Self-Adaptive Software Composed of Port-Based Agents
Kevin R. Dixon Theodore Q. Pham Pradeep K. Khosla

Institute for Complex Engineered Systems
Carnegie Mellon University
{krd, t el anon, pkk}@s. cnmu. edu

Prepared for the Institute for Complex Engineered Systems Technical Report Series, 2000.

31 January, 2000

Abstract

To facilitate the design of large-scale, self-adaptive systems, we have developed the Port-Based Adaptable Agent Archi-
tecture. This distributed architecture allows systems to be created with the flexibility and modularity required for the rapid
construction of software systems that evaluate and modify themselves to improve performance. In this paper, we present the
architecture, describe port-based agents, and outline several applications where this flexible architecture has proven useful.

1 Introduction

In the monolithic programming model, increasingly capa-
ble systems require increasingly complex software. Multi-
agent systems achieve sophisticated capability through
complex interactions, not complex software. As such,
modularity, reconfigurability, and extensibility are more
achievable, and components can largely be tested in iso-
lation. However, most implementations of multi-agent sys-
tems do not take advantage of this modularity and recon-
figurability because they depend too heavily on the fore-
sight of the author at design time. Reconfiguration is typi-
cally a time-consuming manual process that often involves
changes to the components themselves. Use of multiple
processing nodes further complicates design and reconfig-
uration. The creation of a general multi-agent software ar-
chitecture that can learn from its own interactions with the
world, evaluate its performance, and adapt itself to achieve
better its goals, would find natural use in the distributed
system, real-time control, and proxy computing arenas. We
propose a distributed system supporting port-based agents
as such an architecture.

Analysis of the last five years in computing leads to
two key insights. First, the phenomenal growth of comput-
ing power, the advancement of miniaturization technolo-
gies, and the advent of commodity computers guarantee
that computers will permeate every facet of life. Second,
the growth of the Internet, fueled by this commodity com-
puting, has redefined what a computer is and how comput-
ers are used.

Computers started as large, cumbersome machines
which were little more than ballistics calculators. As tech-
nology progressed, the mainframe computer was born,
which was a calculator that multiple people could use si-
multaneously via time sharing or batch processing. How-
ever, the coupling of networking with the mass production
of microprocessor-based computers has shifted the com-
puting paradigm from that of a calculator to the informa-
tion and control devices that are commonplace today and
will become ubiquitous in the near future.

While computer hardware has changed drastically in
the past few years, computer software has struggled to keep
pace. The centralized, monolithic programming model that
was adequate, when treating computers as isolated entities,
is poorly suited to distributed, multi-task-oriented comput-
ing. For computing to become truly ubiquitous, new dis-
tributed, multi-task-oriented programming methodologies
must be developed. We believe that distributed, multi-agent
technologies offer the capabilities needed. With these no-
tions in mind, we are developing a distributed Port-Based
Adaptable Agent Architecture (PB3A) to explore this non-
monolithic programming model.

In this paper, related work is described in Section 2,

three levels of system adaptability are discussed in Sec-
tion 3, the overall architecture is detailed in Section 4, the
runtime environment is described in Section 5, some ap-
plications of the Port-Based Adaptable Agent Architecture
are presented in Section 6, and conclusions and future work
are laid out in Section 7.

2 Related Work

The ideas underlying Port-Based Agents (PBAs) draw
heavily on distributed-systems research, particularly the
distributed operating systems research of the last dozen
years.

The Sprite operating system, developed by John
Ousterhout et al. [3] more than ten years ago, introduced
the concept of process migration. Process migration al-
lowed an executing instance of a program to be moved
between workstations. The ability allowed a single Sprite
user to harness the power of many workstations simultane-
ously and dynamically.

About the same time as Sprite, a group of researchers at
the University of Tokyo created the Galaxy Distributed Op-
erating System [4]. This project emphasized object access-
level transparency for all resources. This ability to ac-
cess system resources uniformly, independent of their lo-
cations, further simplified process migration. Recognizing
that centralized object naming and locating schemes are
inefficient for distributed systems, Galaxy employed dis-
tributed schemes to maintain global state. In this system,
only processing nodes that require a given resource would
cache the naming and locating information of that resource.
The port naming and locating mechanisms in the PB3A fol-
low the same general scheme, thereby avoiding the central-
ized naming bottleneck and vulnerability.

In addition to drawing upon distributed operating sys-
tems, the PB3A resembles other mobile object program-
ming environments. One such system is the Emerald Dis-
tributed Programming Language [5] developed at the Uni-
versity of Copenhagen. The Emerald project created a dis-
tributed programming system for heterogeneous computer
networks. This system operates in native code and native
data representations on each individual platform, but mar-
shals the data into platform-independent representations on
transfer. In order to run an application across multiple plat-
forms, the code for that application must be compiled for
each platform. To deal with atomicity differences across
various platforms, Emerald code utilizes “bus stops”. An
Emerald object may only be migrated from one node to
the next when a bus stop is reached. Migrating the ob-
ject at any other point runs the risk of leaving during a
non-atomic operation on one platform that is atomic on an-
other. To ease the programming effort, bus stop generation

is built into Emerald compilers. The PB3A ensures atom-
icity across heterogeneous platforms by using a similar
locking scheme. All PB3A user code runs inside system-
maintained locks and cannot migrate until those locks are
obtained. The disadvantage of the Emerald system is that
the introduction of a new platform may require altering
the compilers and runtime libraries on all other platforms.
Furthermore, the sharp behavioral differences among plat-
forms may mean that a single application must be rewrit-
ten for each platform on which it may run. The PB3A
avoids both these disadvantages by using Sun Microsys-
tems Java. Java’s representation of code is platform inde-
pendent and its behavioral specification, with the excep-
tion of some graphical user interface-related functionality,
is uniform across all platforms for which Java is available.

Other agent-based systems include D’ Agents formerly
Agent TCL developed at Dartmouth College [2], Odyssey
and Telescript from General Magic, TACOMA from Uni-
versity of Tromsg and Cornell University, and Aglets from
IBM Research. These environments define agents to be
code that can be installed and executed on remote hosts,
with the ability to migrate to different hosts during execu-
tion. Whereas these systems emphasize the support infras-
tructure for agent programming paradigms and the commu-
nication mechanisms between agents, the PB3A addition-
ally focuses on the internal organization of agents, aims to
explore recursively composed systems, and exploits self-
adaptivity to cope with changing real-world operating con-
ditions.

The port-based concept is derived primarily from port-
based objects, first proposed and implemented by Stew-
art and Khosla in Chimera [6]. Port-based objects were
designed for real-time control applications in a multi-
processor environment with a single high-speed backplane.
A link between two objects is created by connecting an
output port of one object to a corresponding input port of
another object. The informational scope within which the
port-based objects exist is a flat, public data structure visi-
ble to all objects. This implementation is very efficient for
monolithic systems, but it provides no concept of agency
(see Wooldridge and Jennings [7]).

The PB3A should be viewed as the natural evolu-
tion of the port-based concept. Where port-based objects
were designed for multi-processor environments and for
direct human-initiated reconfiguration, the PB3A is be-
ing designed to utilize loosely coupled distributed com-
puting infrastructures and self-initiated software adaptiv-
ity. The modern-day computing paradigm exemplified by
distributed and self-adaptive systems absolutely requires
the autonomy and self-awareness that are the hallmarks
of agent technologies. Software composed from indepen-
dent, self-aware agents that are able to alter their own struc-
ture, are best suited to complete tasks in the case of net-

work latencies, node failures, and general operating condi-
tion variations that characterize real-world environments.
The PB3A’s first advantage over Chimera is that the PB3A
uses dynamically loaded Java byte-code to avoid recompil-
ing and relinking of the entire system when new objects
are added. Specifically, to support distributed computing,
the PB3A augments the notion of the port to include cross-
network links, employs an encapsulated memory model to
make each PBM self-contained, and utilizes mobile Java
byte-code along with the previously mentioned dynamic
loading to provide code on demand to individual nodes of
the network.

3 Adaptability

As software systems grow in complexity, it becomes infea-
sible for humans to monitor, manage, and maintain every
detail of their operation. From a human-computer inter-
action standpoint, it is desirable to build systems that can
be tasked easily, perform intelligently (as evaluated from
the user’s perspective), and complete the tasks with little
or no human interaction. Recognizing this need, the ulti-
mate goal of the PB3A is to aid in developing systems that
are self-adaptive. These systems analyze their performance
and can dynamically reconfigure themselves to fit better to
the current operating conditions and goals in a distributed
environment. From a software perspective, three natural
forms of adaptation arise.

The first form of adaptation is parametric fine tuning.
Most software is written in terms of algorithms that manip-
ulate data. The behavior of these algorithms depends on
their parameters. Much research has been done on estimat-
ing the error of the algorithm and using that error metric to
modify the parameters. For instance, this could be chang-
ing the synaptic weights in an artificial neural network
through backpropagation or the coefficients of an adaptive
digital filter.

The second form of adaptation is algorithmic change.
There is seldom one way to solve a given problem; ev-
ery different approach to solve a problem or calculate a
quantity gives rise to a unique algorithm. Two algorithms
designed to address the same problem may behave dif-
ferently based on the precise circumstances under which
they are used. A system that is aware of the current op-
erating conditions and the limitations of the algorithms it
employs could dynamically choose and switch algorithms
when conditions change. For instance, as lighting condi-
tions vary, swapping a stereo vision algorithm for a HSV-
based vision algorithm may improve performance.

The third form of adaptation involves mobility. In
a distributed environment, computing resource availabil-
ity varies by both location and time. Certain nodes may
have special-purpose hardware, more abundant memory

and processing power, or lower data-access latency. Soft-
ware that is aware of the resource conditions under which
it operates could migrate to complete its tasks sooner or to
make progress in the case of failures.

The PB3A provides the primitives and methodologies
by which all three forms of adaptation may be realized and
initiated by the software itself when operating conditions
warrant.

4 TheArchitecture

The PB3A is a Java-based programming framework that
aims to facilitate the development and deployment of dis-
tributed, self-adaptive, multi-agent applications. Unlike
sequential programming models that require an applica-
tion to be a single stream of instructions, the PB3A uti-
lizes a threaded programming model allowing simultane-
ous streams of instructions. To exploit the power of the
PB3A, a solution to a problem must be decomposed into a
hierarchy of interconnected tasks. We consider a task to be
some flow of execution that takes zero or more inputs, pro-
duces zero or more outputs, and may modify some internal
state. We call these input and output points “ports”, and
refer to a fundamental unit of execution as a Port-Based
Module (PBM).

In essence, a PBM clearly defines the boundaries, en-
try points, and exit points of the smallest unit of code in
the PB3A. The definition of tasks is recursive; a single task
may be composed of multiple, possibly parallel, sub-tasks.
To capture this notion, the PB3A allows for the creation of
Macros, a special type of PBM that is itself an intercon-
nected collection of PBMs or other Macros. Also, the self-
contained nature of the PBM, coupled with its completely
specified port mapping dependencies, allows not only for
easy distribution and coordination of code modules onto
a network of computers, but also for those modules to be
mobile. More succinctly, PBMs can migrate from node to
node during their execution.

Where the PBM represents the most basic unit of ex-
ecution, the Port-Based Agent (PBA) represents the most
basic unit of self-adaptability. Thus, the self-adapting PBA
is the cornerstone of our approach to managing software
complexity.

The architecture is logically divided into two halves.
On one half, there is the PBM task abstraction, detailed
in Section 4.1. Derived from PBMs are three other spe-
cialized categories: Macros, Port-Based Agents, and Port-
Based Drivers, explained in Sections 4.1.1,4.1.2, and 4.1.3,
respectively. Since these derived categories are based on
PBMs, they can be used anywhere PBMs can be used. Fur-
thermore, a PBM may belong to multiple categories. The
second half of the architecture concerns the support mecha-
nisms used to maintain the PBM abstraction. These support

—> —>
'FQ)??; —> Port-Based Module S(;thtF;Ut
—> —>

Figure 1: A generic diagram of a Port-Based Module.

libraries are referred to as the Runtime Core and are dis-
cussed in Section 4.2. Finally, the services that the Runtime
Core provides are detailed in Sections 4.2.1 through 4.2.4.

4.1 Port-Based Modules

A PBM is similar to Stewart and Khosla’s port-based ob-
ject. Each module has zero or more input ports, zero or
more output ports, and possibly some internal state (see
Figure 1). All ports are typed in the typical object-oriented
programming (OOP) paradigm. A link is created between
two PBMs by properly connecting an input port to an out-
put port. Properly connecting an input port to an output port
means obeying the OOP rules of inheritance. That is, infor-
mation that the input port expects must be the same class as,
or a super-class of, the information on the connected out-
put port. A configuration can be legal if and only if every
input port in the system is connected to at most one output
port but output ports may remain unconnected. An output
port may map to multiple input ports. PBMs use a local-
ized, or encapsulated, memory model. All state variables
specific to an instantiation of a particular PBM, as well as
all methods and static members, are contained within the
PBM itself. This allows a PBM to be self-governing and
independent of other PBMs.

411 Macros

The first PBM-derived category is the Macro. Since it is
common to have repeated subsystems in a given applica-
tion, groups of PBMs can be grouped together in entities
called Macros (see Figure 2). Macros are composed of one
or more PBMs and can be defined recursively by encap-
sulating other Macros. Any ports not connected to other
PBMs inside the Macro are external input or output ports
of the Macro. Once a Macro is defined, systems can be
constructed from the Macro as if it were a PBM. Further-
more, any predefined system can be used as a Macro sim-
ply by designating its input and output ports. The PBMs
comprising a Macro can run on a single machine, or they
can disperse themselves across a network. Thus, a Macro
may execute on several computers simultaneously. In this
manner, Macros facilitate the development of large-scale
systems by providing multiple levels of abstraction and en-
capsulation.

AL
|
il
(1)

— 44 [tankmap.Sone - [¥

Refresh

——| a —

1 I

7 4
|

Figure 2: Macros encapsulate one or more PBMs.

4.1.2 Port-Based Agents

The next PBM-derived category is the Port-Based Agent
(PBA). Where PBMs represent the most basic unit of
execution, PBAs represent the most basic unit of self-
reconfiguration and self-adaptability. In other words, a
PBA is the smallest unit of code that can measure its perfor-
mance and take steps to improve that performance. These
steps may include internal parameter tuning, transferring
processing nodes, spawning other PBAs, being replaced
by a more suitable PBA, or internal reconfiguration of the
PBA itself. In keeping with the modular theme, most PBAs
should be Macros of many PBMs. A common PBA Macro
configuration consists of one or more PBMs processing
data, one or more PBMs measuring the performance of the
PBA, and one or more PBMs deciding upon a course of
action to improve performance.

4.1.3 Port-Based Drivers

The final derived category is the Port-Based Driver (PBD).
Though the PB3A is a high-level programming frame-
work, low-level interactions must be considered. Since
most incarnations of Java are inappropriate to interface
with hardware, device drivers must be written in a language
that can handle pointers, access registers, and other low-
level, machine-specific interactions, such as C or C++. A
machine-specific driver communicates through a platform-
independent “resource port” to a PBD. Presently, resource
ports are TCP-based sockets. This allows a PBD to control
a specific device from any computer that supports Java, ir-
respective of where the device is located physically. How-
ever, when the device driver and controlling PBD are lo-
cated on separate machines, latencies can degrade the per-
formance of the device, especially in real-time control ap-
plications. For this reason, the PB3A allows any PBM to
specify its physical location so that network latencies can
be avoided by using a shared-memory model for port in-

Computer A Computer B

Solaris 26 @

Java Virtud Machine Java Virtud Maching]
Core Core
op [l |||

Runtime Runtime
Core PBM PBM Core
rtud Machine

Java Vi Java Virtual Maching]

Future OS XV,

Figure 3: The Runtime Core provides PB3A services.

i

g

WinNT 4.0 Computer C Computer D

formation (this will be discussed in Section 4.2). Examples
that use PBDs to control devices will be discussed in Sec-
tions 6.1 and 6.2.

Furthermore, legacy software also can be interfaced us-
ing a PBD. In this case, the legacy application can be con-
sidered the device. A PBD can issue commands to the
legacy software, and the results can be communicated back
to the PBD through the resource port. There is an exam-
ple of a large-scale system using this methodology in Sec-
tion 6.3.

4.2 Runtime Core

A traditional computer system is comprised of three logical
parts: the hardware that makes up the machine, the core
operating system, and the user programs. The hardware
offers basic interfaces to computing resources such as CPU,
memory, network, and secondary storage. The operating
system, or more precisely the kernel, runs on top of this
hardware. In most cases, the kernel manages resources and
transforms disparate hardware interfaces into a consistent
set of services for user programs.

In the PB3A, the Runtime Core is the kernel that runs
on top of one or more Java Virtual Machines (JVMs) and
provides a consistent set of services to PBMs (Figure 3).
The Runtime Core is written in Java and is platform inde-
pendent. No modifications to the Runtime Core are needed
when introducing a new computing environment. In a sys-
tem involving multiple processing nodes, the Runtime Core
instances on each node cooperate to manage the global state
of the system. This global state includes the node where a
PBM is executing and what port mappings have been estab-
lished both locally and between nodes. In total, the collec-
tive Runtime Core presents a single, consistent computing
interface that abstracts the heterogeneous, distributed com-
puting infrastructure.

When a system begins to execute, a per-node daemon
starts a JVM and Runtime Core on each of the nodes. Next,

each Runtime Core receives its share of the global system
configuration. Each node’s share only contains informa-
tion about the PBMs running locally on that node and any
PBMs whose ports are mapped to locally running PBMs.
For locally running PBMs, that information includes ini-
tial internal state and port mapping data; whereas, for dis-
tributed PBMs mapped to locally running PBMs, only port
mapping data is included. From this configuration informa-
tion, the Runtime Cores load all locally executing PBMs.
The Java byte-code for those PBMs may come from the
local file system or be requested from a network host des-
ignated as the code server (see Section 4.2.3). Although
all PBMs reside in the shared memory of a JVM on a
node, each is self-contained and has no references to the
other PBMs, and consequently can have no effect on other
PBMs. This memory-space protection is maintained by the
JVM. Once all PBMs in the global system have been in-
stantiated, the Runtime Cores begin mapping ports. Ports
between PBMs on the same node map directly through
shared memory. For mappings between two nodes, the
Runtime Cores perform replication (see Section 4.2.1), and
the mapping is created using a TCP-based socket. Once
all port mappings are established, the Runtime Cores ini-
tialize each PBM with its initial state. Finally, a thread is
created for each loop-based PBM and the Runtime Cores
initialize the per-node event dispatch thread pools (see Sec-
tion 4.2.2). This completes the distributed initialization
phase and subsequently execution begins.

421 Ports

Current programming models do not allow for easy recon-
figuration. The primary difficulties center upon dependen-
cies and hidden interactions. The communication and co-
ordination methods in the current programming models are
known only to the sections of cooperating code and are hid-
den from the rest of the runtime system executing those
sections of code. Reconfiguration in such a system re-
quires altering memory addresses and potentially altering
the way sections of various communicate. Even multi-
programming and multi-threading environments, where
communication rules are more formalized, are not effec-
tive.

The PB3A solution to the problem is to formalize com-
munication between cooperating PBMs and rigidly enforce
the rules. That is, PBMs can only communicate with each
other through type-specific ports. Each PBM is effectively
treated as an individual unit that cannot access informa-
tion in another PBM unless it is explicitly shared. Shar-
ing data requires linking an input port to an output port of
like or derived type. This connection results in an informa-
tion pipeline where the link details are completely hidden in
the ports themselves and are available only to the Runtime

Core. The indirection and decoupling inherent in the input
and output ports allows the Runtime Core to rearrange links
arbitrarily without disturbing the PBMs. Consequently,
swapping one PBM for another only requires instantiating
the new PBM and implanting the ports, and possibly the
state of the original PBM, into the new PBM. Some minor
bookkeeping information in the ports must be updated, but
the PBMs connected to the PBM being swapped need not
be disturbed.

The other significant advantage of ports lies in dis-
tributed and mobile code. Since the details of all port con-
nections are managed by the Runtime Core, PBMs execut-
ing on different processing nodes do not need any special
code to communicate. To establish port mappings between
PBMs on two processing nodes, the Runtime Core of the
input-side node issues a replication request to the Runtime
Core of the output-side node if replication of that specific
output port has not been previously requested. The output-
side node’s Runtime Core keeps track of what output ports
are replicated to where and sends port state updates to the
appropriate nodes every time those ports change value. The
consistency of this replication is defined on a point-to-point
basis. That is, from sender to receiver, the changes are
guaranteed to be delivered sequentially. However, when
one output port is replicated to various processing nodes,
no guarantees of consistency exist between the receiving
nodes. In other words, the two or more receiving nodes are
not guaranteed to see the same value at the same time be-
yond the point-to-point consistency guarantee. This output
replication allows PBMs to communicate as if they were
running on the same machine, though with potential added
latency. Furthermore, port communications hide migration
of a PBM between nodes from any PBMs connected to the
migrating entity. Hiding port replication and migration free
a PB3A programmer to concentrate on the algorithms em-
ployed and information communicated, instead of how to
communicate. Of course, in some cases the latencies intro-
duced cannot be completely ignored.

4.2.2 Port-Based Module Runtime Structure

The PB3A supports two different, though not mutually ex-
clusive, runtime models for each PBM. A PBM may be
threaded, event-driven, or both. A threaded PBM consists
of a main method body that is executed within a loop con-
trolled by the Runtime Core. The Runtime Core raises the
PBM'’s lock before executing the method body and releases
the lock upon exiting. This guarantees that a threaded PBM
will not be migrated while executing its main method body.
After each iteration of the loop, and after dropping the
PBM lock, the Runtime Core puts the thread to sleep for
a PBM-specified amount of time. An event-driven PBM
does not possess a thread of its own. Its event dispatching

method body executes only in response to changes on input
ports of the event-driven PBM. Before executing a PBM’s
event dispatching method body, the Runtime Core raises
the PBM’s lock. Upon completion of event dispatching, the
Runtime Core releases the PBM’s lock. For PBMs that are
both threaded and event-driven, the lock additionally pre-
vents both sections of code from simultaneously executing.
The event-dispatching facility itself is composed of multi-
ple threads in a worker pool configuration so that events on
different PBMs can execute in parallel.

4.2.3 Loading

As the maintainer of the PBM task abstraction, one of the
Runtime Core’s responsibilities is instantiating PBMs. The
full specification of a PBM instance consists of Java byte-
code, internal state, and port mappings. A PBM’s internal
state and port mapping data, along with its Java class name
and PB3A instance name, are referred to collectively as the
PBM’s configuration. Loading is the process of instanti-
ating a PBM based on its configuration. This process oc-
curs at system startup and in response to requests issued by
PBMs. To load a PBM, the Runtime Core must first retrieve
the byte-code for the PBM’s Java class. The Runtime Core
locates this byte-code by first checking the local file sys-
tem. If the byte-code is available locally, then the Runtime
Core invokes the JVM to load the byte-code. Otherwise,
the Runtime Core contacts a network host designated as
the code repository, the ModuleServer (discussed in Sec-
tion 5.1), and requests transmission of the byte-code via
a network socket. Once the byte-code has been received,
the Runtime Core invokes the JVM to load the byte-code.
Next, an instance of the PBM class is instantiated and a
member method is invoked to set the internal state of the
instance to the data stored in the configuration. Finally, the
Runtime Core establishes the port mappings of the PBM
instance and may allocate a thread if the PBM is threaded.

4.2.4 Migration

PBM migration is the process of transferring an execut-
ing PBM from one processing node to another. Migra-
tion of a PBM involves capturing its configuration at the
source node, transferring that configuration to the destina-
tion node, and then reloading the PBM at the destination.
Reloading the PBM from a configuration follows the same
loading process discussed in the previous section, the pri-
mary differences concern capturing the state of an execut-
ing PBM and transferring that state across nodes. Just as a
PBM has a method to set its internal state from its config-
uration, a PBM has a method that returns a memory refer-
ence graph representing its internal state. When a request
is made to migrate a PBM, the Runtime Core raises the

PBM’s lock and then invokes the internal state graph re-
trieval method. Raising the lock pauses the PBM and it can-
not alter its internal state. The PBM’s internal state graph,
port mappings, Java class name, and PB3A instance name
are then recorded in a configuration record. The Runtime
Core of the source node then contacts the Runtime Core at
the destination node and transmits the configuration record
via a network socket. The transmission of the configura-
tion record is conducted by Java Serialization. Java Serial-
ization is a built-in language mechanism to efficiently con-
vert any memory reference graph into a byte stream. This
byte-stream may be a file, a network socket, or a memory
buffer. In addition to the configuration, the Runtime Core
of the source will transmit any replication requests it has
received for the migrating PBM’s output ports. The des-
tination Runtime Core then loads the PBM from its acti-
vation record and takes control of replication management
from the source Runtime Core. The source Runtime Core
is then able to deallocate local records and references of the
migrated PBM.

5 Runtime Environment

The PB3A runtime environment consists of the Module-
Server, the Launcher, the NetExecutor, and the NetCon-
troller.

5.1 ModuleServer

The ModuleServer is the server side of the PB3A’s client-
server code distribution system. Each PBM instance is
composed of internal state, port mappings, and code. PBM
code is a class (or set of classes) within Java’s well-defined
package name-space. On client demand, the ModuleServer
transmits PBM code to a remote host.

When a client needs PBM code to which it does not
have access, the client connects to the ModuleServer. A
separate server-side thread handles each connection, allow-
ing multiple clients to make use of the server simultane-
ously. After connection, the client transmits the fully qual-
ified name of each PBM code class. The ModuleServer re-
solves the name into a path in its local file system and then
transmits the Java byte-code class file to the client. Using
built-in Java mechanisms, the client can load the byte-code
asaJava class. Then the PBM combines that code, a PBM’s
internal state, and its port mappings to instantiate the PBM.

New PBM code can be added to the ModuleServer by
simply copying their class files into a subdirectory of the
ModuleServer’s module path. The server does not need to
be restarted for this new code to be recognized. Because
the ModuleServer never loads the PBM code directly, new
versions of existing PBM code can be added by overwrit-
ing the old class files. Again, the server does not need to

Figure 4: ModuleManager visualizes PB3A systems.

be restarted. Clients can dynamically clear their locally
cached copies of previous PBM code and a new version
can be loaded.

5.2 ModuleManager

Inspired by file browsers from graphical operating systems,
the ModuleManager is a visual systems configuration tool,
shown in Figure 4. Currently, the ModuleManager supports
creating and editing system configuration files graphically.
To create a new system, the user selects PBMs and then
connects their input and output ports to form a configura-
tion by pointing-and-clicking. A file browser-like interface
allows users to search the local file system and the Mod-
uleServer for PBMs. Essentially, the ModuleManager is a
schematic editor for specifying data pathways in a PB3A
system.

The ModuleManager allows the user to set special
properties in the PBMs. The “Run Location” specifies on
which host machine the PBM should begin execution. If
this property is set to “local”, then the PBM will execute on
the machine that loaded the configuration. If the Run Lo-
cation is a hostname, the Module will execute on that host.
Other useful properties that may be edited in the Module-
Manger include the PBM’s internal state. This editing can
be done by the ModuleManger’s built in State Editor via
Java Reflection, discussed in more detail in Section 5.3.

When the user has completed a configuration, she may
save the configuration to disk or send it directly to the
Launcher for execution. The ModuleManager plays no part
in this execution.

— - [tankmap s

[— - Iype: PBAMapper X U—
Iams: Mapper_10d
Location: Local File System |
Hast | ambrose.rem cmu.edu
Size: i ¥ sg
Input Paort Mame
(@ =
Fansmitt)
i L
z
3
[7]
Change | |}
—— Dutput Port Mame
U L
1 L
. 1
L
@ Change |

Editstate| ok | Cancel |

Figure 5: Editing PBM properties via the State Editor.

5.3 State Editor

Most PBMs have internal state and the PB3A allows the
editing of this state by the State Editor. When a PBM is
selected in the ModuleManager, a set of properties is dis-
played (Figure 5). These properties include initial host,
as well as several other properties, and allows the user
to edit the internal state of a specific PBM instantiation.
The internal state of a PBM includes variables, objects,
or arrays declared outside the scope of any methods in
the PBM. This information is obtained by Java Reflection.
The State Editor queries the Java Virtual Machine for the
names and types of state variables for a particular PBM
class. Presently, Java Reflection only returns information
on public, protected, or package-default members; infor-
mation on private members of PBMs cannot be obtained
in the State Editor. Next, the State Editor asks the Java
Virtual Machine for the current values of the state vari-
ables for a specific PBM instance. The State Editor then
presents this data graphically to the user, using any object-
specific display methods, if necessary. To display primitive
types (integers, doubles, etc.) all that is needed is a sim-
ple text box. However, some non-primitive objects, such
as Bayesian Belief Networks or a Hidden Markov Models,
may be displayed in a more sensible, type-specific manner.
The State Editor determines if the non-primitive object has
a specialized display routine, which is a method written by
the author of the object. If such a method exists, then the
State Editor uses this method, otherwise the State Editor
allows the user to open the object and view its members di-
rectly. This process can be repeated recursively through its
embedded objects until only primitive types remain.

The author of a PBM does not need to put any hooks or

access routines for the State Editor to gain access to its state
variables. This makes the State Editor extremely versatile,
and allows the State Editor to manipulate PBMs that have
been dynamically added to the PB3A.

5.4 Launcher

The Launcher comprises one of the two system execution
entities in the PB3A. It contains a Runtime Core along with
code to divide a global configuration into the smaller, node-
specific configurations. The Launcher’s local copy of the
configuration mirrors the global configuration. This makes
the Launcher responsible for synchronizing and managing
changes to the global configuration. All requests that alter
the global configuration are serialized by the Launcher.

During execution, the Launcher has a complete Run-
time Core and is responsible for providing a PBM exe-
cution environment. The Launcher loads all PBMs from
the ModuleServer or local file system, launches threads for
threaded PBMs, provides event notification facilities, man-
ages remote port replication, and responds to system recon-
figuration requests.

Once the Launcher divides the global configuration into
node-specific configurations, it contacts the NetController
at each of the remote hosts. The Launcher then requests
that NetExecutors be spawned to host that node’s piece of
the current, global system configuration.

5.5 NetExecutor

The NetExecutor is the second system execution engine
in the PB3A. Like the Launcher, the NetExecutor con-
tains a Runtime Core and is responsible for providing a
PBM execution environment. Immediately after spawning,
the NetExecutor opens a network socket to the Launcher
that initiated it. The NetExecutor then uses this network
link to download from the Launcher the section of the
global system configuration that it must execute. Like the
Launcher, the NetExecutor loads all PBMs from the Mod-
uleServer or the local file system, starts threads for threaded
PBMs, provides event notification facilities, manages re-
mote port replication, and responds to system reconfigura-
tion requests.

Currently, before NetExecutor can perform any action
that would alter its local configuration, it must contact the
Launcher and lock the global configuration. Since only one
node may be locking the global configuration at a given
time, this process guarantees that the NetExecutors provide
Launcher with the information needed to serialize all sys-
tem changes.

The Runtime Cores embedded in NetExecutors and the
Launcher cooperate to manage the PB3A port communica-
tion system. This local and remote port access transparency

frees the PB3A programmer to treat a distributed, hetero-
geneous network of processing nodes as if it were one large
computer.

5.6 NetController

The NetController acts as a gateway daemon through which
PBMs may enter a remote processing node. Whenever a
NetExecutor or Launcher needs to start PBMs on, or mi-
grate PBMs to, a remote node it must first ensure that a
NetExecutor, designated to run PBMs for the current con-
figuration, is running on that node. To ensure this, the Ne-
tExecutor or Launcher on the original node opens a net-
work socket to the NetController and transmits the global
configuration name. NetControllers listen for network con-
nections on a specific socket number. Upon receiving the
global configuration name, the NetController may respond
three different ways. If the NetController determines that
its node does not have enough computing resources remain-
ing to satisfy the request, it can reject the request. If the
NetController determines that it has enough resources and
a NetExecutor is already running for the specified global
configuration, it replies with the network socket number
for that NetExecutor. If the NetController determines that
it has enough resources and a NetExecutor is not running
for the specified global configuration, the NetController
spawns a NetExecutor designated for that global configu-
ration and replies with the network socket number for the
spawned NetExecutor. This process ensures that only one
NetExecutor is designated for a given global configuration
on a given processing node. Moreover, this guarantees that
if two PBMs from the same global system configuration
are executing on a node, they will be executing in a shared
memory space and port communications will work directly
through memory references. If a Launcher loses contact
with a NetExecutor for some reason, the Launcher can con-
tact the NetController for that NetExecutor’s node and re-
quest that the NetExecutor be shut down either gracefully
or forcefully.

6 Applications

We have used the Port-Based Adaptable Agent Architec-
ture as the substrate for several applications that demon-
strate some of the features of the architecture.

6.1 Robotic Mapping

In this scenario, two mobile robots, shown in Figure 6, are
tasked to map a laboratory using ultrasonic sonars. One
robot is endowed with a simple strategy to explore the lab-
oratory, a Bayesian mapping algorithm, and a hardware
monitor to detect any failures that would prevent the robot

Figure 6: Robots used for mapping: Patton and Rommel.

— 54 [Uniitied 0 o X

Refresh

Figure 7: Layout of the PBMs used for mapping.

from completing its task, while the other robot sits idle.
If the first robot has a hardware failure (such as a gradu-
ate student cutting the power to its motors) then the PBM
monitoring the hardware issues a request to the Runtime
Core to move the software to the idle robot. The Runtime
Core then requests that all PBMs in the system (Figure 7)
serialize their state so that any information collected by the
first robot can be sent to the second robot. Next, the Run-
time Core requests the ModuleServer to send the code for
each PBM and the retrieved state information to the second
robot. The system finally resumes execution on the healthy
second robot. Thus, the second robot can continue map-
ping after the first robot fails. This transferring of software
takes about five seconds once hardware failure is detected.

6.2 Transferring Learned Knowledge

Another application where this architecture has proven
very useful is in the transferring of learned knowledge from
simulation directly to the real world. For this application,
the Port-Based Adaptable Agent Architecture was com-
bined with the mobile robot simulator RAVE, described by
Dixon et al. [1]. RAVE provides interfaces and dynamic

linking of libraries that allow the same robot code to exe-
cute on a simulated or real-world robot.

In this scenario, a mobile robot learns to move to a
goal location while avoiding obstacles using a reactive con-
trol policy. The robot commences learning in simulation.
The simulated robot is endowed with extremely simplified
zeroth-order dynamics. Clearly, the dynamics of the real
robot are more complex, and the parameters of the con-
troller must be fine-tuned to account for this difference be-
tween the real and simulated robots.

When the task is learned satisfactorily in simulation,
the Runtime Core moves the entire system from the simu-
lated robot to the real robot. Since RAVE allows the same
robot code to execute in simulation or on a real robot, the
system can be immediately resumed on the real robot. Af-
ter a few moments of learning on the real robot, the con-
troller has sufficiently accounted for the difference in dy-
namics. The transferring of the controller code from the
simulated to the real robot takes about two seconds. Learn-
ing in simulation, then finishing the learning on the phys-
ical system allows for a drastic reduction in total time re-
quired to learn the task, while not suffering a decline in
performance.

6.3 Traffic Optimization

The PB3A was also used to develop a basic intelligent
transportation system: an adaptive, decentralized signal
controller for urban traffic. Each intersection has PBMs
that collect sensor information, communicate with neigh-
boring intersection controllers or traffic centers, and issue
intersection signal commands. Different types of inter-
section controllers were designed: fixed-time controllers,
periodically switching between red, yellow, and green
lights; adaptive controllers based on local probabilities and
queues; or learning techniques. A performance agent was
developed to swap controllers depending on traffic con-
ditions. The PB3A was applied in simulation to a small
section of the urban area of the city of Pittsburgh called
Penn Circle, as part of a Community Project to improve the
traffic in the area. The goal was to study the traffic pat-
terns and current intersection-controller quality compared
to more advanced controllers. With the PB3A, it was pos-
sible to deploy the whole system very quickly and connect
it with the traffic simulator ARTIST developed by Bosch,
using a PBD to interface with the simulator. Further de-
velopments will include the use of vehicle-to-vehicle com-
munication, inclusion of bus schedules, emergency vehicle
activity, and vehicle navigation features.

7 Conclusions and Future Work

We have created a distributed, agent-based architecture
that facilitates the development of large-scale, self-adaptive
systems. The Port-Based Adaptive Agent Architecture
(PB3A) specifies a highly modular and decoupled agent-
to-agent communication scheme via input and output ports
and provides the necessary primitives for code migration.
Furthermore, the PB3A gives some specifications how a
Port-Based Agent should be structured, giving agents the
autonomy to become truly self-adaptive. Whereas previous
research in this area has focused individually on mobility,
software composition, or adaptability, we have presented a
unified architecture. This unification allows more effective
research into self-adaptive systems.

Another powerful notion in the PB3A is the recursive
definition of tasks. That is, a PB3A system may be com-
posed of many agents. Each agent may be composed of
many tasks which, in turn, may be composed of many sub-
tasks, and so on. The PB3A makes this logical, recursive
system realization possible through the encapsulation of
tasks in Macros.

The decoupled communication scheme between PB3A
modules allows for their testing to be done in isolation.
This gives rise to rapid prototyping and reliable systems
to be designed and built extremely quickly.

Future work will allow the user to have a more inter-
active role in a PB3A system execution. Presently, once
the system is started, the agents in the system determine
when or if the system should adapt itself (moving agents to
different nodes, swapping algorithmic modules, etc.). We
will allow the user to be able to adapt the system during
its execution by specifying any aspect of agents possible.
Also, we will modify the State Editor to give the user the
ability to view and modify the internal state of a module,
in real-time, during its execution. Currently, the user may
only use the State Editor to modify the internal state of a
module before the system begins execution.

Also, the port and event systems will be made more so-
phisticated. We will embed environmental information into
the ports of a module so that the module can make more in-
formed decisions. Information such as network latencies,
network failure rates, and CPU usage could prove useful to
self-adaptive agents. Events will be expanded by allowing
more types of events, rather than just input port changes,
and priorities will be given to different types of events.

Acknowledgments

We would like to thank Andrea Byrnes, Nathan Clark,
John Dolan, Enrigue Ferreira, Jordan Harrison, Dan Heller,
Jonathan Jackson, Rich Malak, Chris Paredis, Yatish Patel,
and Charles Tennent for their contributions to this work.

10

This work was supported in part by DARPA/ETO under
contract F30602-96-2-0240 and by the Institute for Com-
plex Engineered Systems at Carnegie Mellon University.
We also thank the Intel Corporation for providing part of
the computing hardware.

References

[1] Dixon, K.R., J.M. Dolan, W.S. Huang, C.J.J. Paredis,
and P.K. Khosla. “RAVE: A Real and Virtual Envi-
ronment for Multiple Robot Systems”, Proceedings
of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 1999.

[2] Gray, Robert. “Agent Tcl: A transportable agent sys-
tem”, Proceedings of the CIKM Workshop on Intel-
ligent Information Agents, Fourth International Con-
ference on Information and Knowledge Management,

December 1995.

Ousterhout, John K., Andrew R. Cherenton, Freder-
ick Douglis, Michael N. Nelson, and Brent B. Welch.
“The Sprite Network Operating System”, IEEE Com-
puter, v. 21 n. 2, pp. 23 - 36, February 1988.

(3]

[4] Sinha, Pradeep K., Mamoru Maekawa, Kentaru
Shimizu, Xiaohua Jia, Hyo Ashihara, Naoki Ut-
sunomiya, Kyu S. Park, and Hirohiko Nakano. “The
Galaxy Distributed Operating System”, |EEE Com-

puter, v. 24 n. 8, pp. 34 - 41, August 1991.
[5]

Steensgaard, Bjarne and Eric Jul. “Object and Native
Code Thread Mobility Among Heterogeneous Com-
puters”, Proceedings of the 15th ACM Symposium on
Operating Systems Principles, pp. 68 - 78, December

1995.

Stewart, D.B and P.K. Khosla. “The Chimera
Methodology: Designing Dynamically Reconfig-
urable and Reusable Real-Time Software Using Port-
Based Objects”, International Journal of Software
Engineering and Knowledge Engineering, v. 6, n. 2,
pp. 249 - 277, June 1996.

(6]

[7] Wooldridge, Michael and Nicholas R. Jennings. “In-
telligent Agents: Theory and Practice”, Knowledge

Engineering Review, 1995.

