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ABSTRACT
Problems arising from router misconfigurations cost time
and money. The first step in fixing such misconfigurations
is finding them. In this paper, we propose a method for de-
tecting misconfigurations that does not depend on an a pri-
ori model of what constitutes a correct configuration. Our
hypothesis is that uncommon or unexpected misconfigura-
tions in router data can be identified as statistical anomalies
within a Bayesian framework. We present a detection algo-
rithm based on this framework, and show that it is able to
detect errors in the router configuration files of a university
network.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management

General Terms
Management, Reliability

Keywords
Statistical anomaly detection, Router configuration

1. INTRODUCTION
On January 23, 2001, Microsoft’s websites went down for
nearly 23 hours. The next day, Microsoft spokesman Adam
Sohn attributed the failure to a “configuration change to the
routers on the DNS network” [4]. This example highlights
the critical problem of router misconfiguration. Since com-
panies rely on the availability of their networks, such miscon-
figurations are costly. Each router is individually configured
with its own router configuration file, which can contain sev-
eral thousand lines of commands. While the syntactic cor-
rectness of each file can be verified, determining semantic
correctness and consistency across all the router configura-
tion files in a network is a much harder problem. Due to the
magnitude of this problem, our goal is to develop a method
that automatically identifies semantic mistakes among the
set of router configuration files that define each network.
Previous approaches [2, 3] to this problem require an a

priori expectation of what these configuration files should
look like. Our work differs in that we make no such as-
sumptions about the structure of router configurations. It
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is inspired by a suggestion made by Caldwell et al. [1]. They
noted that network design choices might be inferred by com-
monalities across router configuration files, and that these
might be learned automatically and codified as rules. Our
work does not directly employ a rule learner, but our algo-
rithm detects such misconfigurations as statistical anomalies
just the same.

2. DETECTION ALGORITHM
A joint Bayes detection algorithm was designed and im-
plemented to test our hypothesis.1 The algorithm has a
training phase and a detection phase. The training phase
examines each line of every configuration file and computes a
set of key frequencies describing the commands and their ar-
guments. The detection phase makes a second pass through
the files, using these frequencies to find anomalies.
Our algorithm makes the simplifying assumption that each
line of a configuration file is independent of every other line.
However, it does not assume that the attributes of a sin-
gle command are independent of one another. Consider a
line L in a configuration file that consists of a command c
and attributes (a1, a2, . . . , an), where commands are defined
as Cisco IOS keywords and attributes are the remaining
whitespace-delimited words on the line. This algorithm esti-
mates the probability of the line given the command P (L | c)
as the joint probability of all the attributes given the com-
mand: P (L | c) = P (a1, a2, . . . , an | c).
During the training phase, the algorithm estimates these
probabilities as follows. For each line L with command c
and attributes a1, a2, . . . , an, the probability of the line given
the command is estimated as the fraction of instances of the
command c that contain the entire sequence of attributes a1

through an. If we use #(c) to denote the number of times
command c appears and we use #(a1, a2, . . . , an | c) to de-
note the number of times the sequence of attributes appears
for command c, then the probability P (a1, a2, . . . , an | c) =
#(a1,a2,...,an | c)

#(c)
.

In the detection phase, we calculate the probability of a
line P (Li | c) using these estimates. We determine whether
or not the line is an anomaly by comparing this probability
to a threshold. A general threshold across all commands in
the configuration file would not identify anomalies. Consider
the example of two commands, c1 and c2. Each command
appears 24 times, and each takes a single argument. The

1The algorithm was named “joint Bayes” to differentiate it
from two other Bayesian detection algorithms that were also
investigated, but omitted due to space constraints.



command c1 appears once with argument x1 and 23 times
with argument x2. The command c2 appears once with each
argument yi, for i ∈ {1, . . . , 24}. The lines “c1 x1” and “c2

y1” both have equal probability of occurring (one in 24).
However, “c1 x1” seems to be an anomaly while “c2 y1”
does not. To differentiate between these two scenarios, we
use entropy, a measure of how predictable a distribution is.
Specifically, we compute the entropy of each command,

H(c) = −
X

〈ai〉∈A
P (〈ai〉 | c) logP (〈ai〉 | c),

where A is the set of possible sequences of attributes for
this command and 〈ai〉 = (a1, a2, . . . , an) is a particular se-
quence. In our example, c1 has low entropy while c2 has
high entropy, thus a threshold weighted by entropy will dif-
ferentiate between the two cases.
If the conditional probability of this line is significantly
below the inverse of the entropy, the algorithm classifies the
line as an anomaly. Specifically, the algorithm makes the
following comparison

P (Li | c) <
α

H(c)

where Li is the i-th line and α is an empirically determined
multiplier.

3. EVALUATION
We obtained 20 Cisco IOS router configuration files from
the Carnegie Mellon campus network. A set of potential mis-
configurations was found in the configuration files through
manual inspection. We focused on those misconfigurations
that the algorithm was designed to detect, specifically, the
unusual or “lone” command.
If a command appears five or more times and, in all but
one occurrence, takes one set of attributes, the unique oc-
currence is called a lone command. We found three lone
commands in the Carnegie Mellon router configuration files.
To confirm that these lone commands would be of inter-
est to a network administrator, an expert familiar with the
campus network reviewed them.
The sensitivity of our algorithms in detecting lone com-
mands was determined by counting the number of false pos-
itives detected along with each misconfiguration. False pos-
itives are defined to be lines that are not lone commands.
The detector was run on all 24 router configuration files. For
each line, the minimum value of the detector parameter α
necessary to classify the line as an anomaly was computed.
For each lone command, we count the number of false posi-
tives with the same or lower minimum α value.

4. RESULTS
Figure 1 depicts the number of anomalies detected by joint
Bayes as a function of the threshold multiplier (α). The
minimum α value needed to detect each lone command is
plotted with annotation on the curve. Joint Bayes detects
two lone commands (Lone 2 and Lone 3) with no false pos-
itives. The other lone command (Lone 1) is only detected
along with 2541 (out of a possible 11,125) false positives.

5. DISCUSSION
Our results show that joint Bayes is able to detect poten-
tial misconfigurations without also detecting other anoma-
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Figure 1: A comparison of the threshold multiplier
α to the number of anomalies detected by the detec-
tor. The misconfigurations are plotted on the curve.

lies. Lone commands 2 and 3 are immediately detected by
this detector. This type of misconfiguration is specifically
that described by Caldwell et al. [1] as important to detect.
Further progress in detecting lone commands and other
types of router misconfigurations as anomalies could be made
if the assumption of independence between commands is re-
laxed. For instance, a misconfiguration in which interfaces
are assigned undefined access lists could be detected if the
dependency between the attributes of the access-group and
access-list commands were taken into account.

6. CONCLUSION
The goal of this work was to determine whether router
misconfigurations could be detected without prior knowl-
edge of their form. A detector was designed and evaluated
in this task, and it was able to successfully detect a certain
type of misconfiguration in real-world router data.
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