The Role of Environmental Factors in Keystroke Dynamics

Kevin S. Killourhy

ksk@cs.cmu.edu

Dependable Systems Laboratory
Computer Science Department
Carnegie Mellon University
5000 Forbes Ave,
Pittsburgh, PA 15213

Abstract

Keystroke dynamics is a promising biometric with sev-
eral potential applications, and yet it is a sensitive instru-
ment with unknown limitations. In other biometric domains,
environmental factors (e.g., the scanner technology used for
fingerprints or the headset used in speaker recognition) can
have deleterious effects on the accuracy of algorithms. The
goal of this work is to establish whether keystroke-dynamics
algorithms are also vulnerable to the effects of environmen-
tal factors (e.g., the keyboard, operating system, and pro-
cessor load).

As a first step in exploring these effects, we develop a
method for establishing the error introduced in recorded
keystroke timestamps. We conduct an experiment that re-
veals one environmental factor (I/O load) that can greatly
increase the error in calculating keydown-keydown laten-
cies. We acknowledge that an adversary might exploit
this error to evade detection, and we consider options that
would mitigate the risk. Finally, we judge this first step in
establishing the role of environmental factors to be a suc-
cess, and we consider further analysis and experimentation.

1. Introduction

Keystroke dynamics—the analysis of typing rhythms to
discriminate among users—is a promising biometric with
many potential applications [6]. For instance, a program
might differentiate between (a) a genuine attempt to authen-
ticate using a password, and (b) an impostor with a compro-
mised password. Alternatively, keystroke dynamics might
provide a continuous reaffirmation of a genuine user’s iden-
tity during regular typing, without requiring an explicit au-
thentication step.

However, keystroke dynamics is a sensitive instrument in
a noisy domain. Even if two users could be discriminated
by their typing under ideal conditions, environmental fac-
tors such as the keyboard, operating system, and programs
running on the system may obscure these differences. If al-
gorithms are deployed without accounting for environmen-

Typing Behavior

e 7
g Keyboard
,_‘,_% Operating System
2| Load (CPU, Memory, 1/0)
[3)
% Keystroke—Logging Application
E Timestamping Clock
o w J

V
Typing Record

Figure 1. This illustration shows how environmental
factors stand between a typist’s actual keystrokes and
the timestamps that are recorded. The various factors
add delay, which manifests as error in keystroke tim-
ing calculations. This error reduces the accuracy of
keystroke-dynamics algorithms.

tal effects, unforeseen changes in the environment might
cause the algorithms to fail without warning (e.g., an al-
gorithm works in the laboratory but fails in the field). More
alarming is the possibility that an adversary might adjust en-
vironmental conditions (e.g., adding load on the system) to
avoid identification. The goal of this work is to establish the
role that environmental factors play on keystroke-dynamics
algorithms.

Figure 1 shows five environmental factors, and illustrates
that—coming between the typist’s actual behavior and the
digital record of that behavior—they might introduce de-
lays in the recorded timestamp. The keyboard’s electronics
buffer keystrokes; the operating system enqueues keystroke
events; other programs compete for finite resources; the
keystroke-logging application may be inefficient in assign-
ing a timestamp; and, the clock, the source of the time-
stamps, may be skewed or lack sufficient precision. Any of
these factors may introduce errors in the timestamps. These
errors will compound when the keydown-keydown latency

(the difference between successive timestamps) is calcu-
lated. Latencies are the input to most keystroke-dynamics
algorithms, and errors may reduce the ability of these algo-
rithms to discriminate between typists.

2. Related work

More established biometrics have also had to contend
with issues regarding environmental noise. In fingerprint
identification, researchers determined the effect of different
fingerprint scanning technologies on the fidelity of the dig-
ital image of a print [1]. In speaker recognition, a speaker
who changes handsets was discovered to be more difficult
to recognize than one consistently using the same handset;
methods were developed to accommodate different hand-
sets [2]. The effects of environmental factors on keystroke
dynamics must be explored and mitigated just as in these
other biometric disciplines.

In earlier work with Maxion, we showed that using stan-
dard computer clocks with a resolution of 15ms (millisec-
onds), instead of a high-precision timer, can increase the
equal-error rate of keystroke-dynamics algorithms by 4.2%
[3]. For some deployment scenarios, near-perfect accuracy
is required, and even a small increase in the error rate will be
problematic. The finding that clock resolution makes a dif-
ference in algorithm performance led to the current, broader
investigation into the effects of other environmental factors.

3. Objective and approach

The broad goal of this research project (current and fu-
ture) is to measure and characterize the effects of envi-
ronmental factors on keystroke-dynamics algorithms. The
long-term strategy involves two phases. In phase one, we
plan to measure how much error each of the five environ-
mental factors introduces in keydown-keydown latencies.
In phase two, we intend to measure what effect the er-
ror in keydown-keydown latencies has on the accuracy of
keystroke-dynamics algorithms.

In the current work, we aim to develop a methodology
that will make phase one possible. Specifically, our objec-
tive is to design an experimental procedure to measure the
effect that a particular environmental factor—the load in-
duced by other programs competing for CPU, memory, and
I/O resources—has on latency errors.

We follow a four-step approach.

1. Develop a device for automatically generating
keystrokes at a fixed rate, thereby establishing the true
keydown-keydown latency between successive keystrokes.

2. Design and implement a keystroke-logging application
for the Windows operating system. The application records
timestamps using two different timestamping clocks: a
standard Windows-event clock and a high-precision timer.

3. Develop a load-inducing program that spawns pro-
cesses which contend for fixed amounts of CPU time, mem-

ory space, and I/O bus usage.

4. Run a series of calibrated experiments. The keystroke
generator taps out keystrokes at a fixed rate; the logging
application records timestamps; and the resource usage of
the load-inducing program is systematically varied, thereby
allowing us to quantify the effect on latency errors.

In the process of establishing the role that load plays, we
will also be testing out the general methodology for mea-
suring the effect of additional environmental factors.

4. Methods
We describe the four steps of the approach in more detail.

4.1. Keystroke generator

To measure the error introduced by environmental fac-
tors on keydown-keydown latencies, we must have an accu-
rate ground-truth account of those latencies. Ground truth
is obtained by using a device to generate keystrokes at a
known rate.

The device was constructed by removing the keyboard
encoder in a Dell USB keyboard from its housing. It was at-
tached to a solid-state relay so that when the relay switch is
closed, the keyboard encoder registers that a key is pressed,
and when the switch is open, the key is released. A function
generator was used to generate a square wave that drives
the relay to open and close the switch. When the function
generator is set to 1Hz, the device generates a keydown at
1-second intervals. By changing the frequency of the wave,
we change the true keydown-keydown latency.

In the future, we should be able to explore the effect of
the keyboard on keydown-keydown latencies (e.g., whether
USB and PS/2 keyboards have different effects), by swap-
ping the present keyboard encoder with others.

4.2. Keystroke-logging application

A Windows XP application was developed to record
keystrokes and the times at which they occurred. The
application displays a text-entry box, and when keys are
pressed or released, it stores the details of the key event
(e.g., whether it was a keydown event or a keyup event and
what key was pressed) along with two timestamps, which
we call the Windows-event timestamp and the QPC time-
stamp.

When a key is pressed, the application receives an event
message from the Windows operating system. The event
message contains a timestamp field that is set by the Win-
dows XP operating system [4]. This timestamp is recorded
as the Windows-event timestamp. When the event is re-
ceived by the application, it queries a counter available in
Windows XP for high-precision timestamping [5]. Since
the function to generate the timestamp is called Query-
PerformanceCounter, the timestamp is recorded as the
QPC timestamp.

Two types of timestamp are recorded because it was a
simple addition to the program, and it allows us to examine
whether the effect of load differs for different timestamping
mechanisms.

4.3. Load-inducing program

A load-inducing program was developed to generate
workloads that compete for CPU, memory, and I/O re-
sources. The program generates workloads similar to the
Unix tool, stress [7], but for a Windows environment.
Specifically, when invoked, the program spawns a config-
urable number of subprocesses, each of which performs a
simple action designed to use system resources. There are
three types of subprocess: CPU, memory, and I/O.

A CPU subprocess simply generates a random number
and calculates its square root in an endless loop. A memory
subprocess allocates a block of memory, writes to it, and
holds it for a period of time. After the wait time has expired,
the subprocess frees the block, allocates a new block, and
repeats the cycle. The size of the block and the wait time are
configurable. In this experiment, we used blocks of 14MB
and a wait time of 60 seconds. An I/O subprocess writes a
file to disk and deletes it in an endless loop. The size of the
file and the size of each write-block is configurable. In this
experiment, we used a file size of 10MB and a write-block
size of IMB.

This load-inducing program is simple and intended only
to stress the system in well-understood ways. More realistic
and more diverse workloads might be used in the future.

4.4. Experimental procedure

The following five-step procedure was used in a series
of experiments to measure and summarize the keydown-
keydown latency error.

1. Set the keystroke generator to produce keystrokes once
a second, and record 1001 keystrokes using the keystroke-
logging application.

2. Repeat step 1 a total of seven times, generating 1001
keystrokes at intervals of lsec, 500ms, 333ms, 200ms,
143ms, 91ms, and 77ms (chosen to reflect typical keydown-
keydown latencies over the range from slow to fast).

3. For each of the 7 intervals, calculate 1000 keydown-
keydown latencies using the Windows-event timestamps,
and 1000 latencies using the QPC timestamps, so we have
7000 latencies for each timestamping mechanism.

4. For each latency, calculate its absolute error (i.e., the
absolute difference between the calculated latency and the
true latency, given the settings of the keystroke generator).

5. To summarize these 7000 latency errors into a single
number, sort them and find their 95th percentile. In other
words, calculate the number x such that 95% of the ob-
served errors are within £x of zero error.

For our preliminary results, we use the 95th percentile since
it summarizes the amount of error that will typically be seen

(i.e., 95% of the time). A more comprehensive analysis of
the distribution of the latency errors is planned.

First, we use this procedure to establish a baseline error
with no induced load. The latency error was measured on
a standard Windows XP machine with 1GB of memory and
approximately 40GB of disk space (23GB free). Then, we
added CPU load (1, 32, and 64 subprocesses), measuring
the latency error at each step. Next, we added memory load
(1, 32, 56, and 64 subprocesses) and measured the latency
error. Finally, we added I/O load (1, 32, 56, and 64 sub-
processes) and measured the latency error. Any more than
64 subprocesses caused system errors (e.g., the process ta-
ble was full). We did not combine loads (e.g., memory and
I/0), but that is a possible avenue for further test.

5. Preliminary results and analysis

Figure 2 compares the 95th percentile of the Windows-
event latency error and the QPC latency error as a function
of CPU, memory, and I/O load. At the baseline (i.e., zero
load of any kind), the Windows-event latency error is about
16ms, which is consistent with the 15.625ms resolution of
the clock [3]. However, the QPC latency error is about 8ms,
much higher than the resolution of the clock (280 nanosec-
onds). It may be that other environmental factors (e.g.,
the keyboard and operating system) are introducing delays
which increase the latency error despite the high-precision
of this timestamping mechanism.

The top graph in Figure 2 demonstrates that increasing
the CPU load has little effect on the latency error of ei-
ther timestamping mechanism. The middle graph demon-
strates that increased memory load has no effect at all on
the Windows-event latency error, and no effect on the QPC
latency error until a threshold (64 subprocesses, when avail-
able memory is exhausted) at which point the latency error
increases rapidly. The bottom graph shows that increased
I/0 load has a severe effect on QPC latency error, but no
effect on Windows-event latency error.

6. Discussion and future work

We found that at least one environmental factor—
massive, ongoing I/O operations—increases the error in
QPC timestamps but not in Windows-event timestamps.
The error in the QPC timestamps is on the order of hundreds
of milliseconds, surely affecting the accuracy of keystroke-
dynamics algorithms.

The additional error in the QPC latencies could be a con-
sequence of I/O load causing delays in context switching.
A keystroke triggers an interrupt within the operating sys-
tem, and the operating system assigns the Windows-event
timestamp. Then, a context switch passes control to the
keystroke-logging application, and the application assigns
the QPC timestamp. Delays in context switching would
manifest as QPC latency errors.

0016 {R———%— T

0.014 -
0.012 -
0.010 =

0.008 (8 SR

T T T T
0 20 40 60

95th %-—ile Error

#CPU subprocesses

0.30
0.25
0.20
0.15
0.10

0.05
0.00 — & & S -

95th %—ile Error

#Memory subprocesses
1.0 | | | | -
0.8 =
0.6 =
0.4 =
0.2 =
0.0

95th %—ile Error

&
T

T T T
0 20 40 60

#1/0 subprocesses

Figure 2. The 95th percentile of the latency error is
shown as a function of increasing CPU, memory, and
I/0O load for each of two timestamping mechanisms.
The Windows-event latency error (x) is not affected
by the loads. The QPC latency error (o) increases un-
der high memory load and moderate I/O load.

An alarming implication of this result is that keystroke-
dynamics using QPC timestamps either will generate spuri-
ous false alarms when I/O intensive programs are run (e.g.,
automatic backups), or may miss an adversary who uses
I/O intensive programs to evade detection. Despite having
a higher baseline latency error, Windows-event timestamps
may be preferred over QPC timestamps due to their robust-
ness under load.

These preliminary results demonstrate that environmen-
tal factors do have an effect, and they uncover some inter-
actions between factors to be explored. Consequently, we
intend to continue with phase one of our research project,
measuring how much error each environmental factor intro-
duces in keydown-keydown latencies.

For phase two, some planning and preparation is still re-
quired. In order to measure the effect that latency error has

on the accuracy of keystroke-dynamics algorithms, we need
to evaluate those algorithms using realistic keystroke data
(i.e., from real typists, not our keystroke generator). To do
so, we must either conduct extensive user studies (to obtain
data with the effects of each environmental factor), or de-
termine a valid means of adding the latency-error effects of
an environmental factor to pristine user data.

7. Summary

In other biometric domains, the effect of environmental
factors on the accuracy of algorithms has been investigated,
and deleterious effects have been identified and mitigated.
The goal of this work is to establish whether keystroke-
dynamics algorithms are also vulnerable to the effect of en-
vironmental factors. We present a method for establishing
the error introduced in keydown-keydown latencies by en-
vironmental factors. Our preliminary experiments demon-
strate that one environmental factor (I/O load) can greatly
affect the latency error, with implications for the design
of robust keystroke-logging applications. We consider this
first step to have been a success, and are designing followup
experiments and analysis.

Acknowledgments

This work was supported by National Science Foun-
dation grant numbers CNS-0430474 and CNS-0716677.
Many thanks to Harvey Vrsalovic for electronics help, and
to Roy Maxion, my advisor, for guidance on experimental
design.

References

[1] R.M. Bolle, J. H. Connel, S. Pankanti, N. K. Ratha, and A. W.
Senior. Guide to Biometrics. Springer-Verlag, New York,
2004.

[2] G. R. Doddington, M. A. Przybocki, A. F. Martin, and
D. A. Reynolds. The NIST speaker recognition evaluation —
overview, methodology, systems, results, perspective. Speech
Communication, 31(2-3):225-254, 2000.

[3] K. Killourhy and R. Maxion. The effect of clock resolution on
keystroke dynamics. In R. Lippmann, E. Kirda, and A. Tracht-
enberg, editors, International Symposium on Recent Advances
in Intrusion Detection, volume 5230, pages 331-350, Septem-
ber 15-17, 2008, Boston, MA, 2008. Lecture Notes in Com-
puter Science (LNCS), Springer-Verlag, Berlin.

[4] Microsoft Developer Network. EVENTMSG struc-
ture, 2008. http://msdn2.microsoft.com/en-us/
library/ms644966(VS.85) .aspx.

[5] Microsoft Developer Network. QueryPerformanceCounter
function, 2008. http://msdn2.microsoft.com/
en-us/library/ms644904 (VS.85) .aspx.

[6] A.Peacock, X. Ke, and M. Wilkerson. Typing patterns: A key
to user identification. IEEE Security and Privacy, 2(5):40-47,
2004.

[71 A. Waterland. Stress project page, 2008. http://
weather.ou.edu/ apw/projects/stress.

