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Abstract— One of the main obstacles to automating pro-
duction is the time needed to program the robot. Decreas-
ing the programming time would increase the appeal of
automation in many industries. In this paper we analyze
the performance of a Predictive Robot Programming (PRP)
system on complex, real-world robotic tasks. The PRP system
attempts to decrease programming time by predicting the
waypoints of a robot program based on previous examples
of user behavior. We show that the PRP system is able to
generate a large percentage of useful and highly accurate
predictions, resulting in a potentially great amount of time
saved.

I. INTRODUCTION AND MOTIVATION

Manipulator robots perform a wide variety of industrial
tasks. As the capabilities of robots increase, they are
being used to perform more sophisticated tasks. Automat-
ing production can result in increased productivity and
decreased costs. However, one of the main obstacles to
robotic automation is the time needed to program the
manipulator. Simple tasks can take days to program,
while more complex tasks can take weeks or months.
Significant programming time means that production may
have to be halted temporarily. In many cases, the cost
of halting production may be prohibitive. Decreasing the
time needed to program a task will increase the appeal of
robotic automation in many industries.

A robot program consists of three main components: a
sequence of positions through which the robot must travel,
conditional branching statements, and process-specific in-
structions. Of these components, robot programmers typi-
cally spend the majority of time defining the sequence of
positions, called waypoints. Despite their complexity, most
tasks can usually be decomposed into simpler subtasks.
These subtasks may be repeated many times throughout
the program directly or in some modified form. Due to the
cumbersome nature of current systems, most programmers
create these subtasks from scratch each time. If a system
could identify these repeated subtasks, instead of discard-
ing previous work, programming time could be reduced
by completing the subtask for the user. In this paper, we
present experimental results in predicting the waypoints
of complex industrial tasks. Specifically, the tasks are
offline robotic programs consisting of several thousand
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waypoints created to automate arc-welding production at
several factories. Each program was designed to produce
different products, from bed frames to round tables. On
all programs, we are able to generate a large percentage
of useful and highly accurate predictions.

Il. PREDICTIVE ROBOT PROGRAMMING

The results presented in this work are an experimen-
tal validation of our previous work in Predictive Robot
Programming (PRP) [3]. In PRP, the system attempts to
decrease programming time by predicting the position of
future positions based on previous tasks and completing
the task for the user. There are two main steps in PRP. The
first step is estimating a model of user behavior and the
second step is using the model to predict future waypoints.
In PRP, the user is modeled as an automaton. From a
high-level perspective, the user selects a task from her
repertoire, R. At discrete time steps the user generates
an observation, or waypoint. A waypoint is the desired
location and orientation of the end effector, a continuous
vector. The observations are based solely on the current
state of the task. However, it is impractical to instrument
fully any realistic working environment. Consequently
there will always be hidden, or latent, causes for user
behavior. As a result, the transitions between states in the
automaton can be considered stochastic. An automaton
with stochastic transitions is a type of Markov chain. Fur-
thermore, humans have poor repeatability and precision,
S0 user observations are considered noise corrupted. Since
both the observations and state transitions are stochastic,
one natural user model is a Continuous-Density Hidden
Markov Model (CDHMM). After estimating a CDHMM
from the previous tasks, the model is then used to predict
future observations. While the user is performing the
current task, the CDHMM predicts the position of the
next waypoint. These predicted waypoints are suggested to
the user. If the prediction is accepted, the user may allow
the PRP system to position the end-effector automatically,
instead of the user moving the robot. Compared to the time
required to move a robot manually, automatic positioning
of a robot is essentially instantaneous. This results in
significant savings in robot programming time.



Fig. 1. The concept of similarity is a continuum.

It is important to note that the observations are the
result of human activity of significant duration. The tasks
analyzed in this work typically take weeks to complete.
Because creating such programs is so arduous there is a
severe lack of data with which to estimate a user model.
As a result, the model should be kept as simple as possible.
However, the PRP system has no a priori knowledge of
the general structure of the repertoire or what tasks may
be performed. Therefore we must induce the structure
of the repertoire, as well as optimal parameters for the
model, from user observations alone. Since we are using
a CDHMM, estimating the structure of the model means
determining the topology of the underlying graph. Simple
graph-based models imply as few nodes and edges as
possible. Our PRP algorithm begins by constructing a
maximal-node graph by assigning one observation to each
node. The algorithm then repeatedly merges similar nodes
until a compact graph remains. This graph is then con-
verted to a CDHMM to estimate future user observations.
Let A = v; Uv; be the union of the observation multisets
from node v; and node v;. Let u = (A) be the sample
mean of .A. Our measure of similarity is

do(Ap) = > (@-p'C@—p), )
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where the symmetric PD precision matrix C provides a
notion of the a priori expectation of node variance. The
nodes v; and v; are considered similar if dc(A, 1) <,
where the similarity threshold is € € [0, co). This paramet-
ric concept of similarity accounts for the intuitive notion
that similarity is a continuum. For example, consider the
objects in Figure 1. One possible set of similar objects
is the two squares. If we make the concept of similarity
looser then the set of similar objects could be all shapes
with a vertical pattern. In PRP, the notion of similarity
is also a continuum. The nodes in the maximal graph in
Figure 2(a) are merged using a strict and a loose definition
of similarity, Figure 2(b) and Figure 2(c) respectively.
The resulting graphs are different since the definition of

similarity was different.
The parameter ¢ does not have an obvious real-world
analogue that gives the user insight into the operation of
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Fig. 2. The maximal-node graph is given in Figure 2(a). Results of
state merging using strict and loose similarity defi nitions are shown in
Figure 2(b) and Figure 2(c) respectively.

the PRP algorithm. Assuming that users make zero-mean
Gaussian errors about the target waypoint then the Ma-
halanobis distance follows is chi-squared random variable
with g degrees of freedom, where g is the dimension of
x. In real-world terms, we hypothesize that observations
are generated with probability at least 1 — 4. Using this
formulation, we compute ¢ from ¢ by evaluating the cdf
of the chi-square distribution,

7(%7%)}
€ 0=1- ,
‘ {w‘ v(4,0)

where ~(-, -) is the incomplete gamma function. The graph
is then converted in a CDHMM by estimated probability
density functions based on the observations assigned to
each node. We denote the current task as X§.,; =
{zo,... ,xn1}. While the user is performing a new
task, the CDHMM, R, computes the maximum likelihood
prediction of the next waypoint,

n

z, = argmaxp(z,|X§,, 1, R) )

However, any prediction criterion should also be accom-
panied with a confidence of the prediction. Otherwise,
there is no way to convey the relative quality of the
prediction. Using recent observations from the current
task, we compute the divergence of the CDHMM from
complete internal uncertainty. Let ¢,, be the random vari-
able denoting the current state of the CDHMM at time n.
In our PRP system confidence is defined as

Dxr(enlltsy)

A H(Cn)
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where |Q| is the number of states in the CDHMM,
H{(-) is entropy, and Dxy,(- || -) is the Kullback-Leibler
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Fig. 3. Though different in a global frame, G, the relative movement
of these patterns are the same.

divergence. It is easy to verify that the confidence is
¢, € [0,1] for any state distribution and any |Q|. When
the confidence ¢,, is greater than some predetermined
threshold then the corresponding prediction z; is sug-
gested to the user. Otherwise the prediction is discarded.

In three-dimensional space, an object can be described
by a location and an orientation. While the location is
typically given by a rectangular {z, y, z} description, there
are many orientation representations used. Three common
descriptions include rotation matrices, Euler angles, and
unit quaternions [2]. Our use of the prediction estimator
(Equation 2) influences our choice of orientation repre-
sentation. While each representation has drawbacks, unit
quaternions have yielded the best performance in our
experiments.

In PRP, the ability to recognize and predict patterns
independent of their location and orientation in the
workspace is extremely useful. Let the current task be
represented by W = {Cwg, w1, ... ,“wy}, where the
waypoint “w,, maps the global frame G to the frame of
the nth waypoint. It is simple to show that the relative-
movement representation W = {%wy, tws, ... , M twy}
is independent of an initial rotation and translation, cf.
Figure 3. In other words, using the relative-movement
representation allows predictions of patterns independent
of their location and orientation in the workspace. How-
ever, using relative-movement information requires that
the orientation of the robot end-effector be extremely
accurate. Small errors in orientation can result in large
position errors. However, the ability to perform rotation-
and translation-independent prediction outweighs the po-
tential loss in accuracy.

I11. EXPERIMENTAL RESULTS

The five tasks analyzed in this paper were created using
an offline-programming environment (Figure 4). The pro-
grams have between 252 to 1899 waypoints with 16 to 196
subroutines. Collectively, these five programs took over
70 work days to complete. Thus even a small reduction
in programming time would result in days saved. The
programs were created to automate arc-welding produc-
tion at several factories in Sweden, not for experimenting
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Fig. 4. Screen shot from the offine package showing the workspace
and waypoints of a program with 18 subroutines.
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Fig. 5. Fow chart for computing predictions.

with PRP. Each program was designed to weld a different
type of product, from round tables to bed frames. The
underlying PRP algorithm makes no restriction that the
programs have the same number of waypoints or perform
the same physical process.

To compute waypoint predictions, we segment the pro-
grams along the subroutines contained in each program.
We emulate the user programming the task by feeding
the waypoints into the PRP system in a serial fashion.
The CDHMM computes a prediction of the next way-
point, based on previous waypoints in the subroutine. To
determine the accuracy of the prediction, we compute the
Euclidean and angular error of the prediction with respect
to the next waypoint. At the end of each subroutine we
assimilate it into the CDHMM, building an estimate of the
user repertoire for that program. After predicting the final
waypoint in a program, we initialize the CDHMM tabula
rasa and start the prediction of the next program. A flow
chart of this procedure is given in Figure 5.

The definition of similarity, Equation 1, incorporates
a symmetric PD precision matrix, C, that represents the
variance of human error when defining a waypoint. We
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Fig. 6. Model complexity as a function of §.

computed the covariance matrix by having users repeat-
edly move a robot to a point in space and analyzing the
residual error.! Robotic arc-welding typically requires ap-
proximately 1 millimeter of Cartesian accuracy and about
0.1 radians of angular accuracy. The results presented in
this work will use these physical tolerance constraints as
a threshold for determining a “useful prediction”. We are
more interested in the typical prediction error, which is
better conveyed by the median. At the end of welding, it is
common to execute a gross repositioning where the robot
moves across the workspace to the next weld, typically
on the order of a meter. These movements tend not to
be predictable and a small percentage error in predicting
the gross repositioning will dominate the mean over many
precise movements.

A. Performance as a Function of Model Complexity

To determine the performance of the system as a
function of model complexity, we held out one program
and computed the performance on the remaining pro-
grams. The held-out program is meant as a sort of test
set, but since data are so sparse it will be difficult to
draw any statistically significant conclusions based on this
four-program training set and one-program test set. The
parameter central to the complexity of the user model is
the implicit probability of rejection, § € (0, 1], which is a
function of the similarity threshold e € [0, co). Increasing
the rejection likelihood, § — 1, induces a more complex
CDHMM since the definition of similarity is more strict
(e — 0). Conversely, decreasing the rejection likelihood,
0 — 0, induces a simpler CDHMM. In Figure 6, we plot

1The covariance matrix was computed from online-programming
experiments wheress this paper deals with offine-programming. From
our experience, the principal directions of variance appear unchanged
but the eigenvalues are smaller when using an offine-programming
environment.
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Fig. 7. Median Cartesian error and angle error as a function of 4.

two measures of model complexity: number of states in
the CDHMM and running time. As expected, the number
of states in the CDHMM increases as ¢ increases. Also,
the running time increases as the model becomes more
complex. However, the time shown in Figure 6 is the
average time per waypoint taken to estimate a model and
compute a prediction. This average time, ~25ms, is more
than adequate for real-time use in a robot-programming
environment.

Indirectly, the parameter § also determines the accuracy
of predictions by controlling the complexity of the user
model. In Figure 7, we plot the average median error
on the four-program training set as a function of §. For
all values of ¢, the angle error is extremely small, less
than 200 micro-radians. This is because the robot tends
to change orientation in a fairly routine manner during
welding and gross repositioning. By exploiting this infor-
mation, the PRP system can generate extremely accurate
angle predictions. However, the Cartesian movements of
the robot are determined by the size of the objects in
the workspace, a much more unpredictable variable. In
PRP, as in many machine-learning algorithms, “everything
should be made as simple as possible, but not simpler” and
the correct value of ¢ depends on the task at hand. The
Cartesian error bottoms out on the interval § € (0.5,0.9),
implying that a value of é =~ 0.7 induces the right amount
of complexity on the training set.

B. Performance as a Function of Confidence Threshold

Generating a prediction for every waypoint is not de-
sirable. ldeally, the PRP system would only suggest the
most accurate predictions to the user. However, the target
waypoint is not known at the time of the prediction, so we
must find an alternative criterion correlated with accuracy.
This is where the confidence threshold comes into play.
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Fig. 8. Percentage of predictions and useful predictions as a function
of the confi dence threshold.

If the confidence of the prediction, ¢, (Equation 3),
is below a threshold then the prediction is discarded.
The assumption is that higher-confidence predictions are
more useful than lower-confidence predictions. However,
as the confidence threshold increases, inevitably, there
will be useful predictions discarded since their confidence
is insufficient. Using the training set, we would like to
determine a confidence threshold that strikes a balance
between quality and quantity. In Figure 8, we fix the
value of § = 0.7 and plot the percentage of useful
predictions as a function of the confidence threshold. The
percentage of useful predictions generally increases as
the confidence threshold increases until about ¢,, > 0.8,
when the percentage plateaus. In Figure 9, we fix the
value of § = 0.7 and plot the average median error as
a function of the confidence threshold. Once again, for all
confidence thresholds, the angle error is extremely small,
between 60 and 200 micro-radians. However, the Cartesian
error improves as the confidence threshold increases, until
it bottoms out about 30 microns around ¢, > 0.8.
This implies that, on the training set, higher-confidence
predictions tend to be more accurate. The average median
error on the training set for ¢,, > 0.8 is well below the
physical tolerance required by arc welding.

C. Temporal Performance

In this subsection we use parameters based on results
from the training set, § = 0.7 and ¢, > 0.7, to
analyze the performance on the hold-out program. The
CDHMM is initialized tabula rasa and assimilates user
behavior incrementally. From this perspective, we expect
the prediction error to start high and decrease as more
information becomes available. In Figure 10, we plot the
median error on the hold-out program as the programmer
creates waypoints. After assimilating about 900 waypoints
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Fig. 9. Median Cartesian error and angle error as a function of the
confi dence threshold.

the median Cartesian error stabilizes around 200 microns.
Likewise, the median angle error stabilizes around 20
micro-radians after about 300 waypoints. Both of these
values are well below the physical tolerance of 1mm and
0.1 radians required by arc welding. This asymptotic-like
behavior of the algorithm suggests that the estimate of the
user repertoire improves until acquiring sufficient informa-
tion about the task. The PRP algorithm made predictions
for about 25% of the waypoints on the hold-out program.
This program originally took over eight work weeks
to complete using an offline-programming package. The
programming time saved by predicting waypoints could be
several days. It it important to remember that none of the
programs, either in the training set or the hold-out, were
created with a PRP system in mind. In other words, the
programs were not created with any motivation for reusing
previous work. The predictability of the waypoints is a
result from the inherent similarity of the underlying task.
It seems plausible that a programmer creating waypoints
with a PRP system would be more likely to behave in
a predictable fashion, resulting in greater programming-
time savings, making robot-programming environments
less cumbersome.

IV. RELATED WORK

The seminal paper on HMM applications [8] describes
training algorithms for fixed-topology HMMs. In PRP the
general structure of the model is unknown a priori and
must be induced by observing user behavior. We therefore
consider the much more difficult problem of discovering
both the structure of the model and its optimal parameters.
There are results that suggest optimal training of general
HMMs is not tractable [1]. To deliver more optimistic
results, researchers have focused on special subclasses of
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HMMs [9], prior topology distributions [11], and heuristic
methods [10].

While few attempts have been made at reducing robot-
programming time by prediction, the underpinnings of
PRP have been explored extensively. Time-series analysis
is the umbrella term for predicting future observations
of a stochastic source given prior observations. Applying
these ideas to the Human-Computer Interaction (HCI)
domain is called Learning By Observation (LBO) and
many similar terms. The best-known example of LBO is
the neural-network system (ALVINN) that learns to drive
a car by observing human drivers [7]. In recent years,
LBO research has investigated robotic task decomposition
[4], nonlinear trajectory emulation [5], and human-motion
synthesis [6].

V. CONCLUSIONS

The results from Section Il show that a tabula rasa
PRP system can predict the waypoints of complex, real-
world programs with great accuracy. On both the training
set and hold-out program, the median prediction error was
well below the tolerance required by arc welding. For each
program tested, the PRP system generated predictions for
about 10% to 20% of the possible waypoints, and the vast
majority of the predictions were useful. Collectively, the
programs analyzed took over 70 work days to complete us-
ing an offline-programming package. By allowing the PRP
system to define waypoints for the user, the programming
time could be reduced by several days.

In the future, we will experiment with non-blank-slate
approaches, especially with versions of a robot program.
For example, products are updated regularly. We would
like to experiment in determining how helpful the previous
product is in determining the waypoints of the current
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product. Also, we would like to employ semi-supervised
learning techniques to improve the PRP system.
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