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What Is Overlap?

The occurrence of

more than one person speaking simultaneously.

An example ...

me003: Okay, so then I’ll go back and look at the ones

XXXXXX [on the l]ist [that - XXXX]

me010: [Okay. XX] XX [And you can] ASK Kevin.

me012: XXXXXXXXXXXX Y[eah. XXXXX ]

mn015: XXXXXXXXXXXXX [But - XXXX ]

XXXXXX (0.3)

me012: Yeah, the [one that] uh people seem to use =

me003: XXXXXXXXX [M[mm. X ]

mn015: XXXXXXXXXXX [But - ]

me012: = is uh Hugin or whatever? XXXXXX [How exp- XXXXXXX ] =

me010: XXXXXXXXXXXXXXXXXXXXXXXXXX Hugin, [yeah that’s free.]

me012: = I don’t think it’s - Is it free? Because I’ve seen it

XXXXXX ADVERTISED in places so I - it [seems] [to - X]

me010: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX U[h it ] [may be] free to

XXXXXX academics. Like I - [I don’t know.]

fe004: XXXXXXXXXXXXXXXXXXX [((sniff)) XX ]
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The occurrence of

more than one person speaking simultaneously.
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a binary-valued speech/non-speech chronogram

Laskowski, Heldner & Edlund INTERSPEECH 2012, Portland OR, U.S.A 2/22



Introduction Inferring Time’s Arrow Analysis Conclusions

The Occurrence of Overlap Confounds Systems

Laskowski, Heldner & Edlund INTERSPEECH 2012, Portland OR, U.S.A 3/22



Introduction Inferring Time’s Arrow Analysis Conclusions

The Occurrence of Overlap Confounds Systems

1 The occurrence of overlap is acoustically difficult to detect.

Laskowski, Heldner & Edlund INTERSPEECH 2012, Portland OR, U.S.A 3/22



Introduction Inferring Time’s Arrow Analysis Conclusions

The Occurrence of Overlap Confounds Systems

1 The occurrence of overlap is acoustically difficult to detect.

2 Simultaneous streams of speech are acoustically difficult to
separate.

Laskowski, Heldner & Edlund INTERSPEECH 2012, Portland OR, U.S.A 3/22



Introduction Inferring Time’s Arrow Analysis Conclusions

The Occurrence of Overlap Confounds Systems

1 The occurrence of overlap is acoustically difficult to detect.

2 Simultaneous streams of speech are acoustically difficult to
separate.

3 Speech corrupted by other simultaneous speech is difficult to
acoustically recognize.

Laskowski, Heldner & Edlund INTERSPEECH 2012, Portland OR, U.S.A 3/22



Introduction Inferring Time’s Arrow Analysis Conclusions

The Occurrence of Overlap Confounds Systems

1 The occurrence of overlap is acoustically difficult to detect.

2 Simultaneous streams of speech are acoustically difficult to
separate.

3 Speech corrupted by other simultaneous speech is difficult to
acoustically recognize.

4 Speech deployed in overlap is grammatically distinct.

Laskowski, Heldner & Edlund INTERSPEECH 2012, Portland OR, U.S.A 3/22



Introduction Inferring Time’s Arrow Analysis Conclusions

The Occurrence of Overlap Confounds Systems

1 The occurrence of overlap is acoustically difficult to detect.

2 Simultaneous streams of speech are acoustically difficult to
separate.

3 Speech corrupted by other simultaneous speech is difficult to
acoustically recognize.

4 Speech deployed in overlap is grammatically distinct.

It behooves us ...

to seek to understand when it occurs

to design methodologies for identifying it ...

Laskowski, Heldner & Edlund INTERSPEECH 2012, Portland OR, U.S.A 3/22



Introduction Inferring Time’s Arrow Analysis Conclusions

The Occurrence of Overlap Confounds Systems

1 The occurrence of overlap is acoustically difficult to detect.

2 Simultaneous streams of speech are acoustically difficult to
separate.

3 Speech corrupted by other simultaneous speech is difficult to
acoustically recognize.

4 Speech deployed in overlap is grammatically distinct.

It behooves us ...

to seek to understand when it occurs

to design methodologies for identifying it ...

... at the earliest, lowest-level stage of processing
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We Know That It Occurs ...

... and even how frequently various degree of overlap occur
(Baron et al, 2001; Çetin et al, 2006)

e.g. the negative log-probability of occurrence as a function of
degree-of-overlap (Laskowski et al, 2010):
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“degree-of-overlap” ≡ number of simultaneously speaking
participants

Laskowski, Heldner & Edlund INTERSPEECH 2012, Portland OR, U.S.A 4/22



Introduction Inferring Time’s Arrow Analysis Conclusions

... But Not When It Occurs

If we were to take a chronogram and shuffle its time slices ...

... we would get the same prior probabilities of occurrence.
Systems are currently at the mercy of these priors alone.
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Plan for the Next 15 Minutes

FOCUS: the sequence of degree-of-overlap.

1 Ask a specific question about speech chronograms:

“Do they look the same right-to-left as left-to-right?”

1 Hypothesize that “H1: They look different.“
2 Develop a stochastic modeling framework.
3 Confidently reject H0.

2 What causes this asymmetry?

1 Investigate what model learns.
2 Investigate the effect of individual dialog act (DA) types ...

... by ignoring their contribution to overlap.
3 Find that only a handful of DA types is responsible.
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Modeling Degree-of-Overlap as a Stochastic Process

analysis must be invariant under participant-index rotation

discretize in time using non-overlapping 100-ms frames

compute the number of speaking participants in each frame

model integer sequence using a 1st-order N-gram
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Conversational Corpus

Experiments use the ICSI Meeting Corpus (Janin et al, 2003):

ICSI meetings are conversations, as per (Sacks et al, 1974)

natural: would have occurred even if were not recorded

75 conversations

each approximately 60 minutes in duration

each with fixed number of participants, between 3 and 9

manually transcribed and automatically forced-aligned

manually segmented into dialog acts and labeled with type
(Shriberg et al, 2004)
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Note that the number of participants is different for
different ICSI meetings.

But proposing to model degree-of-overlap unconditioned on
the number of participants, across meetings.

Is this valid?
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Pearson’s correlation
coefficient: 0.411

Laskowski, Heldner & Edlund INTERSPEECH 2012, Portland OR, U.S.A 9/22



Introduction Inferring Time’s Arrow Analysis Conclusions

Is N-Gram Modeling Appropriate?

Yes, provided that:

The durations of contiguous intervals of same-degree overlap
have an exponential distribution.

Laskowski, Heldner & Edlund INTERSPEECH 2012, Portland OR, U.S.A 10/22



Introduction Inferring Time’s Arrow Analysis Conclusions

Is N-Gram Modeling Appropriate?

Yes, provided that:

The durations of contiguous intervals of same-degree overlap
have an exponential distribution.

Approximately: log-normal; at least unimodal.

Laskowski, Heldner & Edlund INTERSPEECH 2012, Portland OR, U.S.A 10/22



Introduction Inferring Time’s Arrow Analysis Conclusions

Is N-Gram Modeling Appropriate?

Yes, provided that:
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Is N-Gram Modeling Appropriate?

Yes, provided that:

The durations of contiguous intervals of same-degree overlap
have an exponential distribution.

Approximately: log-normal; at least unimodal.

−5 −4 −3 −2 −1 0 1 2
log duration (log seconds)

at least 1
at least 2
at least 3
at least 4
at least 5

approximately log-normal
as required

also: the lower the
degree-of-overlap, the
longer the interval
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blah blah blah

1 Take test
chronogram Q.

2 Pick random
direction
d ∈ {F , B} :
Q 7→ Q′.
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Detecting Time’s Arrow in an Unseen Test Chronogram

blah blah blah

1 Take test
chronogram Q.

2 Pick random
direction
d ∈ {F , B} :
Q 7→ Q′.

3 Compute
P (Q′|ΘF ) and
P (Q′|ΘB).

4 Guess d̂ yielding
higher likelihood.
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a more stringent requirement for discarding null hypothesis

ICSI Corpus contains 75 conversations:
1 Pick each conversation as the test conversation Q.
2 Train ΘF and ΘB on remaining 74 conversations.
3 Pick direction d (50%/50%), form d : Q 7→ Q′.
4 Infer direction d̂

.

= arg maxd P (Q′|Θd).
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Classification in a Round Robin Evaluation

Propose to not assess statistical significance.

Instead, assess how well can classify the direction d ...
... in conversations unseen during training
a more stringent requirement for discarding null hypothesis

ICSI Corpus contains 75 conversations:
1 Pick each conversation as the test conversation Q.
2 Train ΘF and ΘB on remaining 74 conversations.
3 Pick direction d (50%/50%), form d : Q 7→ Q′.
4 Infer direction d̂

.

= arg maxd P (Q′|Θd).

Accuracy (A): count how often d̂ = d , divide by 75.
If chronograms are symmetric in time, expect [A] = 50%.

Chance-corrected accuracy,

ccA
.

=
A − [A]

1 − [A]
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Numerical Results

Over all 75 conversations, A = 99% and ccA = 97%

Can comfortably discard the null hypothesis H0,
that chronograms are left-right symmetric.

Laskowski, Heldner & Edlund INTERSPEECH 2012, Portland OR, U.S.A 14/22



Introduction Inferring Time’s Arrow Analysis Conclusions

Numerical Results

Over all 75 conversations, A = 99% and ccA = 97%

Can comfortably discard the null hypothesis H0,
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The Link Between Asymmetry and Overlap

Consider a sequence consisting exclusively of 0s and 1s:

e.g., . . . 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, . . .

1 The number of {0 → 1} and {1 → 0} transitions is equal.
2 The models ΘF and ΘB are equal.
3 Cannot discriminate between F and B directions.

Asymmetry in a chronogram is:

1 impossible if, ∀t, the degree-of-overlap is ≤ 1;
2 impossible if, ∀t, the degree-of-overlap changes by ≤ 1;
3 possible (but not guaranteed) if ∃t at which

the degree-of-overlap changes by ≥ 2.
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1 most often: (0...0)(1...1)(2...2)(1...1)(0...0)
2 less often: (0...0)(2...2)(1...1)(0...0)
3 least often: (0...0)(1...1)(2...2)(0...0)

Case 1 is 1st-order-Markov-symmetric.

Cannot account for the left-to-right asymmetry in
chronograms.

Time’s arrow is discernable in chronograms largely because
case 2 and case 3 occur with unequal frequency.
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Finding the Culprits

Would like to know what kinds of speech phenomena lead
to more {0 → 2} transitions than to {2 → 0} transitions.

Propose to investigate (content-neutral) dialog act (DA)
types as a subclassification of all speech.

The ICSI Corpus is annotated with a rich tagset, including:

unlabeled X : not speech, undecipherable, undecidable
disrupted D: abandoned, interrupted
backchannels B: backchannels, assessments, acknowledgments
floor mechanisms F : floor grabbers, floor holders, holds
propositional: statements, questions
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Ablation of Specific-DA Deployment

Re-use the experimental methodology of Part I.

To test the impact of DA type T on asymmetry:
1 Compute ccA using round robin paradigm, as in Part I.
2 Remove all speech of type T from the training material.

3 Remove all speech of type T from the test chronogram.
4 Compute ccAT using round robin paradigm.
5 Compare ccA and ccAT .
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Results

DA Types Duration of Speech ccA
Removed Remaining (hh:mm) (%)

none 66:34 (95.6%) 97

unlabeled X 63:37 (95.6%) 97

X ∪ disrupted D 56:44 (85.2%) 89

X ∪ backchannels B 59:08 (88.8%) 79
X ∪ D ∪ B 52:22 (78.7%) 65

X ∪ floor mechanisms F 57:03 (85.7%) 89
X ∪ D ∪ F 50:48 (76.3%) 76
X ∪ D ∪ B ∪ F 46:31 (69.9%) 30

Time’s arrow can be inferred from chronograms primarily due to:

disrupted (abandoned or interrupted) DAs, and

DAs not implementing propositional content.
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Conclusions

1 Speech/non-speech chronograms are asymmetric in time.

2 The asymmetry is due to entry into and egress from overlap.

less common
(discriminative)

most common
(undiscriminative)

least common
(discriminative)

3 People are more likely to simultaneously start simultaneous
speech than to simultaneously stop simultaneous speech.

4 Speech to which this pertains is found in dialog acts:

which are not successfully brought to completion, or
whose pragmatic function is not information exchange.
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Potential Impact

Theoretical:
Can empirically validate on large data the claims of
conversation analysis.

E.g., “Talk by MORE than two at a time seems to be reduced
to two (or to one) even more effectively than talk by two is
reduced to one” (Schegloff, 2000).
See paper for many examples.

One step along the way to proposing an ecological theory of
pragmatic (non-propositional-content) function in multi-party
conversation, and its relationship to cognitive load.

Technological:
Construction of prior probability models for speech activity
detection in multi-party conversations.

E.g., constrain hypothesized transitions into and out of
overlap intervals.
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