In real-time speech processing applications, intonation may be useful as early as possible, even prior to lexical segmentation. However:

1. Intonation is typically estimated by computing a pitch trajectory.
2. Pitch estimation is performed only after speech segmentation (and, often, recognition).
3. Therefore, intonation is currently unavailable to early speech processing components.

This work describes a new, freely available implementation of an alternative to pitch estimation: the computation of the fundamental frequency variation (FFV) spectrum.

The FFV spectrum is a plot of $g(\rho)$ as a function of $\log_2 \rho$:

$$\rho = 2^{-0.0693} = 0.9538$$

leave left FFT as is dilate right FFT by ρ

$$\rho = 2^{-0.0342} = 0.9766$$

leave left FFT as is dilate right FFT by ρ

$$\rho = 2^0 = 1$$

leave left FFT as is leave right FFT as is

$$\rho = 2^{+0.0342} = 1.0240$$

dilate left FFT by ρ leave right FFT as is

$$\rho = 2^{+0.0638} = 1.0485$$

dilate left FFT by ρ leave right FFT as is

The FFV spectrum is a plot of $g(\rho)$ as a function of $\log_2 \rho$:

Conclusions & Impact

1. Peaks in the FFV spectrum provide visually identical information to the first derivative of a pitch trajectory.
2. Computation of the FFV spectrum is fully and flexibly implemented in Snack, a popular, freely available speech processing toolkit.
3. Accessible with a single line of code.
4. FFV spectrum can be explored by anyone, with almost no learning curve.
5. Intonation is available to front-end components of speech processing systems, much earlier than previously considered.

What is Snack?

The Snack Sound Toolkit, developed by Kåre Sjölander, allows the creation of multi-platform audio applications with just a few lines of code.

- freely available
- easily extendible
- contains primitives for visualization
- bindings for Tcl/Tk, Python, and Ruby

The New Tcl Interface to FFV in Snack

Just like pitch estimation in Snack, for a sound object s:

```tcl
s pitch -method ESPS -minpitch 60 -maxpitch 1000 -framlength 0.008 -windowlength 0.0075
```

FFV is now available with a single Tcl command:

```tcl
s ffv -tFra 0.008 -filterbank NONE -tSep 0.112 -tInt 0.088 -tExt 0.072
```

Visual Comparison of Pitch Tracker and FFV Output

- compare Snack FFV output with the first-order difference of the Snack ESPS pitch trajectory
- use singing voice as a novel example
 - unambiguous, language-independent expectations
 - no unvoiced occlusions

Explored Use of FFV, To Date

- Speaker Change Prediction (HMMs)
- Improved F_0 Estimation (Peak Picking)
- Speaker Recognition (GMAs)
- Dialog Act Recognition (HMMs)

ELRA Int’l Conf on Language Resources and Evaluation, La Valletta, Malta

kornel@cs.cmu.edu, edlund@speech.kth.se