have been observed when the user was check-
ing his mail, writing a program, or any other benign activity.
We cannot assume that a system which is good at detecting
when a user is checking his mail will perform equally well
detecting insider activity.

Second, when the data are sanitized, artifacts are intro-
duced into the data set. Artifacts are modifications of the
data (due to the sanitization process) that alter the outcome
of experiments using the data. For instance, if sanitization
replaces all user names with <XXXXX>, then commands
which were once distinct become indistinguishable. Sup-
pose an evaluation tested whether a system could detect
when user dave began snooping around user mary’s home
directory. The benign command “cd dave” and the suspi-
cious command “cd mary” are easily distinguished in the
raw, unsanitized data, but both appear as “cd <XXXXX>"
in the sanitized data. A detector which would detect dave’s
snooping in the real world might miss it in the sanitized data
because of artifacts. On the basis of this failed evaluation, a
detector which would actually work well in practice might
never be deployed.

2. Problem and approach

Experiments using existing insider-threat data may not
generalize to the real world because: (1) benign commands
typed by normal users are injected as a substitute for com-
mands typed by malicious insiders; and (2) unintended san-
itization artifacts may be introduced when sensitive data are
replaced with uninformative markers. As a result, benign
user activity could be flagged as insider activity when it is
not, or actual insider activity could go unnoticed.

To address these issues, we have developed a suite of
tools and a methodology for using them. To maximize
the realism of injected insider behavior, we developed a
library of carefully scripted and vetted insider activities.
While the realism of insider injections is a concern, the
primary focus of this work is on the effect of sanitization
artifacts. To ensure that sanitization does not introduce arti-

88

facts, we developed a sanitizing engine which allows users
to review their data, mark sensitive data, and export san-
itized data sets. This Sanitizer incorporates three differ-
ent sanitization strategies: Redact-Only, Token-Only, and
Word-Token. They differ in how they cover up sensitive
data (e.g., Redact-Only uses a “black box” like <XXXXX>,
Token-Only uses a distinct token like <TOKEN-12>, and
Word-Token breaks the sensitive data into words and then
uses one token for each word). Redact-Only and Token-
Only are similar to strategies used to sanitize existing data
sets. The Word-Token strategy was designed to be artifact-
free.

The present work is framed much like earlier work in
insider detection. In particular, we compare two types of
insider monitoring, called Enriched (comprising the entire
command line typed by a user) and Truncated (comprising
only the name of the command executed). The purpose of
conducting this experiment is to compare the results ob-
tained using raw, unsanitized data to the results using each
of the three sanitization strategies. We intend to establish
whether artifacts arise in the two types of monitored data
(Truncated and Enriched) as a consequence of sanitization,
and what the effects of those artifacts are on the ability to
detect insider activity.

3. Related work

Three existing insider-threat data sets are commonly
used by researchers. Unfortunately, each contains unre-
alistic insider injections and sanitization artifacts. Green-
berg [2] collected a corpus of Unix command-line data,
and Maxion [7] assembled it into an insider-threat data set.
However, benign commands from normal users were used
as a substitute for insider commands. Further, to protect
participating users’ privacy, usernames were sanitized by
replacing each letter of the username with an “x” char-
acter (e.g., dave and mary each contain four characters,
and both would appear as xxxx). Lane and Brodley [5]
also collected users’ commands, but again, benign com-
mands were used as a substitute for insider commands. The
commands were also sanitized by replacing every sequence
of one or more file names with a number indicating how
many names were in the sequence. Schonlau et al. [11] col-
lected the names of programs executed (rather than the full
command line), but again, benign commands were used in
place of insider commands. Further, one could argue that
collecting only the names of programs constitutes a form
of sanitization (especially since the authors state that full
command lines were not collected because of “privacy con-
cerns”). While these data sets have helped researchers de-
velop and refine insider-detection methods, we remain con-
cerned about the effect of unrealistic insider injections and
sanitization artifacts on those researchers’ experiments.

The problem of data-set artifacts has been demonstrated
by Mahoney and Chan [6] in the domain of intrusion detec-
tion. They found that an existing data set used to evaluate
intrusion-detection systems contained evidence of the arti-
ficial procedure used to synthesize the data. They demon-
strated that a detector could be built which would perform
well in the evaluation (by detecting these artifacts), and
yet it would have little chance of working well in practice.
Their findings highlight the need for data to be realistic and
artifact-free.

The tools we develop in this study are similar to others in
the literature. The Honeynet Project offers a data-collection
tool called Sebek [3] which is similar to the data collector
we develop. Data anonymization algorithms such as those
proposed by Sweeney [13], and tools like that developed by
Pang and Paxson [9] for Internet traffic are also useful for
data sanitization. One might argue that anonymization and
sanitization are the same, but the literature is not clear on
whether anonymization includes the removal of confiden-
tial or sensitive data (as stated by Pang and Paxson) or just
the removal of identifying data (as stated by Sweeney). In
any event, our tools were not designed to supplant these ex-
isting tools but to provide similar capabilities. We created
our own suite of tools because they had to be interoperable,
not because existing tools provided lesser functionality. As
a consequence, our findings should be relevant to users of
these similar tools as well.

4. Overview of methodology

In order to examine the consequences of sanitization ar-
tifacts on insider-threat experiments, we replicated a typical
experiment from the literature. In our replication, the orig-
inal experiment was conducted first using raw, unsanitized
data and then repeated using data treated with each of the
three sanitization strategies. We compared the results from
these experiments to reveal whether they were altered by
sanitization artifacts.

The experiment chosen for this exercise was conducted
by Maxion [7] who was studying the effect of two different
types of data (called Truncated and Enriched) on the effec-
tiveness of a naive-Bayes insider-threat detector. He com-
pared the performance of a detector given only the (Trun-
cated) program names typed by a Unix user to the perfor-
mance of the same detector given the full (Enriched) com-
mand line. Performance was measured in terms of the cost
of error of the detector (calculated as the sum of the miss
and false-alarm rates). Maxion found that the cost of using
Enriched data was 9% lower than the cost of using Trun-
cated data. However, his experiment used the Greenberg
data set [2], which contains sanitization artifacts as dis-
cussed above. As a consequence, we cannot be sure that the
9% difference in cost predicted by the experiment would

89

also be seen in a real-world deployment.

In order to see the effects of sanitization on this exper-
iment, we built a data-collection program called Monolog,
and deployed it on the workstations of system administra-
tors and operations staff members within the university. The
data collector recorded each user’s commands during his or
her natural daily activities.

We assembled a “library” of realistic insider attacks,
scripted the attacks, and launched the scripts against partic-
ipating users’ accounts. Whereas other researchers injected
one user’s commands into another user’s data as a simu-
lated attack, our scripts perform a real-world attack against
the user’s account (and then recover from the attack). The
scripts were designed to impersonate an attacker who gains
unauthorized access to an account (e.g., by using the vic-
tim’s workstation while he or she is away).

In another departure from other researchers’ methods,
users in the present study sanitized their own data. We felt
that the users themselves were in the best position to iden-
tify sensitive information, and that their input would help re-
searchers understand what sort of data users are reluctant to
share. An application called the Sanitizer was built to allow
users to view and to search their own data, to mark records
as sensitive, and to export sanitized copies of the data. Data
could be exported using any of the three sanitization strate-
gies (Redact-Only, Token-Only, and Word-Token), which
are described in detail in Section 5.3. By having users san-
itize their own data, researchers avoided having to employ
unnecessarily broad, draconian sanitization techniques.

To replicate Maxion’s experiment, we converted the
users’ sanitized data into Truncated and Enriched evaluation
data sets, and the performance of the naive-Bayes detector
was tested on each one. The miss rate, false alarm rate, and
cost of error were calculated as in the earlier experiment. To
compare the results to those using raw, unsanitized data, we
deployed the naive-Bayes detector on users’ workstations,
and we walked the users through the process of running it
on their own raw data and reporting the results. In this way,
we were able to compare the results of the experiment on
raw data to the results with each of the three types of sani-
tization, yet the users’ sensitive raw data were never shared
with the researchers.

5. Apparatus

We wrote three software programs to enable this in-
vestigation: (1) a reliable data-collection package called
Monolog; (2) an insider-script library to automate the in-
jection of realistic insider attacks; and (3) a Sanitizer ap-
plication to enable the review and sanitization of collected
data.

5.1. Monolog data collector

Monolog (as in “monitor and logger”) was designed to
reliably record user behavior within a command shell on
the Linux operating system. We instrumented the com-
mand shell bash to collect data commonly used for user
profiling at the command line. Lane and Brodley [5] col-
lected the command lines typed by their users. Greenberg
[2] collected not only the command lines, but also the cur-
rent working directory and the exit status of each command.
Schonlau et al. [11] collected the names of the programs ex-
ecuted (which may differ from the commands typed by the
user because of shell aliases or scripting). Monolog records
each of these types of data used in earlier studies.

Previous researchers found that instrumenting a shell
was problematic because of the complexity of the code [2].
We avoid much of the complexity because the shells sim-
ply send command-line data to a dedicated logging facil-
ity as soon as it becomes available. By keeping little state
in the instrumented shells, we avoid data loss if the shell
crashes or is unexpectedly terminated. The logging process,
called the Monolog daemon, writes data from the shells
to restricted-access files, one per monitoring shell process.
Access restrictions prevent users from snooping into each
others’ logs, and also prevents users from corrupting their
own logs. The design of the daemon is simple compared to
that of a shell. It is under 3K lines of code, and its correct-
ness can be tested independently of the instrumented shells.

5.2. Insider-script library

While Monolog ensures that user commands are reliably
collected, another mechanism is needed to inject realistic
insider commands. Previous researchers borrowed com-
mands from one benign user to use as insider data for an-
other user [5, 7, 11], but as we have noted, this is unrealistic.
We developed a library of scripts designed to impersonate a
human attacker who gains access to another user’s account.
Our scripts were designed to execute the commands of an
attack in a shell monitored by Monolog, so we conduct a
real attack against a participating user’s account. Conduct-
ing the attack allows us to verify its realism, whereas adding
the commands of the attack to data already collected does
not.

Four attack-injection scripts were developed. The at-
tacks were chosen to be consistent with actual insider in-
cidents reported to our research group or documented by
Keeney et al. [4]. The commands executed to accomplish
the attack were chosen by a researcher with some prior
penetration-testing experience.

1. Backdoor. The script downloads the nc network-
connection utility, compiles it, and installs it in the partic-
ipating user’s home directory. The nc program enables a

90

user to set up a listening socket which will execute a pro-
gram if a remote host connects to it. The nc program is
configured to listen on a randomly chosen port and, when a
remote host connects, to run /bin/sh. Consequently, the
script sets up a backdoor into the user’s account that any-
one can use just by connecting to the right port. After per-
forming the injection, the script verifies that the backdoor is
running by connecting to it. It recovers from the attack by
removing the backdoor and the nc program.

2. Portscan. The nmap port-scanning program is down-
loaded, compiled, and installed from the command line. It
is used to perform reconnaissance on three other computers
(intended to represent future targets for the attacker). After
performing the injection, the script verifies the output of the
port-scanner. It recovers from the attack by removing the
nmap program.

3. Exposure. The permissions on key files containing the
user’s personal data are changed to allow anyone on the
system to view them. All “history” files in the user’s home
directory are changed so that anyone has read permission.
This change allows a spy to reconnoiter the files the user
accesses. After performing the injection, the script verifies
that the permissions on these files have changed. It recovers
from the attack by restoring the original permissions.

4. Snoop. The history command is run to determine the
last several commands typed by the user. Potential file-
names are identified and extracted from the list. The £ind
command is used to find paths to a selection of those files,
and those files which are found are examined with the head
command. This script examines the first few lines of up to
10 files recently accessed by the user, simulating an attempt
to gather information about the user’s recent activities. Af-
ter performing the injection, the script verifies the output of
the commands. No recovery from the attack is necessary
beyond exiting the shell used for the injection.

We designed each script by first conducting the attack
manually under controlled conditions. The attack was
recorded by Monolog, and the commands typed by the at-
tacker were extracted, along with the time intervals between
them. Then, we wrote a script (using Perl and the Expect
package) to replay the commands of the attack, scheduling
the timing of each command to match the timing from the
recording. Then, we wrote verification functions to parse
the output of each command and to ensure that the expected
output is printed (e.g., no “file not found” error messages).

We parse and verify the output of each command because
we would not want to conduct an attack that fails in prac-
tice. Further, attack scripts can incorporate the output of
one command as arguments to later commands (e.g., the
Snoop attack uses the file names printed by history as
arguments in subsequent calls to £ind). We end the script

with a final verification and recovery function that restores
the system to its pre-attack state.

The attack scripts are run from a shell that is not mon-
itored by the data collector, so that the name of the script
itself does not appear in the logs as an artifact. For the same
reason, the functions to verify the success of the attack and
recover from it do not themselves execute shell commands.

5.3. Sanitizer application

The data collector and injection library described above
ensure that realistic user behavior is collected, and that re-
alistic attacks are injected. The Sanitizer ensures that users
can look through the collected data to find and sanitize in-
formation that users judge to be sensitive. It provides a
graphical interface with which to review the data collected
by the Monolog data collector.

The Sanitizer contains three panels, shown in Figure 1.
The large panel on the right contains a marked-up copy of
a Monolog session log. Text that may be potentially sensi-
tive is shown on a gray background, and text that has been
marked as sensitive is shown on a black background. A
user can mark text as sensitive by selecting it and pushing a
button. The top-left panel contains a list of all the sessions
not yet sanitized (i.e., a “to-do” list). The lower-left panel
contains a list of sessions that have been sanitized already.

When marking text as sensitive, users choose between
two marking options, called Redact and Tokenize. They
represent different sanitization preferences, and are in-
tended to solicit the user’s judgment about how sensitive
the text is.

1. Tokenize: A user selects Tokenize if he or she prefers
that the selected text be replaced with tokens in the sani-
tized copy of the data. If the same span of text has been
marked for tokenization in two separate places, the same
token will be used to cover it up. This might be a prob-
lem if, for instance, a user’s password is “God” and he to-
kenizes it. Suppose the password is covered up with the
string <TOKEN-12> and elsewhere in the sanitized data
appears the phrase “In <TOKEN-12> we trust.” Someone
looking at the sanitized data could infer the user’s password.

2. Redact: The fact that a token will be reused leaks some
information about what was sanitized. The Redact button
can be used in situations where this leakage is problematic.
A user selects redaction if he or she prefers that the selected
text is completely blacked out (as is done to cover up classi-
fied information in declassified documents). Substituting
the fixed-length redaction string <XXXXX> makes it im-
possible to tell whether one redacted string is the same as
another, making it appropriate for extremely sensitive data
such as passwords.

91

It is important to note that these marks register a preference.
Whether the data are either tokenized or redacted depends
on the sanitization strategy selected when a sanitized copy
of the data is actually exported.

After sanitizing all the sessions that he or she wishes to
export, the user is given a choice between three sanitiza-
tion strategies called Redact-Only, Token-Only, and Word-
Token. The strategies differ in how they cover up data
marked as sensitive. Intuitively, they represent different
balance points in the trade-off between a user concerned
with maintaining as much privacy as possible and a re-
searcher trying to preserve useful information. Of the three,
Redact-Only favors privacy the most, Word-Token favors
the preservation of useful information, and Token-Only is
in the middle..

1. Redact-Only. All spans of text marked for sanitization
(either redaction or tokenization) are redacted. All sensi-
tive spans of text are replaced by a string of five X’s (i.e.,
<XXXXX>).

2. Token-Only. All spans of text marked for either redac-
tion or tokenization are replaced by numbered token strings
(e.g., <TOKEN-1> or <TOKEN-12>). If the exact same
span of text appears in two different locations, both will be
replaced by a token with the same number.

3. Word-Token. Spans of text marked for redaction or for
tokenization are first divided into words (with whitespace-
delimited boundaries). Then, each word is tokenized indi-
vidually. Whenever a word is tokenized, a search is per-
formed, and every instance of that word is replaced with the
same token without regard for whether it was marked for
sanitization or not (e.g., if the username mary is tokenized
as <TOKEN-12>, then every whitespace-delimited occur-
rence of mary will be replaced with <TOKEN-12>).

The Redact-Only and Token-Only strategies mimic strate-
gies that others have used in practice [2, 9]. The Word-
Token strategy was designed specifically to avoid intro-
ducing artifacts into experimental evaluations of anomaly-
based insider-threat detectors. In essence, Word-Token san-
itization makes a list of every distinct word that appears in
any span of text marked sensitive, associates a distinct to-
ken with each word, and replaces every instance of the word
with the corresponding token.

Anomaly-based detection systems (e.g., naive Bayes [8],
Lane and Brodley’s detector [5], and Schonlau et al.’s detec-
tors [11]) are built to recognize patterns between the words
on a command line (e.g., relative frequencies or common
repeating sequences), and to detect violations of these pat-
terns. We theorize that Word-Token sanitization will not
introduce artifacts because the performance of an anomaly-
based detector should not change if every instance of a word
in a data set is replaced with a new word. This study ex-
plores whether our theory holds true.

File Help
Sariti Choose Date Fiter: All Logs —
- anitize
Jave Work | Freview | %) logs Unredact I Untokenize I

Sanitization legend: Editable ted i red on grey. FEREECTRCGIFRUNERTNIEES

okenized text is yellow an black.)

Tip: When viewing a log file, you can select editable data and sanitize (tokenize or redact) it

File opened Hon Jul 11 15:01:08 2005
4 bash-log

Logid: 3163

wid: 7830

Log files to be sanitized
1. 2005:0711.14:42-56-3004 [z
‘2. 2003:07:11.14:50:32-3035 [13]
3. 2005:07:11.14:55:56-3053 [12]
‘4 2005:07:11.15:01:06-5165 [10]

[mon qul 11 15:01:02 2005 - pon Jul 11 15:01:43 2005)]
Entid: 1

Imit: Fosci/ R

Init Time: don qul 11 15:01:08 2005
Toit Pid: 3168

User:

mid=T7230 euid=T7230 su.\.d 7390

LA

‘5. 2005:07:11.15:13:22-3281 [4]

Group: ryid=100 egid=100 sgid=

Gave Tine! won qul 11 15:01:43 2005
save Pid: 3168
Exit:

‘ Entid: 2

ulE

| Toit Time:
Log files already sanitized

Auscl/THER
Hon dul 11 15:01:49 2005
3168

it pid:
||usex:
5oy

Mark Log as "Sanitized "

5:02:13 2005

Sawe Pid: 3163

Entid: 2
Tnit:
Tnit Time:
Init pid:
Us e

0/ R
oo Jul 11 15:02:13 2005
3168

100

Save T i 1 15:02:23 2005
v P

2168
Exit: i

Line| 1]: (pid:Z168) (uid:?8903 [Hon Wi 11 1500103 2005):
Exec[1]: (pid:3163) {uid:7630) [mon sul 11 35:01:32 2005]:

[Hon Jul 31 15:01:49 2005 - Mon Jul 11 15:02:13 2005]

TLLISTES0 euid=TEd0 suid=7es)
Pt 1d: egid=100 =sgid=100

Line] 1] (pin: 3153) (uid: 78307 [Won Jul 31 15:02:02 2005]:

Ensol 111 (pidiSI70) (uidi 7830 [mon wul 11 18102102 2005]1

Sawe Time: x

[ton Jul 11 15:02:1% 2005 - pon Jul 11 15:02:23 2005)

ru:Ld 783!] sum 7890 suid= 783!]

gid= sgid=10

Lme[1) qpid 3153) (uidi7zany [ton 11 si0ziz 2005]

Ereol 31 (pidi3171) (uidi7830) [Won Jul 11 35:02:22 2005]:
jon_Tul 1

lynse hitp: /T
{/usr/bind Ly

lynx hitp://HERR
(/usr/bm/lynx) lynx http:

Ly hittp: //REA: AT

{usc/bind lyne) Iypne ht.t.p. g - I ER

Figure 1. The Sanitizer application’s graphical user interface shows a list of logs to be sanitized
(top-left panel), a list of logs already sanitized (bottom-left panel), and the contents of a log file cur-
rently under review (right panel). Potentially sensitive content is displayed with a gray background.
Content that has been marked by the user as sensitive is displayed on a black background.

6. Experimental methodology

We used these three tools (the Monolog data collec-
tor, the insider-script library, and the Sanitizer application)
to investigate the consequences of sanitization artifacts on
Maxion’s insider-threat experiment [7]. He compared the
performance of the naive-Bayes detector on two types of
data (Truncated and Enriched). Our goal was to establish
whether one particular sanitization strategy (Word-Token)
was artifact-free for this experiment, and what the conse-
quences are when we use the other two strategies (Redact-
Only and Token-Only).

6.1. Deploy the data collector

We deployed the Monolog data-collection software on
workstations used by twelve system administrators and op-
erations staff members in our organization. These users
were shown that the monitoring shell would appear iden-
tical to the one they normally used even though it was in-
strumented to collect data. They were instructed as to what
data were being collected (e.g., no passwords unless they
are typed on the command line), and they were assured
that only sanitized data which they vetted would leave their
workstation and never raw, unsanitized data.

92

6.2. Data collection and subject selection

In order to collect a large sample of legitimate user be-
havior, we left the staff for four to six months to use their
workstations as they normally would. Once a week, a re-
searcher would record the number of shell sessions col-
lected and the number of commands in each session. On
the basis of these records, four subjects were selected to
continue with the study. Seven of the twelve staff members
were deselected because they were part-time operators or
primarily used a Windows workstation, and so only a few
sessions were recorded for them. One full-time operator
was not selected because he had night and weekend shifts,
and there was no convenient opportunity for a researcher to
meet with both him and his supervisor. The four subjects
were all full-time operators or system administrators and
each accumulated over 100 recorded sessions.

A sample of four subjects may seem small. However, the
subjects all come from a population that is small but valu-
able (i.e., experienced system administrators and operators).
A survey has shown that such positions are at high risk of
insiders [4], and every full-time operator in our organiza-
tion except one (as noted above) was included in the pool.
Further, since we gather many sessions of data from each
subject, and sessions are the true “element” being studied,

we judged the size of the subject pool to be adequate for
this work. A larger, more heterogeneous pool would be de-
sirable in future studies.

6.3. Perform insider-attack injections

We presented the four attack scripts to the subjects and to
their supervisors (who administer their workstations). We
described the details of each attack, and we demonstrated
the post-attack recovery procedure. Permission to run each
attack script was obtained from all parties, and the scripts
were deployed on the subjects’ workstations.

The subjects ran the four attack scripts against their own
accounts. They typed the script names into shells that were
not monitored by the Monolog data collector (to avoid in-
troducing injection artifacts). With the subject, we observed
the progress of the attack, verified that the attack succeeded,
and confirmed that the recovery mechanism repaired any
damage.

6.4. Sanitize the data files

We asked the subjects to sanitize their own sessions.
They were given a demonstration of the Sanitizer and in-
structed on the difference between redacting and tokenizing
sensitive data. A researcher navigated through the interface
on an illustrative data set. He explained that he would mark
usernames and hostnames with the Tokenize button, but he
would use the Redact button for a password and a poten-
tially embarrassing URL because of their sensitivity. The
subjects were instructed that they should use their own judg-
ment in deciding what to tokenization or redaction.

We instructed the subjects to sanitize at least 60 sessions
worth of data because 50 sessions would be used by an
insider-threat detector to build a profile of their usage and
the remaining 10 would be used to test that profile. We
also asked the subjects to review the four sessions that con-
tain the attack injections and to sanitize those as they would
sanitize their other sessions. In this manner, each subject
sanitized at least 64 sessions of his or her own data.

The subjects took between 10 and 30 minutes to sanitize
their data, and they sanitized between 111 and 219 sessions
each. One or more words were tokenized or redacted from
40% of the command lines. One subject sanitized 58% of
the command lines, while another sanitized only the sub-
ject’s own username and home directory. Only one subject
used the Redact button, but all subjects used the Tokenize
button.

While the subjects sanitized their data, a researcher was
present to offer assistance, but he did not look at the unsan-
itized data on their screen unless given explicit permission.
After sanitizing their data, the subjects were instructed to

93

export their data using each of the three sanitization strate-
gies (Redact-Only, Token-Only, and Word-Token).

6.5. Create evaluation data sets

Since we intended to replicate the experiment conducted
by Maxion [7], we had to derive data sets analogous to
the ones he used in his experiment. Maxion compared
the performance of an insider-threat detector when moni-
toring “Truncated” command-line data to its performance
when monitoring “Enriched” command-line data. Trun-
cated command-line data consists only of the names of the
programs executed, while Enriched command-line data in-
cludes the whole command line. Maxion’s hypothesis was
that using Enriched data lowered the cost of error (calcu-
lated as the sum of the false-alarm rate and the miss rate),
and he found a 9% reduction in cost.

In order to replicate Maxion’s experiment, we derived
two evaluation data sets (Truncated and Enriched) from
each of the three sanitized data sets (Redact-Only, Token-
Only, and Word-Token). To create the Redact-Only Trun-
cated evaluation data set, we extracted the commands typed
by the subject in each session of the Redact-Only sanitized
data. We “truncated” the commands so that only the com-
mand name was left (i.e., discarding flags, filenames, and
other command arguments). We labeled the first 50 sessions
of commands as training data. We labeled the next 10 ses-
sions and the 4 attack-injected sessions as test data. These
data, labeled for training and test, constitute the Redact-
Only Truncated evaluation data set. To create the Redact-
Only Enriched evaluation data set, we extracted commands
typed by the subject in each session of the Redact-Only san-
itized data, but we did not truncate the commands. We label
sessions of un-truncated (or “enriched”) commands as train-
ing and test data in the same way as in the Truncated data
set. We derived Truncated and Enriched evaluation data
sets from each of the Token-Only and Word-Token sanitized
data using the same procedure.

To compare the results of Maxion’s experiment on sani-
tized data to the equivalent experiment on raw, unsanitized
data, we created Truncated and Enriched evaluation data
sets using each subject’s raw data as well. The procedure
described above for creating Truncated and Enriched data
sets was scripted. We deployed the script to each subject’s
workstation, and we asked the subjects to create Truncated
and Enriched evaluation data sets from the raw data using
this script. In this way, the raw data never left the subjects’
workstations. For each subject, a total of eight evaluation
data sets were created: two evaluation data sets (Truncated
and Enriched) from the raw data, and two from each of the
three types of sanitized data (Redact-Only, Token-Only, and
Word-Token).

6.6. Evaluate the naive-Bayes detector

The insider-threat detector evaluated in this study is
based on that used previously to evaluate the effect of us-
ing Enriched rather than Truncated command lines [7]. The
insider-threat detector builds a profile of command usage
from the user’s training sessions. For each test session, the
detector calculates an anomaly score that represents how
much the session deviates from the profile. Consequently,
the detector attempts to separate the user’s own sessions
(which should fit the profile) from the attack-injected ses-
sions (which should not).

The details of this detector are described fully by Max-
ion and Townsend [8] who refer to this particular detector
as naive Bayes with one-class training input. Basically, the
profile of the user is built by counting the number of oc-
currences of each command in the training sessions, and
calculating the relative frequency of each command. More
formally, let n be the number of commands in the training
data, and k be the number of unique commands. If the com-
mands are named ¢y, co, . . ., cg, then let n; be the number
of times c; appears in the training sessions, ny be the num-
ber of times co appears, and so on. The profile consists of
probability estimates for each command that are calculated
as follows.

no + «
n+ ok’

ni + «
n+ ok’

nig + «

P = —_—
(c1) n + ak

P(e) = - Ple) =
The addition of « to the numerator and ak to the denomina-
tor prevents any command from having an estimated proba-
bility of zero. The term « is a configurable parameter of the
detector called the pseudocount. In accordance with Max-
ion [7], we set the pseudocount to 0.01.

The detector is called naive Bayes because it (naively)
assumes that the probability of a session of commands is
simply the product of the probabilities of the individual
commands (as though each command’s probability were in-
dependent). The anomaly score for a test session is the
negative logarithm of the probability of the session given
the profile. To account for sessions of different length, the
anomaly score is normalized by dividing by the number of
commands in the session. Formally, let n” be the number of
commands in the test session, and let ¢} be the name of the
first command, ¢}, be the name of the second command, and
so on. The anomaly score is calculated using the probability
estimates for each command from the training-data profile
as follows.

/

1 n
anomaly score = — v Z log P(c})

i=1

Using the anomaly score, the detector makes a determina-
tion as to whether or not an alarm should be raised. The

94

determination is made by comparing the anomaly score to
a threshold. If the score exceeds the threshold, an alarm
is raised. The threshold is calculated using five-fold cross-
validation on the training data. The training sessions are
divided into five groups called folds. The first fold is set
aside and the remaining four-fifths are used to build a pro-
file. The anomaly scores are then calculated for the first
fold using that profile. Anomaly scores for each of the other
folds are calculated in the same way (using a profile built on
the four-fifths of the training data not in the fold). The max-
imum score in each fold is calculated, and the threshold is
calculated as the average of these maximum scores.

For each of the eight evaluation data sets, we trained the
naive-Bayes detector on the training sessions and tested it
on the test sessions. Each evaluation data set contained 4
attack-injected sessions for each of the 4 subjects, leading
to a total of 16 attack-injected sessions. Each data set con-
tained 10 non-attack sessions of test data for each of the 4
subjects, leading to a total of 40 sessions of non-attack test
data overall. The anomaly score and detector response (i.e.,
alarm or no alarm) were recorded for each test session.

To obtain the responses of the detector on the Truncated
and Enriched evaluation data sets derived from the subject’s
raw data, we deployed the naive-Bayes detector on each
subject’s workstation. The subjects ran the detector on each
of their two raw evaluation data sets, inspected the log con-
taining the detector’s responses to confirm that it contained
no sensitive information, and released it to the researchers.

7. Results and analysis

The consequences of each of the three sanitization strate-
gies on the experiment are shown in Table 1. The perfor-
mance of naive Bayes is shown for each of the eight evalu-
ation data sets in terms of misses, false alarms, and cost of
error. For consistency with Maxion’s analysis [7], the cost
of error was calculated as the sum of the miss rate and the
false-alarm rate. Since he compared the cost of Enriched
data to Truncated data, the cost ratio of the two has been
calculated for the raw data and for each of the three saniti-
zation types. Unlike the earlier experiment which found a
cost reduction of 9% by using Enriched data, we found En-
riched data to have a 79% higher cost than Truncated data
when using no sanitization (i.e., the raw data). We discuss
possible explanations for this discrepancy in Section 8.

Regarding the consequences of sanitization, if there were
no sanitization artifacts, all the results should match the
raw-data results. However, only Word-Token sanitization
produced results that match the raw-data results. Token-
Only sanitization increased the cost of using Truncated data,
while Redact-Only sanitization reduced the cost of using
Enriched data.

It may seem that Token-Only sanitization has no effect

Data Type
Sanitization Truncated Enriched Cost
Strategy Misses False Alarms Cost Misses False Alarms Cost | Ratio
Raw / None 25% (4/16) 10% (4/40) 0350 | 50% (8/16) 12.5% (5/40) 0.625 | 1.79
Redact-Only | 25% (4/16) 10% (4/40) 0.350 | 37.5% (6/16) 10% (4/40) 0475 | 1.36
Token-Only | 37.5% (6/16) 7.5% (3/40) 0.450 | 50% (8/16) 12.5% (5/40) 0.625 | 1.39
Word-Token | 25% (4/16) 10% (4/40) 0.350 | 50% (8/16) 12.5% (5/40) 0.625 | 1.79

Table 1. The detector’s hit and false alarm statistics are shown for each of the eight evaluation data
sets. The cost of error is calculated as the sum of the miss and false alarm rates, and the final column
indicates the ratio of the Enriched cost to the Truncated cost. Only the Word-Token sanitization
results exactly match the raw-data results for both Truncated and Enriched data.

on Enriched data, or that Redact-Only sanitization has no
effect on Truncated data. Further, it may seem that the
consequences of using either sanitization strategy instead
of raw data are small. For instance, Redact-Only saniti-
zation merely changes the detector’s response to three En-
riched sessions (i.e., two fewer misses and one fewer false
alarm). However, misses and false alarms are the coarsest
summary of the experimental outcome. Sanitization also af-
fects the anomaly scores and alarm thresholds used by naive
Bayes, and in these terms, the effects of Redact-Only and
Token-Only sanitization are much more pronounced, and
seen across Truncated and Enriched data sets.

The anomaly scores computed by naive Bayes for each
session describe the results of the experiment in finer detail.
The score gives valuable insight into the decision procedure
used by the detector, and it can help explain why errors oc-
curred (e.g., why an attack-injected session was missed).
Without accurate anomaly scores, it is harder to identify
what a detector did wrong and how to improve it. The ef-
fects of Redact-Only and Token-Only sanitization are much
greater on the anomaly scores than on the hit and false-
alarm statistics. Table 2 shows that Redact-Only and Token-
Only affect many Truncated and Enriched anomaly scores
while Word-Token does not. Redact-Only has the greatest
effect on the anomaly scores, with all the Enriched anomaly
scores differing from the raw data scores. Redactions in the
training data caused all the probability estimates to change;
in turn, the probabilities altered the anomaly scores.

The alarm threshold is used by naive Bayes to decide
whether an anomaly score should trigger an alarm. It de-
pends on the anomaly scores calculated during cross vali-
dation, and when the anomaly scores change as a result of
sanitization, so does the threshold. Redact-Only sanitiza-
tion tended to lower the threshold (partially explaining the
lower miss rate on the Enriched data), while Token-Only
sanitization tended to raise it (partially explaining the higher
miss rate on the Truncated data). Again, Word-Token sani-
tization has no effect on the alarm threshold.

95

Sanitization Data Type

Strategy Truncated Enriched | Overall
Redact-Only 29% 100% 64%
Token-Only 50% 50% 50%
Word-Tokens 0% 0% 0%

Table 2. The percentage of anomaly scores
altered as a consequence of each of the
three sanitization strategies is broken down
by data type. Only the Word-Token sanitiza-
tion strategy did not alter the score.

8. Discussion and future work

This research confirms that Word-Token sanitization is
artifact-free for an experiment that evaluates the naive-
Bayes anomaly detector. In theory, Word-Token sanitiza-
tion should be artifact-free for any experiment where to-
kens can be substituted for words. For instance, it should
not introduce artifacts in the evaluation of other anomaly
detectors in the same family (e.g., Lane and Brodley’s and
Schonlau et al.’s detectors). Whereas Word-Token sanitiza-
tion replaces every occurrence of a word with a symbol, a
more lenient sanitization strategy might only replace occur-
rences that are in the same context (e.g., “God” will only
be replaced with <TOKEN-12 > when it appears as a pass-
word). This strategy might provide more privacy while con-
tinuing to avoid introducing artifacts. Experiments with a
variety of detectors and different sanitization strategies are
needed to further develop this theory.

When tokens cannot be substituted for words (e.g., in
evaluations of signature-based systems), Word-Token san-
itization may introduce artifacts. However, just as Word-
Token sanitization was designed to be artifact-free for a cer-
tain family of detectors, a different artifact-free sanitization
technique might be designed to accommodate different de-
tectors. The lesson remains that sanitization can have unde-

sirable consequences on the outcome of an experiment, and
it must be accommodated by researchers.

Since sanitization artifacts alter the results of experi-
ments, it stands to reason that the unrealistic use of be-
nign commands as a substitute for insider commands will
cause similar problems. In fact, our use of more realistic
insider-type behavior may explain the discrepancy between
our findings and Maxion’s about the cost of using Truncated
and Enriched commands. (Note that this explanation is con-
jecture, since the goal of this study was not to refute that ear-
lier work, and the discrepancy might be explained by other
means, such as our small subject-pool size.) However, we
want to reiterate that unrealistic use of benign commands
in insider-injections may have the same dangerous conse-
quences as sanitization artifacts. An investigation of the
consequences of unrealistic insider injections remains for
future work.

9. Summary and conclusion

Sanitization artifacts did not affect the experiment when
Word-Token sanitization was used, but they did alter the
results when two other strategies were used (Redact-Only
and Token-Only). Since existing insider-threat data sets
[2, 5, 11] all used some form of redaction or tokenization,
these findings cause concern. Conclusions based these data
sets may not generalize to the real world. Insider-threat data
sets must be validated before we place real-world reliance
on them. If an insider-threat detector is chosen for deploy-
ment on the basis of precarious conclusions, and that de-
tector under-performs, the consequences carry considerable
risk. On the other hand, we demonstrate that appropriate
tools and methods do make it possible to collect realistic
data and perform sanitization without introducing artifacts.

10. Acknowledgments

The authors are grateful for helpful comments from
Kymie Tan and Dan Siewiorek, as well as from anony-
mous reviewers. Many thanks to Fahd Arshad for his im-
plementation of the sanitizer application. Thanks also to the
CMU/CS Operations Group for help in the evaluation por-
tion of the project. This work was supported by National
Science Foundation grant number CNS-0430474, and by
the Army Research Office through grant number DAAD19-
02-1-0389 (Perpetually Available and Secure Information
Systems) to Carnegie Mellon University’s CyLab. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government, or any other
entity.

96

References

(1]
(2]

(3]

(4]

[5

[t

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

D. Denning. An intrusion-detection model. /EEE Transac-
tions on Software Engineering, 13(2), February, 1987.

S. Greenberg. Using Unix: Collected traces of 168 users.
Technical Report 88/333/45, Department of Computer Sci-
ence, University of Calgary, Calgary, Canada, 1988.

The Honeynet Project. Know Your Enemy: Sebek, Novem-

ber 2003. http://www.honeynet.org/papers/
sebek.pdf.
M. Keeney, E. Kowalski, D. Cappelli, A. Moore,

T. Shimeall, and S. Rogers. Insider threat study: Computer
system sabotage in critical infrastructure sectors. Techni-
cal report, U.S. Secret Service and CERT Coordination Cen-
ter/SEI, 2005.

T. Lane and C. E. Brodley. An application of machine learn-
ing to anomaly detection. In Proceedings of the 20th Annual
National Information Systems Security Conference, pages
366-380. Held on 7-10, October, 1997, Baltimore, MD,
NIST, 1997.

M. V. Mahoney and P. K. Chan. An analysis of the
1999 DARPA/Lincoln Laboratory evaluation data for net-
work anomaly detection. In Proceedings of the 6th Interna-
tional Symposium on Recent Advances in Intrusion Detec-
tion (RAID-2003), pages 220-237. Held on 8—10 September,
2003, Pittsburgh, PA, Springer-Verlag, Berlin, 2003.

R. A. Maxion. Masquerade detection using enriched com-
mand lines. In International Conference on Dependable
Systems and Networks (DSN-03), pages 5-14. Held on 22—
25 June, 2003, San Francisco, CA, IEEE Computer Society
Press, Los Alamitos, CA, 2003.

R. A. Maxion and T. N. Townsend. Masquerade detection
augmented with error analysis. IEEE Transactions on Relia-
bility, Special Section on Quality/Reliability of Engineering
of Information Systems, 53(1):124—147, March 2004.

R. Pang and V. Paxson. A high-level programming environ-
ment for packet trace anonymization and transformation. In
Proceedings of the 2003 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Com-
munications (SIGCOMM’03), pages 339-351. Held on 25—
29 August, 2003, Karlsruhe, Germany, ACM Press, 2003.
M. R. Randazzo, M. Keeney, E. Kowalski, D. Cappelli, and
A. Moore. Insider threat study: Illicit cyber activity in the
banking and finance sector. Technical report, U.S. Secret
Service and CERT Coordination Center/SEI, 2004.

M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr,
M. Theus, and Y. Vardi. Computer intrusion: Detecting mas-
querades. Statistical Science, 16(1):58-74, 2001.

S. E. Smaha. Haystack: An intrusion detection system. In
Proceedings of the Fourth Aerospace Computer Security Ap-
plications Conference, pages 37-44. Held on 12-16 Decem-
ber, 1988, Orlando, FL, IEEE Press, 1989.

L. Sweeney. k-anonymity: A model for protecting pri-
vacy. International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):557-570, 2002.

