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Abstract. To facilitate the design of large-scale, self-adaptive systems, we have
developed the Port-Based Adaptable Agent Architecture. This distributed, multi-
agent architecture allows systems to be created with the flexibility and modu-
larity required for the rapid construction of software systems that analyze and
dynamically modify themselves to improve performance. This architecture pro-
vides user-level access to the three forms of software adaptability: parametric fine
tuning, algorithmic change, and code mobility. In this paper, we present the ar-
chitecture, describe port-based agents, and outline several applications where this
flexible architecture has proven useful.

1 Introduction

In the monolithic programming model, increasingly capable systems require increas-
ingly complex software. Multi-agent systems achieve sophisticated capability through
complex interactions, not complex software. As such, modularity, reconfigurability, and
extensibility are more achievable, and components can largely be tested in isolation.
However, most implementations of multi-agent systems do not take advantage of this
modularity and reconfigurability because they depend too heavily on the foresight of the
author at design time. Reconfiguration is typically a time-consuming manual process
that often involves changes to the components themselves. Use of multiple processing
nodes further complicates design and reconfiguration. The creation of a general multi-
agent software architecture that can learn from its own interactions with the world,
evaluate its performance, and adapt itself to achieve its goals better, would find natu-
ral use in the distributed system, real-time control, and proxy computing arenas. We
propose a distributed system supporting port-based agents as such an architecture.

Analysis of the last five years in computing leads to two key insights. First, the phe-
nomenal growth of computing power, the advancement of miniaturization technologies,
and the advent of commodity computers guarantee that computers will permeate every
facet of life. Second, the growth of the Internet, fueled by this commodity computing,
has redefined what a computer is and how computers are used.

Computers started as large, cumbersome machines which were little more than bal-
listics calculators. As technology progressed, the mainframe computer was born, which
was a calculator that multiple people could use simultaneously via time sharing or
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batch processing. However, the coupling of networking with the mass production of
microprocessor-based computers has shifted the computing paradigm from that of a
calculator to the information and control devices that are commonplace today and will
become ubiquitous in the near future.

While computer hardware has changed drastically in the past few years, computer
software has struggled to keep pace. The centralized, monolithic programming model
that was adequate, when treating computers as isolated entities, is poorly suited to dis-
tributed, multi-task-oriented computing. For computing to become truly ubiquitous,
new distributed, multi-task-oriented programming methodologies must be developed.
We believe that multi-agent technologies offer the capabilities needed. With these no-
tions in mind, we are developing a distributed Port-Based Adaptable Agent Architecture
(PB3A) to explore this non-monolithic programming model.

In this paper, the three levels of system adaptability are discussed in Section 2,
the overall architecture is detailed in Section 3, the runtime environment is described
in Section 4, some applications of the Port-Based Adaptable Agent Architecture are
presented in Section 5, related work is described in Section 6, and conclusions and
future work are laid out in Section 7.

2 Adaptability

As software systems grow in complexity, it becomes infeasible for humans to monitor,
manage, and maintain every detail of their operation. From a human-computer inter-
action standpoint, it is desirable to build systems that can be assigned easily, perform
intelligently (as evaluated from the perspective of the user), and complete tasks with
little or no human intervention. Recognizing this need, the ultimate goal of PB3A is
to aid in developing systems that are self adaptive. These systems analyze their perfor-
mance and can dynamically reconfigure themselves to fit better to the current operating
conditions and goals in a distributed environment. From a software perspective, three
natural forms of adaptation arise.

The first form of adaptation is parametric fine tuning. Most software is written in
terms of algorithms that manipulate data. The behavior of these algorithms depends on
their parameters. Much research has been done on estimating the error of an algorithm
and using that metric to modify the parameters. For instance, this could be changing
the synaptic weights in an artificial neural network through backpropagation or the
coefficients of an adaptive digital filter.

The second form of adaptation is algorithmic change. There is seldom one way
to solve a given problem; every different approach to solve a problem or calculate a
quantity gives rise to a unique algorithm. Two algorithms designed to address the same
problem may behave differently based on the precise circumstances under which they
are used. A system that is aware of the current operating conditions and the limitations
of the algorithms it employs could dynamically choose and switch algorithms when
conditions change. For instance, as lighting conditions vary, swapping a stereo vision
algorithm for an HSI-based vision algorithm may improve performance.

The third form of adaptation involves mobility. In a distributed environment, com-
puting resource availability varies both spatially and temporally. Certain nodes may



Port-Based Adaptable Agent Architecture 3

have special-purpose hardware, more abundant memory and processing power, or lower
data-access latency. Software that is aware of the resource conditions under which it op-
erates could migrate to complete its tasks sooner or to make progress in case of failures.

The PB3A provides the primitives and methodologies by which all three forms of
adaptation may be realized and initiated by the software itself when operating condi-
tions warrant.

3 TheArchitecture

The Port-Based Adaptable Agent Architecture is a Java-based programming framework
that aims to facilitate the development and deployment of self-adaptive, distributed,
multi-agent applications. Unlike sequential programming models that require an ap-
plication to be a single stream of instructions, PB3A utilizes a threaded programming
model allowing simultaneous streams of instructions. To exploit the power of PB3A, a
solution to a problem must be decomposed into a hierarchy of interconnected tasks. We
consider a task to be some flow of execution that takes zero or more inputs, produces
zero or more outputs, and may modify some internal state. We call these input and out-
put points “ports”, and refer to a fundamental unit of execution as a Port-Based Module
(PBM).

In essence, a PBM clearly defines the boundaries, entry points, and exit points of
the smallest unit of code in PB3A. The definition of tasks is recursive; a single task may
be composed of multiple, possibly parallel, sub-tasks. To capture this notion, PB3A al-
lows for the creation of Macros, a special type of PBM that is itself an interconnected
collection of PBMs or other Macros. Also, the self-contained nature of the PBM, cou-
pled with its completely specified port-mapping dependencies, allows not only for easy
distribution and coordination of code modules onto a network of computers, but also
for those modules to be mobile. More succinctly, PBMs can migrate from node to node
during their execution. Where the PBM represents the most basic unit of execution, the
Port-Based Agent (PBA) represents the most basic unit of self-adaptability. Thus, the
self-adapting PBA is the cornerstone of our approach to managing software complexity.

The architecture is logically divided into two halves. On one half, there is the
PBM task abstraction, detailed in Section 3.1. Derived from PBMs are three special-
ized categories: Macros, Port-Based Agents, and Port-Based Drivers, explained in Sec-
tions 3.2, 3.3, and 3.4, respectively. Since these derived categories are based on PBMs,
they may be used anywhere PBMs can be used. Furthermore, a PBM may belong to
multiple categories. The second half of the architecture concerns the support mecha-
nisms used to maintain the PBM abstraction. These support libraries are referred col-
lectively as the Runtime Core and are discussed in Section 3.5. Finally, the services that
the Runtime Core provides are detailed in Sections 3.6 through 3.9.

3.1 Port-Based Modules

Each PBM has zero or more input ports, zero or more output ports, and possibly some
internal state (see Figure 1). All ports are typed in the typical object-oriented program-
ming (OOP) paradigm. A link is created between two PBMs by properly connecting an
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Fig. 1. A generic diagram of a Port-Based Module.

input port to an output port. Properly connecting an input port to an output port means
obeying the OOP rules of inheritance. That is, information that the input port expects
must be the same class as, or a super-class of, the information on the connected output
port. A configuration can be legal if and only if every input port in the system is con-
nected to at most one output port, however output ports may remain unconnected. An
output port may map to multiple input ports. PBMs use a localized, or encapsulated,
memory model. All state variables specific to an instantiation of a particular PBM, as
well as all methods and static members, are contained within the PBM itself. This al-
lows a PBM to be self-governing and independent of other PBMs.

3.2 Macros

The first PBM-derived category is the Macro. Since it is common to have repeated
subsystems in a given application, groups of PBMs can be brought together in entities
called Macros (Figure 2). Macros are composed of one or more PBMs and can be
defined recursively by encapsulating other Macros. Any ports not connected to other
PBMs inside the Macro are external input or output ports of the Macro. Once a Macro is
defined, systems can be constructed from the Macro as if it were a PBM. Furthermore,
any predefined system can be used as a Macro simply by designating its input and
output ports. The PBMs comprising a Macro can execute on one machine, or they can
disperse themselves across a network. Thus, a single Macro may execute on several
computers simultaneously. In this manner, Macros facilitate the development of large-
scale systems by providing multiple levels of abstraction and encapsulation.

3.3 Port-Based Agents

The next PBM-derived category is the Port-Based Agent (PBA). Where PBMs rep-
resent the most basic unit of execution, PBAs represent the most basic unit of self-
reconfiguration and self-adaptability. In other words, a PBA is the smallest unit of code
that can measure its performance and take steps to improve that performance. These
steps may include internal parameter tuning, transferring processing nodes, spawning
other PBAs, being replaced by a more suitable PBA, or modifying the internal recon-
figuration of the PBA itself. In keeping with the modular theme, most PBAs should be
Macros of many PBMs. A common PBA configuration consists of one or more PBMs
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Fig. 2. Macros encapsulate one or more PBMs.

processing data, one or more PBMs analyzing the performance of the PBA, and one or
more PBMs deciding upon a course of action to improve performance.

3.4 Port-Based Drivers

Though the PB3A is a high-level programming framework, low-level interactions must
be considered. Since most incarnations of Java are inappropriate to interface with hard-
ware, device drivers must be written in a language that can handle pointers, access
registers, and perform other low-level, machine-specific interactions such as C or C++.
To interface with devices, a machine-specific driver communicates through a platform-
independent “resource port” to a Port-Based Driver (PBD). Presently, resource ports
are TCP-based sockets. This allows a PBD to control a device from any computer that
supports Java, irrespective of where the device is located physically. However, when
the device driver and controlling PBD are located on separate machines, latencies can
degrade the performance of the device, especially in real-time control applications. For
this reason, the PB3A allows any PBM to specify its physical location so that network
latencies can be avoided by using a shared-memory model for port information (this
will be discussed in Section 3.5). Examples that use PBDs to control devices will be
discussed in Sections 5.1 and 5.2.

Furthermore, legacy software also can be interfaced using a PBD. In this case, the
legacy application can be considered the device. A PBD can issue commands to the
legacy software, and results can be communicated back to the PBD through the resource
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port. There is an example of a large-scale system interfacing with legacy software using
this methodology in Section 5.3.

3.5 Runtime Core

A traditional computer system is comprised of three logical parts: the hardware, the
operating system, and the user programs. The hardware offers basic interfaces to com-
puting resources such as the CPU, memory, networking, and secondary storage. The
operating system, or more precisely the kernel, runs on top of this hardware. In most
cases, the kernel manages resources and transforms disparate hardware interfaces into
a consistent set of services for user programs.
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Fig. 3. The Runtime Core provides PB3A services.
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In PB3A, the Runtime Core is the kernel that runs on top of one or more Java Vir-
tual Machines (JVMs) and provides a consistent set of services to PBMs (Figure 3).
The Runtime Core is written in Java and is platform independent, thus no modifications
to the Runtime Core are needed when introducing a new computing environment. In a
system involving multiple processing nodes, the Runtime Core instances on each node
cooperate to manage the global state of the system. This global state includes the node
where a PBM is executing and what port mappings have been established both locally
and between nodes. In total, the collective Runtime Core presents a single, consistent
computing interface that abstracts the heterogeneous, distributed computing infrastruc-
ture.
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When a system begins to execute, a per-node daemon starts a JVM and Runtime
Core on each of the nodes. Next, each Runtime Core receives its share of the global
system configuration. Each share only contains information about the PBMs execut-
ing on that node and any PBMs whose ports are mapped to other PBMs on that node.
For local PBMs, that information includes initial internal state and port-mapping data;
whereas, for distributed PBMs mapped to local PBMs, only port-mapping data is in-
cluded. From this configuration information, the Runtime Cores load all local PBMs.
The Java byte-code for those PBMs may come from the local file system or be re-
quested from a network host designated as the code server (see Section 3.8). Although
all PBMs reside in the shared memory of a JVM on a node, each is self-contained and
has no references to other PBMs, and consequently can have no effect on other PBMs.
This memory-space protection is maintained by the JVM. Once all PBMs in the global
system have been instantiated, the Runtime Cores begin mapping ports. Ports between
PBMs on the same node map directly through shared memory. For mappings between
two nodes, the Runtime Cores perform replication (see Section 3.6), and the mapping is
created using a TCP-based socket. Once all port mappings are established, the Runtime
Cores initialize each PBM with its initial state. Finally, a thread is created for each loop-
based PBM and the Runtime Cores initialize the per-node event dispatch thread pools
(see Section 3.7). This completes the distributed initialization phase and subsequently
execution begins.

3.6 Ports

Current programming models do not allow for easy reconfiguration. The primary dif-
ficulties center upon dependencies and hidden interactions. The communication and
coordination methods in the current programming models are known only to the sec-
tions of cooperating code and are hidden from the rest of the runtime system executing
those sections of code. Reconfiguration in such a system requires altering memory ad-
dresses and potentially altering the way sections of various code communicate. Even
multi-programming and multi-threading environments, where communication rules are
more formalized, are not effective.

The PB3A solution to the problem is to formalize communication between cooper-
ating PBMs and rigidly enforce the rules. That is, PBMs can only communicate with
each other through type-specific ports. Each PBM is effectively treated as an individual
unit that cannot access information in another PBM unless it is explicitly shared. Shar-
ing data requires linking an input port to an output port of like or derived type. This
connection results in an information pipeline where the link details are embedded in
the ports themselves and are available only to the Runtime Core. The indirection and
decoupling inherent in the input and output ports allows the Runtime Core to rearrange
links arbitrarily without disturbing the PBMs. Consequently, swapping one PBM for
another only requires instantiating the new PBM and implanting the ports, and possibly
the state of the original PBM, into the new PBM. Some minor bookkeeping information
in the ports must be updated, but the PBMs connected to the original PBM need not be
disturbed.

The other significant advantage of ports lies in distributed and mobile code. Since
the details of all port connections are managed by the Runtime Core, PBMs executing
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on different processing nodes do not need any special code to communicate. To estab-
lish port mappings between PBMs on two processing nodes, the Runtime Core of the
input-side node issues a replication request to the Runtime Core of the output-side node
if replication of that specific output port has not been previously requested. The output-
side node’s Runtime Core keeps track of what output ports are replicated to where and
sends port state updates to the appropriate nodes every time those ports change value.
The consistency of this replication is defined on a point-to-point basis. That is, from
sender to receiver, the changes are guaranteed to be delivered sequentially. However,
when one output port is replicated to various processing nodes, no guarantees of con-
sistency exist between the receiving nodes. Thus, two or more receiving nodes are not
guaranteed to see the same value at the same time beyond the point-to-point consistency
guarantee. This output replication allows PBMs to communicate as if they were running
on the same machine, though with potentially increased latency. Furthermore, port com-
munications hide the migration of a PBM between nodes from any PBMs connected to
the migrating entity. Hiding port replication and migration frees a PB3A programmer
to concentrate on the algorithms employed and information communicated, instead of
how to communicate.

3.7 Port-Based Module Runtime Structure

The PB3A supports two different, though not mutually exclusive, runtime models for
each PBM. A PBM may be threaded, event-driven, or both. A threaded PBM consists
of a main method body that is executed within a loop controlled by the Runtime Core.
The Runtime Core raises the lock of the PBM before executing the method body and
releases the lock upon exiting. This guarantees that a threaded PBM will not be mi-
grated while executing its main method body. After each iteration of the loop, and after
dropping the PBM lock, the Runtime Core puts the thread to sleep for a PBM-specified
amount of time. An event-driven PBM does not possess a thread of its own. Its event-
dispatching method body executes only in response to changes on input ports of the
event-driven PBM. Before executing a the event-dispatching method body of a PBM,
the Runtime Core raises the PBM’s lock. Upon completion of event-dispatching, the
Runtime Core releases the lock. For PBMs that are both threaded and event-driven, the
lock additionally prevents both sections of code from simultaneously executing. The
event-dispatching facility itself is composed of multiple threads in a worker pool con-
figuration so that events on different PBMs can execute in parallel.

3.8 Loading

As the maintainer of the PBM task abstraction, one of the Runtime Core’s responsibil-
ities is instantiating PBMs. The full specification of a PBM instance consists of Java
byte-code, internal state, and port mappings. A PBM’s internal state and port mapping
data, along with its Java class name and PB3A instance name, are referred to collec-
tively as the PBM’s configuration. Loading is the process of instantiating a PBM based
on its configuration. This process occurs at system startup and in response to requests
issued by PBMs. To load a PBM, the Runtime Core must first retrieve the byte-code for
the PBM’s Java class. The Runtime Core locates this byte-code by first checking the
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local file system. If the byte-code is available locally, then the Runtime Core invokes
the JVM to load the byte-code. Otherwise, the Runtime Core contacts a network host
designated as the code repository, the ModuleServer (discussed in Section 4.1), and re-
quests transmission of the byte-code via a network socket. Once the byte-code has been
received, the Runtime Core invokes the JVM to load the byte-code. Next, an instance of
the PBM class is instantiated and a member method is invoked to set the internal state
of the instance to the data stored in the configuration. Finally, the Runtime Core estab-
lishes the port mappings of the PBM instance and may allocate a thread if the PBM is
threaded.

3.9 Migration

PBM migration is the process of transferring an executing PBM from one processing
node to another. Migration of a PBM involves capturing its configuration at the source
node, transferring that configuration to the destination node, and reloading the PBM
at the destination. Reloading the PBM from a configuration follows the same loading
process discussed in the previous section, the primary differences concern capturing the
state of an executing PBM and transferring that state across nodes. Just as a PBM has a
method to set its internal state from its configuration, a PBM has a method that returns a
memory reference graph representing its internal state, provided by the Runtime Core.
When a request is made to migrate a PBM, the Runtime Core raises the PBM’s lock and
then invokes the internal state graph retrieval method. Raising the lock pauses the PBM
and it cannot alter its internal state. The PBM’s internal state graph, port mappings,
Java class name, and PB3A instance name are then recorded in a configuration record.
The Runtime Core of the source node then contacts the Runtime Core at the destination
node and transmits the configuration record via a network socket. The transmission of
the configuration record is conducted by Java Serialization. Java Serialization is a built-
in language mechanism to convert any memory reference graph into a byte-stream.
This byte-stream may be a file, a network socket, or a memory buffer. In addition to the
configuration, the Runtime Core of the source will transmit any replication requests it
has received for the migrating PBM’s output ports. The destination Runtime Core then
loads the PBM from its activation record and takes control of replication management
from the source Runtime Core. The source Runtime Core is then able to deallocate local
records and references of the migrated PBM.

4 Runtime Environment

The PB3A runtime environment consists of the ModuleServer, Launcher, NetExecutor,
and NetController.

4.1 ModuleServer

The ModuleServer is the server side of PB3A’s client-server code distribution system.
Each PBM instance is composed of internal state, port mappings, and code. PBM code
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is a class (or set of classes) within Java’s well-defined package name space. On client
demand, the ModuleServer transmits PBM code to a remote host.

When a client needs PBM code to which it does not have access, the client connects
to the ModuleServer. A separate server-side thread handles each connection, allowing
multiple clients to make use of the server simultaneously. After connection, the client
transmits the fully qualified name of each PBM code class. The ModuleServer resolves
the name into a path in its local file system and then transmits the Java byte-code class
file to the client. Using built-in Java mechanisms, the client can load the byte-code as a
Java class. Then the PBM combines that code, internal state, and its port mappings to
instantiate itself.

New PBM code can be added to the ModuleServer by simply copying their class
files into a subdirectory of the ModuleServer’s module path. The server does not need to
be restarted for this new code to be recognized. Because the ModuleServer never loads
the PBM code directly, new versions of existing PBM code can be added dynamically
by overwriting the old class files. Again, the server does not need to be restarted.

4.2 ModuleManager
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Fig. 4. ModuleManager visualizes PB3A systems.

Inspired by file browsers from graphical operating systems, the ModuleManager is
a visual systems configuration tool, shown in Figure 4. Currently, the ModuleManager
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supports creating and editing system configuration files graphically. To create a new
system, the user selects PBMs and then connects their input and output ports to form
a configuration by pointing-and-clicking. A file browser-like interface allows users to
search the local file system and the ModuleServer for PBMs. Essentially, the ModuleM-
anager is a functional schematic editor for specifying data pathways in a PB3A system.

The ModuleManager allows the user to set special properties in the PBMs. The
“Location” specifies on which host machine the PBM should begin execution. If this
property is set to “local”, then the PBM will execute on the machine that loaded the
configuration. If the Location is a hostname, the PBM will execute on that host. Other
properties that may be edited in the ModuleManger include the PBM’s internal state.
This editing can be done by the ModuleManger’s built in State Editor via Java Reflec-
tion, discussed in more detail in Section 4.3.

After completing a configuration, the user may save the configuration to disk or
send it directly to the Launcher for execution. The ModuleManager plays no part in this
execution.

4.3 State Editor

Most PBMs have internal state and PB3A allows the editing of this state by the State
Editor. When a PBM is selected in the ModuleManager, a set of properties is displayed.
These properties include initial host, as well as several other items, and allows the user
to edit the internal state of a specific PBM instantiation. The internal state of a PBM is
the variables (primitives, objects, and arrays) declared outside the scope of any methods
in the PBM (i.e., global variables). This information is obtained by Java Reflection. The
State Editor queries the JVM for the names and types of state variables for a particu-
lar PBM class. Presently, Java Reflection only returns information on public, protected,
or package-default members; information on private members of PBMs cannot be ob-
tained in the State Editor. Next, the State Editor asks the JVM for the current values
of the state variables for a specific PBM instance. The State Editor then presents this
data graphically to the user, using any object-specific display methods, if necessary.
To display primitive types (integers, doubles, etc.) all that is needed is a simple text
box. However, some non-primitive objects, such as Bayesian Belief Networks or Hid-
den Markov Models, may be displayed in a more sensible, type-specific manner. The
State Editor determines if the non-primitive object has a specialized display routine,
which is a method written by the author of the object. If such a method exists, then the
State Editor uses this method, otherwise the State Editor allows the user to open the
object and view its members directly. This process can be repeated recursively through
its embedded objects until only primitive types remain.

The author of a PBM need not put any hooks or access routines for the State Editor
to gain access to its state variables. This makes the State Editor extremely versatile,
and allows the State Editor to manipulate PBMs that have been dynamically added to
PB3A.
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4.4 Launcher

The Launcher comprises one of the two system execution entities in the PB3A. It con-
tains a Runtime Core along with code to divide a global configuration into the smaller,
node-specific configurations. The Launcher’s local copy of the configuration mirrors
the global configuration. This makes the Launcher responsible for synchronizing and
managing changes to the global configuration. All requests that alter the global config-
uration are serialized by the Launcher.

During execution, the Launcher has a complete Runtime Core and is responsible
for providing a PBM execution environment. The Launcher loads all PBMs from the
ModuleServer or local file system, launches threads for threaded PBMs, provides event
notification facilities, manages remote port replication, and responds to system recon-
figuration requests.

Once the Launcher divides the global configuration into node-specific configura-
tions, it contacts the NetController at each of the remote hosts. The Launcher then
requests that NetExecutors be spawned to host that node’s piece of the current, global
system configuration.

4.5 NetExecutor

The NetExecutor is the second system execution engine in PB3A. Like the Launcher,
the NetExecutor contains a Runtime Core and is responsible for providing a PBM ex-
ecution environment. Immediately after spawning, the NetExecutor opens a network
socket to the Launcher that initiated it. The NetExecutor then uses this network link to
download from the Launcher the portion of the global system configuration that it must
execute. Like the Launcher, the NetExecutor loads all PBMs from the ModuleServer or
the local file system, starts threads for threaded PBMs, provides event notification facil-
ities, manages remote port replication, and responds to system reconfiguration requests.

Currently, before NetExecutor can perform any action that would alter its local con-
figuration, it must contact the Launcher and lock the global configuration. Since only
one node may be locking the global configuration at a given time, this process guaran-
tees that the NetExecutors provide Launcher with the information needed to serialize
all system changes.

The Runtime Cores embedded in NetExecutors and the Launcher cooperate to man-
age the PB3A port-communication system. This local and remote port-access trans-
parency frees the PB3A programmer to treat a distributed, heterogeneous network of
processing nodes as if it were one large computer.

4.6 NetController

The NetController acts as a gateway daemon through which PBMs may enter a remote
processing node. Whenever a NetExecutor or Launcher needs to start PBMs on, or mi-
grate PBMs to, a remote node it must first ensure that a NetExecutor is running on that
node. Upon receiving the global configuration name from a Launcher or NetExecutor,
the NetController first determines if it has enough computing resources remaining to
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satisfy the request. If not, the NetController can reject the request. Otherwise, the Net-
Controller replies with the socket number of the NetExecutor, spawning a new NetEx-
ecutor if none are currently running the global configuration for that node. This process
ensures that only one NetExecutor is designated for a given global configuration for
each node. Moreover, this guarantees that if two PBMs from the same global system
configuration are executing on a node, they will be executing in a shared memory space
and port communications will work directly through memory references. If a Launcher
loses contact with a NetExecutor, the Launcher can request the NetController to shut
down the NetExecutor gracefully or forcefully.

5 Applications

We have used the Port-Based Adaptable Agent Architecture as the substrate for several
applications that demonstrate some of the features of the architecture.

5.1 Robotic Mapping

Fig. 5. Robots used for mapping: Patton and Rommel.

In this scenario, two mobile robots, shown in Figure 5, are tasked to map a labo-
ratory using ultrasonic sonars. One robot is endowed with a simple strategy to explore
the laboratory, a Bayesian mapping algorithm, and a hardware monitor to detect any
failures that would prevent the robot from completing its task, while the other robot
sits idle. If the first robot has a hardware failure (such as a graduate student cutting the
power to its motors) then the PBM monitoring the hardware issues a request to the Run-
time Core to move the software to the idle robot. The Runtime Core then requests that
all PBMs in the system (Figure 6) serialize their state so that any information collected
by the first robot can be sent to the second robot. Next, the Runtime Core requests the
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ModuleServer to send the code for each PBM and the retrieved state information to the
second robot. The system finally resumes execution on the healthy robot and continues
mapping after the first robot fails. This transferring of software takes about five seconds
once hardware failure is detected. Thus, this type of self-adaptive system can overcome
crippling hardware failures and still complete its task.
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Fig. 6. Layout of the PBMs used for mapping.

5.2 Transferring Learned Knowledge

Another application where this architecture has proven very useful is in the transferring
of learned knowledge from simulation directly to the real world. For this application, the
Port-Based Adaptable Agent Architecture was combined with the mobile robot simula-
tor RAVE, described by Dixon et al. [1]. RAVE provides interfaces and dynamic linking
of libraries that allow the same robot code to execute on a simulated or real robot.

In this scenario, a mobile robot learns to move to a goal location while avoiding ob-
stacles using a reactive control policy. The robot commences learning in simulation. The
simulated robot is endowed with extremely simplified zeroth-order dynamics. Clearly,
the dynamics of the real robot are more complex, and the parameters of the controller
must be fine-tuned to account for this difference between the real and simulated robots.

When the task is learned satisfactorily in simulation a PBA triggers the Runtime
Core to move the entire system from the simulated robot to the real robot. Since RAVE
allows the same robot code to execute in simulation or on a real robot, the system can
be immediately resumed on the real robot. After a few moments of learning on the
real robot, the controller has sufficiently accounted for the difference in dynamics. The
transferring of the controller code from the simulated to the real robot takes about two
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seconds. This form of self-adaptation, mobility, manifested by learning in simulation
then finishing the learning on the physical system, allows for a drastic reduction in total
time required to learn the task, while not suffering a decline in performance.

5.3 Traffic Optimization

PB3A was also used to develop a basic intelligent transportation system: an adaptive,
decentralized signal controller for urban traffic. Each intersection has PBMs that collect
sensor information, communicate with neighboring intersection controllers or traffic
centers, and issue intersection signal commands. Different types of intersection con-
trollers were designed: fixed-time controllers, periodically switching between red, yel-
low, and green lights; adaptive controllers based on local probabilities and queues; and
learning techniques. A performance agent was developed to swap controllers depend-
ing on traffic conditions. The PB3A was applied in simulation to a small section in the
urban area of the city of Pittsburgh called Penn Circle, as part of a Community Project
to improve the traffic in the area. The goal was to study the traffic patterns and current
intersection-controller quality compared to more advanced controllers. With PB3A, it
was possible to deploy the whole system very quickly and connect it with the traffic
simulator ARTIST developed by Bosch, using a PBD to interface with the simulator.
Further developments will include the use of vehicle-to-vehicle communication, inclu-
sion of bus schedules, emergency vehicle activity, and vehicle navigation features.

6 Redated Work

The ideas underlying Port-Based Agents (PBAs) draw heavily on distributed-systems
research, particularly the distributed operating systems research of the last dozen years.

The Sprite operating system, developed by John Ousterhout et al. [3] more than
ten years ago, introduced the concept of process migration. Process migration allowed
an executing instance of a program to be moved between workstations. The ability
allowed a single Sprite user to harness the power of many workstations simultaneously
and dynamically.

About the same time as Sprite, a group of researchers at the University of Tokyo
created the Galaxy Distributed Operating System [4]. This project emphasized object
access-level transparency for all resources. This ability to access system resources uni-
formly, independent of their locations, further simplified process migration. Recogniz-
ing that centralized object naming and locating schemes are inefficient for distributed
systems, Galaxy employed distributed schemes to maintain global state. In this system,
only processing nodes that require a given resource would cache the naming and lo-
cating information of that resource. The port-naming and locating mechanisms in the
PB3A follow the same general scheme, thereby avoiding the centralized naming bottle-
neck and vulnerability.

In addition to drawing upon distributed operating systems, the PB3A resembles
other mobile-object programming environments. One such system is the Emerald Dis-
tributed Programming Language [5] developed at the University of Copenhagen. The
Emerald project created a distributed programming system for heterogeneous computer
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networks. This system operates in native code and native data representations on each
individual platform, but marshals the data into platform-independent representations
on transfer. In order to run an application across multiple platforms, the code for that
application must be compiled for each platform. To deal with atomicity differences
across various platforms, Emerald code utilizes “bus stops”. An Emerald object may
only be migrated from one node to the next when a bus stop is reached. Migrating the
object at any other point runs the risk of leaving during a non-atomic operation on one
platform that is atomic on another. To ease the programming effort, bus stop gener-
ation is built into Emerald compilers. PB3A ensures atomicity across heterogeneous
platforms by using a similar locking scheme. All PB3A user code runs inside system-
maintained locks and cannot migrate until those locks are obtained. The disadvantage of
the Emerald system is that the introduction of a new platform may require altering the
compilers and runtime libraries on all other platforms. Furthermore, the sharp behav-
ioral differences among platforms may mean that a single application must be rewritten
for each platform on which it may run. PB3A avoids both these disadvantages by us-
ing Sun Microsystems Java. Java’s representation of code is platform independent and
its behavioral specification, with the exception of some graphical user interface-related
functionality, is uniform across all platforms for which Java is available.

Other agent-based systems include D’Agents, formerly Agent TCL, developed at
Dartmouth College [2], Odyssey and Telescript from General Magic, TACOMA from
University of Tromsg and Cornell University, and Aglets from IBM Research. These
environments define agents to be code that can be installed and executed on remote
hosts, with the ability to migrate to different hosts during execution. Whereas these
systems emphasize the support infrastructure for agent programming paradigms and the
communication mechanisms between agents, PB3A additionally focuses on the internal
organization of agents, aims to explore recursively composed systems, and exploits self-
adaptivity to cope with changing real-world operating conditions.

The port-based concept is derived primarily from port-based objects, first proposed
and implemented by Stewart and Khosla in Chimera [6]. Port-based objects were de-
signed for real-time control applications in a multi-processor environment with a single
high-speed backplane. A link between two objects is created by connecting an output
port of one object to a corresponding input port of another object. The informational
scope within which the port-based objects exist is a flat, public data structure visible to
all objects. This implementation is very efficient for monolithic systems, but it provides
no concept of agency (see Wooldridge and Jennings [7]).

PB3A should be viewed as the natural evolution of the port-based concept. Where
port-based objects were designed for multi-processor environments and for direct human-
initiated reconfiguration, PB3A is being designed to utilize loosely coupled distributed
computing infrastructures and self-initiated software adaptivity. The modern-day com-
puting paradigm exemplified by distributed and self-adaptive systems absolutely re-
quires the autonomy and self-awareness that are the hallmarks of agent technologies.
Software composed from independent, self-aware agents that are able to alter their own
structure, are best suited to complete tasks in the case of network latencies, node fail-
ures, and general operating condition variations that characterize real-world environ-
ments. PB3As first advantage over Chimera is that PB3A uses dynamically loaded Java
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byte-code to avoid recompiling and relinking of the entire system when new objects are
added. Specifically, to support distributed computing, PB3A augments the notion of the
port to include cross-network links, employs an encapsulated memory model to make
each PBM self-contained, and utilizes mobile Java byte-code along with the previously
mentioned dynamic loading to provide code on demand to individual nodes of the net-
work.

7 Conclusionsand Future Work

We have created a distributed, agent-based architecture that facilitates the develop-
ment of large-scale, self-adaptive systems. The Port-Based Adaptive Agent Architec-
ture (PB3A) specifies a highly modular and decoupled agent-to-agent communica-
tion scheme via input and output ports and provides the necessary primitives for code
migration. Furthermore, PB3A gives some specifications of how a Port-Based Agent
(PBA) should be structured, giving agents the autonomy to become truly self-adaptive.
Whereas previous research in this area has focused individually on mobility, software
composition, or adaptability, we have presented a unified architecture. This unification
allows more effective research into self-adaptive systems.

Another powerful notion in PB3A is the recursive definition of tasks. That is, a
PB3A system may be composed of many agents. Each agent may be composed of
many tasks which, in turn, may be composed of many sub-tasks, and so on. PB3A
makes this logical, recursive system realization possible through the encapsulation of
tasks in Macros.

The decoupled communication scheme between PB3A modules allows for their
testing to be done in isolation. This gives rise to rapid prototyping and reliable systems
to be designed and built extremely quickly.

Future work will allow the user to have a more interactive role in a PB3A system
execution. Presently, once the system is started, the agents in the system determine
when or if the system should adapt itself (moving agents to different nodes, swapping
algorithmic modules, etc.). We will allow the user to adapt the system during execution
by specifying any aspect of agents possible. Also, we will modify the State Editor to
give the user the ability to view and modify the internal state of a Port-Based Module
(PBM), in real-time, during its execution. Currently, the user may only use the State
Editor to modify the internal state of a PBM before the system begins execution.

Also, the port and event systems will be made more sophisticated. We will embed
environmental information into the ports of a PBM so that the PBM can make more
informed decisions. Information such as network latencies, network failure rates, and
CPU usage could prove useful to self-adaptive agents. Events will be expanded by al-
lowing more types of events, rather than just input-port changes, and priorities will be
given to different types of events.
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