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Abstract— We present a computational approach to Learning
By Observation (LBO) that allows users to program mobile
robots by demonstrating a task. Unlike previous approaches, our
system incorporates statistical-learning techniques and concepts
from control theory to reduce the amount of domain knowl-
edge needed to infer the intent of the user. To improve the
generalization ability of the system, the user can demonstrate
the task multiple times. We extract task subgoals from these
demonstrations and automatically associate them with objects
in the environment. As these objects move, the subgoals are
updated accordingly. This gives our system the ability to learn
from demonstrations performed in different environments. In this
paper, we present the concepts used in our LBO system as well
as experimental laboratory results in learning motor-skill tasks.

I. INTRODUCTION AND RELATED WORK

Despite the numerous advances in human-robot interaction,
most development systems still require that users have sub-
stantial knowledge of procedural-programming techniques as
well as the specific robot system at hand. For the vast majority
of the population, this effectively precludes the use of robots
in most cases. If robots are to make headway into everyday
situations, then users must be able to program robots in a more
natural and intuitive manner.

Simplifying the interaction between humans and robots has
received an increasing amount of attention recently and there
have been a wide variety of approaches pursued. Iba et al.
[1] have developed a system that incorporates speech and
gesture, instead of a keyboard and joystick, to interact with
a vacuum-cleaning mobile robot. This type of system targets
users who are experts at a particular task but may have limited
programming ability. Several researchers have also developed
systems that observe users demonstrating tasks and synthesize
the information so that a robot can perform the tasks and
achieve the desired goal. These systems go by several names
including Learning By Observation (LBO). The best-known
example of LBO is the neural-network system, ALVINN, that
learns to drive a car by observing human drivers [2]. One of
the hallmarks of LBO is a scarcity of data on which to train
the system since the demonstrations are the result of human
activity, which may be of significant duration. As a result,
many researchers decompose demonstrations into a symbolic
representation and incorporate extensive domain knowledge
to bias learning. Chen and Zelinsky [3] use a symbolic
configuration-space description to represent a simple assembly

Fig. 1. The mobile robot used in these experiments, Agent Orange.

task. Suboptimal human demonstrations were ameliorated by
“filtering” the observations and by incorporating extensive
domain knowledge with heuristic methods. By relying heavily
on task-specific information this approach would require re-
programming for each new target task. Nicolescu [4] created
a system that decomposes a demonstration into a symbolic set
of robotic behaviors. Using dynamic programming and human
feedback, a deterministic “behavior network” is constructed
from multiple examples of a task. This allows the system
to extract user intentions from a relatively small training set.
Ijspeert et al. [5] have developed a computational method for
movement imitation that can incorporate multiple demonstra-
tions of a task. This system can also modulate the learned
trajectory based on objects in the environment. Due to its
internal representation, this approach only allows a single
scaling or shifting parameter applied to the entire trajectory
so that if only some objects in the environment move, then
complete retraining would be required.

User demonstrations can be viewed as a sequence of goal-
directed actions. Consider a user teaching a robot to vacuum a
room by walking through the desired route. It is undesirable to
require retraining each time furniture is moved. By capturing
the intent of the user, an LBO system can determine the se-
quence of subgoals and overall goal of the task despite changes
in the environment, human imprecision, or sensor noise. The
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Fig. 2. Conceptual flow diagram of Dollop.

objective of our work is to create an LBO system that reduces
the dependence on a priori task-specific information while
producing robust behavior. To this end, we have created an
LBO system called “Dollop” that employs statistical-learning
techniques, as well as concepts from control theory, to allow
users to program a mobile robot through one of the most
natural methods possible: walking around. The target tasks
for Dollop are motor-learning skills where the demonstra-
tions may occur in different environments. We show that a
computational approach to LBO can extract user intentions
accurately in laboratory experiments. The conceptual flow
diagram of Dollop is shown in Figure 2. While observing the
user, Dollop extracts important points, or subgoals, from the
trajectory. These subgoals are automatically associated with
objects in the environment so that as the environment changes,
the subgoals are updated accordingly. When learning from
multiple demonstrations performed in different environments,
Dollop hypothesizes how the user would have performed the
task under the same conditions. A learning algorithm then
estimates a statistical model and determines the most-likely
sequence of subgoals needed to complete the task. The mobile
robot, named “Agent Orange,” used in these experiments was
an ActivMedia Pioneer II DX equipped with a SICK scanning
laser range finder, shown in Figure 1. We used the Carnegie
Mellon Robot Navigation Toolkit (Carmen) [6] to provide base
services such as localization, mapping, and low-level control.

II. OBSERVING THE USER

The primary sensor used by Dollop is a scanning laser
range finder. While this sensor provides extremely accurate
measurements, it cannot discriminate between geometrically
similar objects in the view plane, such as the waist of a person
and a trash can. Therefore Dollop uses extensive processing
to extract meaningful information from these measurements.
The method for processing laser readings, shown graphically
in Figure 4, requires a background occupancy grid map of the
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Fig. 3. Sample laser scan.

workspace and is similar to the methodology of Fod et al. [7].
Objects detected by the laser are classified as belonging to
one of two classes: background or foreground. Background
objects are those that can be explained by the background
occupancy grid map, while foreground objects are those that
cannot. In these experiments, background objects are things
always found in the laboratory: desks, stools, computers, etc.
Foreground objects consist of dynamic or static experiment-
specific objects, such as humans and slalom cones. A laser
reading is designated as a foreground cell if there is no
background object within some radius, e.g., 20 centimeters,
of the measurement. Foreground cells are stored in a separate
foreground occupancy grid map, with the cells updated in
an autoregressive manner. A foreground cell is considered
occupied if its value exceeds a predetermined threshold and
adjacent occupied foreground cells are called a blob. A fore-
ground object is a blob that envelops more than a required area,
e.g., 100 square centimeters. The position of the foreground
object is the centroid of the blob.

We use a Kalman filter [8] to estimate the velocity of a
foreground object and to filter out sensor noise, which seems
primarily due to the inconsistent nature of computing the
centroid of a blob. There are several attractive choices to cope
with temporary object occlusion, including particle filters and
Kalman predictions. In our experiments, Kalman predictions
were more reliable in modeling occluded foreground-object
motion. It is well known that estimates of the derivative of a
signal amplify noise. We found that incorporating an estimate
of velocity (but not acceleration) generally produced the best
performance in tracking occluded objects. This implies that
our Kalman predictions of occluded objects will proceed in
straight lines.

In any practical situation, there will be multiple foreground
objects in the workspace at any given time. For tracking
purposes, it is necessary to match foreground objects at
successive time steps. Dollop uses a greedy search to match
the Kalman predictions of foreground objects from time n to
the set foreground objects sensed by the laser at time n+1.
If a Kalman prediction cannot be matched to a sufficiently
close foreground object at time n+ 1, then the object is
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Fig. 4. Flow diagram for observing the user.

Fig. 5. Example setup of the laboratory with two obstacles in the workspace.

considered occluded. If a foreground object remains occluded
for more than some amount of time, e.g., 5 seconds, then it
is considered disappeared. This greedy search for foreground-
object tracking works well in environments that are relatively
sparse. However, a joint optimization procedure may be more
appropriate in workspaces with a large number of coinciding
dynamic foreground objects. After matching foreground ob-
jects, we then estimate their velocities using Kalman updates.
We consider the foreground object with the highest estimated
velocity to be the user.

To make these concepts more concrete, we use a background
occupancy grid map of a laboratory computed by Carmen.
We then placed two obstacles, i.e., trash cans, about four
meters apart and asked a user to walk several iterations of
a “figure-eight” trajectory while the robot observed from a
fixed location, shown in Figure 5. In Figure 6(a), we plot the
results of these demonstrations. Though the user is temporarily
occluded while demonstrating the trajectory, the filters are able
to interpolate the trajectory accurately.1

1During one demonstration the Kalman filter temporarily lost track of the
user. This is manifested by the outlying line on the right side of Figure 6(a).

(a) (b)

Fig. 6. Figure 6(a) is the track of the user during five demonstrations of a
“figure-eight” trajectory. The red boxes indicate the location of obstacles,
and the yellow circle indicates the position of the robot while tracking
the user. Figure 6(b) has the subgoals and control law extracted from the
demonstrations. The green line represents the control law the robot used to
perform the task, based on the sequenced LDS representation. The crosses
mark the location of subgoals.

III. DESCRIBING USER TRAJECTORIES

To reduce the number of parameters used to describe a
demonstration, Dollop represents trajectories by a sequence
of linear dynamical systems [9]. This method automatically
divides a trajectory into a set of segments, with each segment
being fitting by a single Linear Dynamical System (LDS).
Each LDS is computed from a closed-form least-squares esti-
mate and captures the salient features of the trajectory such as
direction, curvature, and speed. The endpoints of each segment
specify important points in the trajectory and, in many ways,
these points can be considered subgoals. This sequenced LDS
approach is particularly appealing for LBO applications since
it represents trajectories in a generative fashion, encoding the
trajectory with a stable control law induced by the LDS. That
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Fig. 7. Figure 7(a) shows the result of ten runs of Agent Orange performing
the estimated trajectory of Figure 6(b). Figure 7(b) shows the response of
Agent Orange after being “kidnapped” during five executions of the trajectory.

is, the generative representation provides a mapping from cur-
rent state to desired state. Since the sequenced LDS approach
is based on least-squares estimation, multiple demonstrations
of a trajectory can be incorporated to compute a more accurate
generalization of the intended user trajectory. Furthermore, the
subgoals make modifying the task trivial: a trajectory can be
scaled or shifted by simply moving the subgoals and allowing
the LDS to interpolate its response. Thus, the system captures
the notion of “what the user would do.”

In Figure 6(b), we extract a sequence of LDS estimates and
subgoals from the trajectories in Figure 6(a). Qualitatively,
this estimated trajectory appears to capture the intentions of
the original trajectory: a “figure-eight” trajectory that avoids
the obstacles. Quantitatively, the estimated trajectory is rep-
resented by 6 LDS estimates and has an average error of 20
millimeters compared to the original trajectory.

However, the LDS representation does not respect the dy-
namics of Agent Orange. The sequenced-LDS representation
is optimal for idealized systems, but we make no guarantees
for nonholonomic, underactuated, or saturating systems. In
Figure 7(a) we plot the response of Agent Orange during ten
runs of the estimated task. While it does not exactly follow
the idealized trajectory in Figure 6(b), the robot does come
fairly close to the predicted path. In Figure 7(b) we plot the
response on five runs during which we “kidnap” Agent Orange
during execution and plot its response to these perturbed
conditions.Because we represent the trajectory in a generative
manner, using a supervisory control law induced from the LDS
estimates, Dollop automatically interpolates its response after
being kidnapped by emultating “what the user would have
done.” It is coincidental that none of the responses to the
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Fig. 8. The eight objects on the left must be matched to those on the right.
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Fig. 9. Intuitive representation of the “spring” optimization.

kidnapping resulting in Agent Orange hitting the obstacles, or
laboratory walls, since the response of the control laws only
depends on the current state of the robot and is independent of
objects in the environment. However, the response of Agent
Orange to being kidnapped seems to be a reasonable estimate
of user intent.

IV. ENVIRONMENT CONFIGURATION

Since demonstrations may be performed in different envi-
ronments, an LBO system must have the ability to determine
how the actions of the user are affected by these changes. To
determine the environment configuration, Dollop extracts the
set of static foreground objects from the foreground occupancy
grid described in Section II, cf. Figure 4. The environment
configuration is then defined to be the set of vertices of the
bounding boxes enveloping each static foreground object. If
there are N static foreground objects, then the environment
configuration would contain 4N objects, one for each corner
of the bounding boxes.

A. Mapping Environment Configurations

A crucial step in learning from, and performing, tasks
demonstrated in different environment configurations is de-
termining how different environment configurations relate to
each other. For example, in Figure 8 each object on the
left, {1, 2, 3, 4, 5, 6, 7, 8}, must be matched to one on the
right, {a, b, c, d, e, f, g, h}. There are many possible solutions
and any objective function giving preference to one possible
mapping over another is implicitly assuming that some map-
pings are more likely than others. We formulate the matching
problem by considering each object connected to all others by
“springs” with stronger springs connected to closer objects, as
in Figure 9. These springs result in a “force” on the object.
Matching one object with another results in a change in force
and we compute the matching that minimizes the total change
in force on all matched objects.

Let the environment configuration of the ith demonstration
be given by Ωi = {ωi1, . . . ,ωi4N} and let the environment
configuration of the jth demonstration be given by Ωj =
{ωj1, . . . ,ωj4N}. Formally, we are computing the function g :
Ωi → Ωj that minimizes the cost function c : Ωi ×Ωj → Z
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(a) (b)

Fig. 10. Performing the task from Figure 6(b) in a modified environment.
The subgoals have shifted as objects in the environment have changed. The
estimated trajectory automatically adapts to “what the user would have done”
in Figure 10(b).

summed over all matched objects. Let the spring constant
between object ωim and object ωin be

kim,n ,
∥∥ωim − ωin

∥∥−2
.

The total force on object ωim is

f im ,
∑

ωin∈Ωi

ωin 6=ωim

kim,n
ωin − ωim
‖ωin − ωim‖

.

If object ωim is matched with object ωjn, then the magnitude
change in force caused by this individual match is

c(ωim,ω
j
n) ,

⌈
α
∥∥f im − f jn

∥∥⌉ ,
where dbe is the ceiling operation on b, which rounds up b ∈ R
to the next greatest integer, and α is a large constant, e.g.,
103, to alleviate numerical rounding. It is straightforward to
formulate this as a weighted bipartite-graph matching problem
known as the Hungarian Method [10]. This formulation can
be solved optimally by linear programming and, in practice,
a large number of environment objects can matched in well
under a second. The Hungarian Method requires that the map-
ping, g(·), be a bijective function. This means that the number
of environment objects must be the same in all demonstrations
of a task. In our experiments this has not shown itself as
a problem but, in general, this is a restrictive assumption.
However, there are many sophisticated, and very complex,
matching formulations with more realistic assumptions [11].

B. Associating Subgoals with Environment Objects

To learn from demonstrations performed in different envi-
ronments, we compute a hypothesis about what the user would

(a) (b)

Fig. 11. Two demonstrations of a task in modified environments and the
corresponding estimated trajectories.

have done if the demonstrations had been performed under the
same conditions. This is accomplished by associating subgoals
with environment objects, a subject of previous investigations
of LBO methods. Morrow and Khosla [12], for instance,
extracted the corners of objects in the workspace from camera
images. In that work, users were then required to supply the
location of the subgoals and manually associate them with
the corners. As objects in the workspace moved, a corner-
tracking algorithm updated the subgoal locations accordingly.
Our method for associating subgoals is conceptually similar
but performed automatically. First, Dollop determines the
closest m environment objects to a subgoal. The difference
between the subgoal and these environment objects is weighted
so that closer environment objects have higher weights. These
weighted differences are the subgoal associations. Once a
mapping between different environments is computed, Dollop
updates the location of the subgoals according to how the
environment has changed based on the subgoal associations.

In Figure 10, we moved the obstacles from the original
“figure-eight” demonstration to different locations in the labo-
ratory. Because the subgoals are associated with the obstacles,
their locations change accordingly. Furthermore, each LDS
in the estimated trajectory adapts its response to these novel
conditions, succeeding in determining what the user would
have done: a “figure-eight” trajectory that avoids the obstacles.

V. LEARNING

We model the user as generating subgoals according to
a Continuous-Density Hidden Markov Model (CDHMM).
Since we do not know the set of tasks that the user will
demonstrate a priori, we must estimate the structure of the
CDHMM from the demonstrations alone. To accomplish this,
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Fig. 12. Figure 12(a) shows the CDHMM estimated from the demonstrations
in Figure 11, with the most-likely path shown in red. Figure 12(b) shows the
result after mapping the subgoals to the new environment and automatically
adapting the response of the LDS estimates.

we use an algorithm originally created to predict waypoints in
manipulator-robot programs [13]. When applied to Dollop, this
algorithm analyzes the sequences of subgoals from different
demonstrations of a task. If the algorithm finds statistical
similarities between the subgoals of different demonstrations,
then the CDHMM is simplified by combining the similarities.
This merging process gives an increasingly accurate estimate
about where the user intended the subgoals to be located.
Furthermore, when segments of the task are merged together,
Dollop estimates a single LDS that describes both segments,
which improves the generalization ability of the estimated
trajectory [9]. Both of these attributes mean that Dollop
is able to reproduce and generalize user actions if it has
access to multiple demonstrations performed under different
environment configurations, essentially, giving Dollop a better
idea of how the user would perform in varying conditions.

For example, in Figure 11 we show two demonstrations
of a task performed in different environments, as well as the
subgoals and trajectories estimated by Dollop. Before learning
occurs, the subgoals from both demonstrations are mapped
to the same environment configuration. Dollop then estimates
a CDHMM that describes the demonstrations and computes
the most-likely sequence of subgoals needed to complete the
task, as in Figure 12(a). When faced with a new environment
configuration, Dollop maps this sequence of subgoals to the
new environment configuration and allows the LDS estimates
to adapt their response accordingly, as shown in Figure 12(b).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a system that pursues a compu-
tational approach to Learning By Observation, called Dollop.

Our approach allows Dollop to learn motor-skill tasks by
observing user demonstrations with its scanning laser range
finder. From these demonstrations, subgoals are extracted and
associated with objects in the environment so that as these
objects move, the subgoals move accordingly. We described
how Dollop incorporates multiple demonstrations in different
environments to extract the intentions of the user. We also
showed examples of Dollop learning from demonstrations in
a laboratory setting with a mobile robot.

The representation of the environment is probably the
weakest point in Dollop. While we can compute environment
matchings quickly and consistently, it is an inherently ill-
posed problem. The geometric information obtained from laser
reading disregards many cues that could be helpful in disam-
biguating the matching process. As such, it is not difficult to
contrive environments that result in counter-intuitive match-
ings. Coupling laser readings with a more expressive sensor,
such as a camera, could result in improved performance. In
the future, we plan on extending Dollop to encode higher-level
knowledge, beyond motor-skill learning, while still retaining
its computational representation.
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