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Abstract
One consequence of situated face-to-face conversation is the co-
observability of participants’ respiratory movements and sounds.
We explore whether this information can be exploited in pre-
dicting incipient speech activity. Using a methodology called
stochastic turn-taking modeling, we compare the performance
of a model trained on speech activity alone to one additionally
trained on static and dynamic lung volume features. The method-
ology permits automatic discovery of temporal dependencies
across participants and feature types. Our experiments show that
respiratory information substantially lowers cross-entropy rates,
and that this generalizes to unseen data.
Key words: respiratory kinematics, interaction chronograms,
stochastic turn-taking models

1. Introduction
Earlier work has firmly established the existence of respiratory
turn-taking cues. In particular, several studies [1, 2, 3] have
identified temporal compression, whereby the lag preceding and
following the inhalation as well as the duration of the inhala-
tion itself are reduced, a practice interpreted as a strategy to
minimize the likelihood of pause interruption. In addition, ex-
halations were shown to be longer before speaker changes than
before turn continuations [4], and preparing to take the turn was
associated with an increased inhalation amplitude compared to
the silent breathing pattern [2]. There were also some indications
that turn-initial inhalation was deeper than inhalations made later
in the turn [4, 5]; however, these findings were not confirmed
by other studies [2], or were only observed in scripted dialogues
[4]. By contrast, [2] found that inhalation tends to be deeper
in turn-holding than in turn-changing pauses, although the size
of this effect seemed to be rather small. By including an addi-
tional category of backchannel-like utterances in our own work
we have been able to identify consistent variation in inhalation
amplitude across turn-categories [3]. We also found that rela-
tively increased lung volume at the inhalation onset cued speech
inhalations, which we hypothesized to be a strategy for arriving
at timely speaker transition.

While the results of all the above studies are potentially rele-
vant for the prediction of speech in technological applications,
the studies done so far have generally lacked formal evaluation
of the results for online prediction of turn-taking. The only ex-
ception is Ishii et al. [2], who tested a three-stage prediction
model. At each utterance offset, the model predicts: (1) whether
the same speaker (versus another) is going to continue, (2) in
case of speaker change, which of the three conversation part-

ners is going to take the turn, and (3) when the next utterance
is going to start (whether from the previous speaker or one of
the listeners). They demonstrated that inclusion of respiratory
features for prediction of turn-holding vs. speaker-change, as
well as for prediction of next speaker in multiparty conversa-
tion, outperforms a random baseline. In addition, they found
that for prediction of turn-holding vs. speaker-change, listeners’
features outperformed speaker’s features, and that fusion of the
two feature sets resulted in the best performance. Regarding (3),
inclusion of respiratory features was found to reduce prediction
errors over a baseline of mean pause duration.

In the present paper, we use stochastic turn-taking (STT)
modelling [6, 7] as a convenient means of answering the follow-
ing questions:

Q1: Is there information in the breathing signal that is helpful
for the prediction of speech activity in multiparty conver-
sation?

Q2: How should the respiratory information be represented to
maximize feature utility?

Q3: Is a participant’s1 breathing signal correlated with their
interlocutors’ future vocal activity?

Our experiments allow us to answer Q1 in the affirmative and
Q3 in the negative, as well as to provide several guidelines with
respect to Q2.

The resulting study is therefore an important extension of
our earlier work on respiratory turn-taking cues [3]. In that work,
we had modeled each conversation partner individually, without
taking their interlocutors’ behavior into consideration. Further-
more, we had predicted speech activity for each respiratory cycle,
whereas in the current work predictions are made every 100 ms,
from the beginning of the conversation to its end. In this second
respect, the current article also extends the work in [2], where
predictions were made only at turn landmark locations. In addi-
tion, unlike the authors of [2], who compared their system to a
random baseline, the current article compares the contribution
of breathing in the context of multi-participant speech activity to
a baseline trained on multi-participant speech activity alone.

Overall, the results indicate that the breathing signal pro-
vides additional information for predicting speaker state in con-
versation, which is fundamental to understanding the mecha-
nisms of human interaction. While the applications are limited
by the data acquisition method used (respiratory belts wrapped

1We henceforth use the term “participant” in place of the term
“speaker” in order to stress that we are making predictions for all partici-
pants at all instants, regardless of whether they are speaking or not.
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around the interlocutors’ upper body), our earlier work suggests
that using respiratory acoustics is a promising alternative [8].
Other methods of measuring respiration remotely have also been
recently proposed, see for instance [9, 10, 11].

2. Methods
2.1. Signal Collection

The material used in this study consisted of eight three-party
recordings in Swedish and thirteen three-party recordings in
Estonian. Each recording lasted for about 25 minutes and com-
prised conversation without a pre-defined topic. All participants
were native speakers of the respective languages and, with the
exception of one group, had known each other prior to the record-
ing. No person participated in more than one conversation. The
study has been approved by the Regional Ethical Committee in
Stockholm (2015/63-31).

All recordings were made in the Phonetics Laboratory at
Stockholm University. Each participant wore two elastic res-
piratory belts which measure expansion of the chest and the
abdomen due to breathing. The respiratory signal was routed
through custom-built processors (RespTrack) to an integrated
data acquisition system (PowerLab hardware and LabChart soft-
ware by ADInstruments). The relative contributions of the chest
and abdomen belts to the total lung volue change had been es-
tablished using the isovolume maneouver [12], and the weighted
summed signal was used in subsequent analyses. The result-
ing per-participant continuous breathing signal was sampled at
20 kHz and stored alongside each participant’s audio.

Audio was captured with close-talking directional micro-
phones (Sennheiser HSP 4), and routed to PowerLab to allow
for synchronization. The subjects were recorded while stand-
ing around a high bar table to minimize the impact of posture
shifts on the respiratory signal. Video was recorded using GoPro
Hero3+ cameras placed on the table, but was not used in the
current work. For a more detailed description of the recording
setup, see [13].

Of the twenty one dialogues thus recorded, six in Swedish
and six in Estonian were placed in TRAINSET for training mod-
els. The remaining two in Swedish and two of the available seven
in Estonian were placed in TESTSET; five Estonian dialogues
were not used, in order to retain the same language balance
in TRAINSET and TESTSET. Since no participants had taken
part in more than one conversation, the two sets are disjoint in
participants, rendering our analysis participant-independent.

2.2. Signal Representation

Following recording, intervals of vocalization were identified
automatically using intensity-based segmentation in ELAN [14]
and corrected manually.

To permit quantitative exploration of questions Q1–Q3, we
first synchronize the vocal activity signal across the three partici-
pants in our data, and then discretize it in time. Discretization
consists of splitting continuous time during each conversation
into a contiguous sequence of 100-ms frames; a particular frame
at discrete instant t for participant k is declared � if the kth
participant was vocalizing for more than 50 ms of that 100-ms
interval, and � otherwise. This representation naturally leads to
a two-dimensional matrix Q called a vocal interaction chrono-
gram, whose number of rows for all of our data is K ≡ 3, whose
number T of columns is the number of non-overlapping 100-ms
frames, and whose entries are drawn from the set {�,�}. The
tth column of Q will henceforth be denoted by the vector qt,

and its value for the kth participant at the tth instant will be de-
noted by qt [k]. As additional shorthand, Qb

a denotes the closed
sequence of vectors from qa to qb inclusive.

A very similar synchronization and discretization-in-time is
performed to obtain the matrices of static breathing information
B and dynamic breathing information Ḃ. Each of these is also
of dimensions K × T , but their entries — bt [k] and ḃt [k],
respectively, for 1 ≤ t ≤ T and 1 ≤ k ≤ K — are drawn from
<. Specifically, the value of bt [k] is the average of the breathing
signal for the kth participant over a 100-ms frame centered at
the tth instant. In contrast, the value of ḃt [k] is the slope of the
least-mean-square linear fit to the breathing signal for the kth
participant over the same interval. While the discretization does
reduce the temporal resolution of the signal, the time window
used is considerably below the duration of typical respiratory
events and is therefore assumed to not deleteriously impact our
findings.

Given Q, B, and Ḃ for any conversation, operationaliz-
ing question Q1 consists of comparing how well qt [k] can
be predicted, using Q1

t−1 alone, to how well it can be pre-
dicted when additionally exposed to B1

t−1 and/or Ḃ1
t−1. In

addition, we expect that a comparison of the contributions of
B and/or Ḃ may help to answer Q2. Note that in predicting
qt [k] we are predicting the incipient speech activity of the
kth participant, which we refer to as the target participant for
convenience. For tractability reasons, variable-duration con-
ditioning histories such as B1

t−1 are truncated to Bt−S
t−1 , con-

sisting of only the S most recent frames; in the current article,
S ≡ 10, or one second of context. More specifically, we train
a baseline model which ignores breathing information to pro-
vide P

(
qt [k] = �|Qt−S

t−1

)
, and a breathing-sensitive model to

provide P
(
qt [k] = �|Qt−S

t−1 ,B
t−S
t−1

)
. Both models yield the

probability that the kth participant vocalizes2 at the tth instant,
but are conditioned on histories differing in feature type.

The predictions of both models for P (qt [k]) can be com-
pared to qt [k], that is what subsequently happened at t, to deter-
mine which model is more accurate on average for a dataset, by
computing the cross entropy averaged over all K and all T in all
chronograms in that dataset.

2.3. Probability Modeling

We propose to compute the probability that the kth participant
vocalizes at the tth instant, conditioned on the recent vocalization
and respiration history, using

P
(
qt [k] = �|Qt−S

t−1 ,B
t−S
t−1

)
.
= f

(
Qt−S

t−1 ,B
t−S
t−1

)
, (1)

estimating f (·) using a feed-forward neural network to accom-
modate both the discrete values of Q and the continuous values
of B (and/or of Ḃ). The proposed neural network is quite simple,
consisting of one hidden layer with J dot-product/tanh hidden
units and one dot-product/sigmoid output unit, making the output
of the network interpretable as a probability ∈ (0, 1).

For the comparison with a breathing-insensitive baseline
(BL) to be most meaningful, fBL (·) in

PBL

(
qt [k] = �|Qt−S

t−1

)
.
= fBL

(
Qt−S

t−1

)
(2)

should have the same form as f (·). Because we want to enable
the learning of dependencies between breathing and vocaliza-

2By definition, P (qt [k] = �| · · · ) ≡ 1 − P (qt [k] = �| · · · ),
such that the sum of the probabilities of vocalizing and of not vocalizing
is unity for any participant k at any instant t.
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tion histories for any participant, the input feature space must
explicitly represent each of the K participants. Consequently,
all K participants should to be explicitly represented in the input
vector to fBL (·). Such a baseline has only been proposed for
K = 2. We extend it to K > 2, and evaluate it for K = 3, in
the following section.

3. Baseline Development
A number of STT models relying on only vocal activity history
have been proposed in our earlier work. These models come
in two flavors: the “mutually independent (MI) participants”
model type assumes that each participant’s vocal behavior is
not informed by (i.e. “is independent of”) their interlocutors’
vocal behavior history, while the “conditionally independent
(CI) participants” model type assumes that participants’ vocal
behavior is conditionally independent, given all K participants’
joint vocal behavior history. With a conditioning history of S
most recent frames, the input vector xi to fBL (·) for an MI
model consists of S binary values as shown in Figure 1.a. When
fBL (·) is implemented as a Jelinek-Mercer-smoothed n-gram
model as described in [15], the cross-entropies for TRAINSET
and TESTSET are 0.256 bits/100ms and 0.239 bits/100ms, re-
spectively; these are shown as baseline “1” in Figure 2. Baseline
“2” represents an NN-based MI implementation [6] as described
in Subsection 2.3; as for all other NNs in this article, we used
J = 32 hidden units (decided using TRAINSET), with one hun-
dred iterations of scaled conjugate gradient (SCG) pre-training3

and one thousand iterations of SCG training. The performance
of baselines “1” and “2” differs only negligibly4.

For systems intended to operate on conversations with arbi-
trary K, a CI model using only vocal activity can be obtained
by appending a fixed-length representation of the target par-
ticipant’s interlocutors’ vocal activity history to the MI-model
feature vector, as shown in Figure 1.b. When K = 2, this ap-
pendix can be the complete and explicit vocal activity history
of the target participant’s single interlocutor; when K > 2, a
simple means of combining the K − 1 interlocutor histories is
to form their inclusive-OR [16], thereby capturing whether zero
or at-least-one interlocutor had been speaking at an instant t− s,
1 ≤ s ≤ S.

An n-gram-based implementation of such a CI system [15]
is depicted as baseline “3” in Figure 2. It can be seen that, for
both TRAINSET and TESTSET, it reduces cross-entropies by
approximately 0.006 bits/100ms. This is very similar to our ob-
servations made for other non-telephony conversational corpora
[15, 17]. The performance of baseline “4” — the NN-based
counterpart [6] to baseline “3” — indicates no relative advan-
tage for either, as expected. Baseline “5” provides an alternative
NN-based model, which also uses the feature vector construction
method in Figure 1.b but the interlocutor portion of the vector
contains the integer number of vocalizing interlocutors at instant
t− s, a ternary variable for K = 3. As Figure 2.b shows, there

3We use this term to denote training for 100 iterations using every
1024th exemplar, then for 100 iterations using every 512th exemplar, etc,
and finally for 100 iterations using every 2nd exemplar.

4For TRAINSET, baselines 2 and 4 exhibit slightly lower cross en-
tropies than baselines 1 and 3, because the latter were smoothed with
parameters selected to minimize cross entropy on TESTSET. For this
same reason, baselines 2 and 4 exhibit slightly higher cross entropies
than baselines 1 and 3 for TESTSET. This is the only occurrence in
the current article where our TESTSET was used to make a system
structure/parameter decision; in all other experiments, TESTSET can be
treated as a truly held-out (non-development) data set, particularly since
baselines “1” and “3” are not used in answering questions Q1–Q3.

?

t− 1t− S

xi

(a) ignore interlocutors

?

COMBINE

t− 1t− S

xi

(b) combine interlocutors

?

t− 1t− S

xi

(c) represent interlocutors
explicitly (“unrotated”)

?

t− 1t− S

xi

(d) represent interlocutors
explicitly (“rotated”)

Figure 1: Four alternative methods of marshalling a snippet
Qt−S

t−1 of a chronogram into a fixed-length feature vector xi,
shown for a history duration of S = 10 preceding 100-ms frames
in chronograms with K = 3 participants. In the diagram, the
target participant for whom the prediction is being made is the
participant associated with the second row of the chronogram.

appears to be no benefit to knowing how many interlocutors are
vocalizing, just that at least one is. None of the three CI baselines
“3”, “4”, and ”5” model interlocutors explicitly, making these
systems unsuitable for subsequently associating a participant’s
breathing activity with their vocalization activity.

1 2 3 4 5 6 7 8

0.250

0.255

(a) TRAINSET

1 2 3 4 5 6 7 8

0.235

0.240

(b) TESTSET

Figure 2: Cross entropies (in bits per 100-ms frame, along the y-
axis) for 8 baseline systems shown along the y axis. Progression
from baseline “1” through to “8” as described in the text. The
shaded areas denote extrema of IQR’s of MI (1, 2) and CI (3, 4,
5, 8) baselines, respectively.

Our first attempt at representing all K = 3 participants’
vocal activity histories in a feature vector is shown in Figure 1.c:
the vector is enlarged relative to Figure 1.b and each of the
K − 1 = 2 interlocutors’ history is explicitly stored in it, in
addition to the history of the target participant. Unfortunately,
a baseline like this (denoted “6” in Figure 2) is sensitive to
the ordering of the participants in the chronogram. To see this,
it suffices to apply the marshalling method in Figure 1.d to
TRAINSET during training, but retain Figure 1.c during testing
as for baseline “6”; cross-entropies for this case are shown as
baseline “7”. It can be seen that this renders TRAINSET cross
entropies almost as bad as if interlocutor information had not
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been included at all; for TESTSET, neither baseline “6” nor
”7” is as good as “4”. The solution we propose is to duplicate
TRAINSET feature vectors for training, marshalling one copy
as in panel (c) of Figure 1 and the other as in panel (d). This
yields our final baseline whose performance on unseen data (cf.
Figure 2.b) is no worse than baseline “4”, with the benefit that it
represents all participants’ vocal activity history explicitly.

4. Results
Given our final CI baseline, breathing history is easily marshalled
into feature vectors in exactly the same way as vocal activity
history. The results are shown in Figure 3, for both TRAINSET
and TESTSET; the MI and CI baselines are denoted “BL(MI)”
and “BL(CI)”, and correspond to baselines “2” and “8” from the
preceding section.

B
L(M

I)
B

L(C
I)

1 2 3 4 5 6 5a 5b

0.230

0.235

0.240

0.245

0.250

0.255

(a) TRAINSET
B

L(M
I)

B
L(C

I)
1 2 3 4 5 6 5a 5b

0.220

0.225

0.230

0.235

0.240

(b) TESTSET

Figure 3: Cross entropies (in bits per 100-ms frame, along the
y-axis) for 8 respiration-sensitive systems (along the x-axis);
baseline “BL(MI)” and “BL(CI)” correspond to baselines “2”
and “8” in Figure 2. The shaded areas denote extrema of IQR’s
of MI and CI baselines (retained from Figure 2) as well as
systems “1” through “5a”.

System “1” extends BL(CI) by exploiting Bt−S
t−1 in addition

to Qt−S
t−1 . For TRAINSET, the resulting cross entropy reduction

is approximately 0.012 bits per 100 ms, or twice as large as the
gap between the MI and CI baselines. This effect generalizes to
TESTSET, where its magnitude is 0.006 bits per 100 ms, similar
to the difference between BL(CI) and BL(MI).

System “2” uses Ḃ instead of B. Figure 3 shows that for
both TRAINSET and TESTSET, this offers a considerable im-
provement. Evidently, the information found in the instantaneous
slope of lung volume is more relevant to vocal activity prediction
than is information found in the instantaneous value of lung
volume—despite the fact that the neural network can learn to
compute rate of change from S ≡ 10 consecutive values. System
“3” uses both B and Ḃ, but the experiments in Figure 3 suggest
that B provides no additional information over and above Ḃ: it
merely provides opportunity for the neural network to overfit to
TRAINSET.

Systems “4” through “6” are structurally identical to systems
“1” through “3”, except that the respiration signal chronograms
are Z-normalized using chronogram-row-specific statistics. This
makes these systems acausal, since at each instant t the mean
and variance used to normalize each bt [k] had been computed
using instants t′ < t but also t′ ≥ t. Nevertheless, these experi-

ments indicate the performance that could be obtained if these
statistics were available through other means. It appears that
Z-normalization is helpful, and generalizes to TESTDATA.

In a final set of experiments, we compare the relative contri-
bution of target participant’s vs. their interlocutors’ respiration
history. Starting with the best-generalizing system — that la-
beled “5” which exploits the Z-normalized dynamic respiration
signal Ḃ — we supress either the interlocutors’ respiration his-
tory (in system “5a”) or the target participant’s respiration history
(in system “5b”). It can be seen in the cross-entropies for TEST-
SET that the target participant’s respiration history (“5a”) offers
an even bigger improvement over the CI baseline than does in-
clusion of all participants’ respiration history (“5”). Meanwhile,
excluding the target participant’s respiration history (“5b”) ren-
ders the system not significantly different from the CI baseline
which ignores breathing altogether.

5. Discussion and conclusions
The experiments described in this paper permit us to answer
Q1 in the affirmative: the multi-participant breathing signal
contains information which can be leveraged to improve predic-
tion of incipient participant-attributed vocal activity. Specifically,
multi-participant respiration history offers roughly as much cross
entropy reduction as the inclusion of interlocutors’ vocal activity
history. Furthermore, we note that since no TESTSET partici-
pants were present in TRAINSET, these findings generalize to
unseen data and are participant-independent.

The experiments also support a tentative answer to Q2: dy-
namic lung volume features (i.e. slope) offer an advantage
over the static ones, a trend which also generalizes to unseen
participant-independent data. Furthermore, Z-score normaliza-
tion was shown to be beneficial, and the Z-normalized slope was
the best-performing feature of the ones we have tried. In fact,
the improvement due to the inclusion of Z-scored slope is about
twice as large as that due to the inclusion of interlocutor vocal
activity history.

We have also contrasted the contribution of target partic-
ipants’s breathing history to that of their interlocutors’. Our
experiments show that each participant’s breathing is helpful,
but only for the prediction of that participant’s incipient speech
activity; it appears unhelpful for the prediction of others’ in-
cipient speech activity. Note that this is irrespective of which
participants happen to be currently speaking; unlike [2], our con-
cept of “participant” includes both current speakers and current
listeners. This answers Q3 in the negative.

In answering these questions, we have extended the stochas-
tic turn-taking framework to make it possible to explicitly at-
tribute features of any type to participants in conversations with
more than two participants; previously, this could only be done
for dyadic conversations. In future work, we will inspect the
trained models for the type of patterns that have been learned
and evaluate the impact of the size of the context on model per-
formance. We will also evaluate the combination of breathing
with other continuous features such as intensity and fundamental
frequency.
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