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Abstract

This paper describes a recently introduced vec-
tor-valued representation of fundamental fre-
quency variation — the FFV spectrum — which
has a number of desirable properties. In par-
ticular, it is instantaneous, continuous, distri-
buted, and well-suited to application of stan-
dard acoustic modeling techniques. We show
what the representation looks like, and how it
can be used to model prosodic sequences.

Introduction

While speech recognition systems have long
ago transitioned from formant localization to
spectral (vector-valued) formant representa-
tions, prosodic processing continues to rely
squarely on a pitch tracker’s ability to identify a
peak, corresponding to the fundamental fre-
quency (FO) of the speaker. Peak localization in
acoustic signals is particularly prone to error,
and pitch trackers (cf. de Cheveigné & Kawa-
hara, 2002) and downstream speech processing
applications (Shriberg & Stolcke, 2004) employ
dynamic programming, non-linear filtering, and
linearization to improve robustness. These me-
thods introduce long-term dependencies which
violate the temporal locality of the FO estimate,
whose measurement error may be better han-
dled by statistical modeling than by (linear)
rule-based schemes. Even if a robust, local, ana-
Iytic, statistical estimate of absolute pitch were
available, applications require a representation
of pitch variation and go to considerable addi-
tional effort to identify a speaker-dependent
quantity for normalization (e.g. Edlund &
Heldner, 2005).

In the current work, we describe a recently
derived representation of fundamental frequen-
cy variation (see also Laskowski, Edlund, &
Heldner, 2008a, 2008b; Laskowski, Wolfel,
Heldner, & Edlund, in press), which implicitly
addresses most if not all of the above issues.
This spectral representation, which we will re-
fer to here as the fundamental frequency varia-
tion (FFV) spectrum is (1) instantaneous, not
relying on adjacent frames; (2) continuous, de-
fined for all frames; (3) distributed; and (4) po-
tentially sparse, making it suitable for the appli-

cation of standard acoustic modeling techniques
including bottom-up, continuous statistical se-
quence learning.

In previous work, we have shown that this
representation is useful for modeling prosodic
sequences for prediction of speaker change in
the context of conversational spoken dialogue
systems (Laskowski et al., 2008a, 2008b); how-
ever, the representation is potentially useful for
any prosodic sequence modeling task.

The fundamental frequency varia-
tion spectrum

Instantaneous variation in pitch is normally
computed by determining a single scalar, the
fundamental frequency, at two temporally adja-
cent instants and forming their difference. FO
represents the frequency of the first harmonic in
a spectral representation of a frame of audio,
and is undefined for signals without harmonic
structure. In the context of speech processing
applications, we view the localization of the
first harmonic and the subsequent differencing
of two adjacent estimates as a case of subop-
timal feature compression and premature infe-
rence, since the goal of such applications is not
the accurate estimate of pitch. Instead, we want
to leverage the fact that all harmonics are
equally spaced in adjacent frames, and use
every element of a spectral representation to
yield a representation of the FO delta.

To this end, we propose a vector-valued re-
presentation of pitch variation, inspired by va-
nishing-point perspective, a technique used in
architectural drawing and grounded in projec-
tive geometry. While the standard inner product
between two vectors can be viewed as the
summation of pair-wise products with pairs se-
lected by orthonormal projection onto a point at
infinity, the proposed vanishing-point product
induces a 1-point perspective projection onto a
point at 7 (Figure 1). When applied to two vec-
tors representing a signal’s spectral content, F,
and Fpg, at two temporally adjacent instants, the
vanishing-point product yields the standard dot
product between F; and a dilated version of Fp,
or between Fp and a dilated version of Fj, for
positive and negative values of z, respectively.
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Figure 1. The standard dot-product shown as an orthonormal projection onto a point at infinity (left panel),
and the proposed vanishing-point product, which generalizes to the former when T — oo (right panel).

The degree of dilation is controlled by the mag-
nitude of 7. The proposed vector-valued repre-
sentation of pitch variation is the vanishing-
point product, evaluated over a continuum of z.
For each analysis window, centered at time ¢,
we compute the short-time frequency represen-
tation of the left-half and the right-half portion
of the window, leading to F; and Fp, respec-
tively, using two asymmetrical windows which
are mirror images of each other, as shown in
Figure 2.
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Figure 2. Left and right windows used for the com-
putation of F; and Fp, respectively, consisting of
asymmetrical Hamming and Hann window halves.
Ty is 4 ms, and T; is 12 ms, for a full analysis win-
dow width of 32 ms. A 32 ms Hamming window is
shown for comparison.

Fr and Fr are N=512-point Fourier trans-
forms, computed every 8. The peaks of the two
windows are 8 ms apart. The FFV spectrum is
then given by
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where, in each case, summation is from

k=-N/2+1to k= N/2; for convenience, r
varies over the same range as k. Normalization
ensures that g/r] is an energy-independent re-
presentation. The frequency-scaled, interpolated
values F, and F, are given by

Foro=a,F |27+ a-a)F,[[27k]].
Fo2 k) = a,Fy |27k ||+ A=) Fo[ |27k ],

where

a, =27k -2k,
o, =[[ 277k |- 277,

A sample FFV spectrum, for a voiced
frame, is shown in Figure 3; for unvoiced
frames, the peak tends to be much lower and
the tails much higher. The position of the peak,
with respect to r = 0, indicates the current rate
of fundamental frequency variation. The sam-
ple FFV spectrum shown in Figure 3 thus indi-
cates a single frame with a slightly negative
slope, that is a slightly falling pitch.
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Figure 3. A sample fundamental frequency variation
spectrum. The x-axis is in octaves per 8ms.
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Figure 4: Filters in two versions of the filterbank.
The x-axis is in octaves per second; note that the
filterbank is applied to frames in which F; and Fg
are computed at instants separated by 0.008s. Two
extremity filters at (-2, —1) and (+1, +2) octaves per
frame are not shown.

Filterbank

Rather than locating the peak in the FFV spec-
trum, we utilize the representation as is, and
apply a filterbank. The filterbank (FBNEW
shown in Figure 4) attempts to capture mea-
ningful prosodic variation, and contains a con-
servative trapezoidal filter for perceptually
“flat” pitch ('t Hart, Collier, & Cohen, 1990);
two trapezoidal filters for “slowly changing”
pitch; and two trapezoidal filters for “rapidly
changing” pitch. In addition, it contains two
rectangular extremity filters with spans of (-2,
—1) and (+1, +2) octaves per frame, as we have
observed that unvoiced frames have flat rather
than decaying tails. This filterbank reduces the
input space to 7 scalars per frame.

We show what a “spectrogram” representa-
tion looks like when FFV spectra from consec-
utive frames are stacked alongside one another,
in Figure 5, as well as what the representation
looks like after being passed through filterbank
FBNEW of Figure 4.

Modeling FFV spectra sequences

In order to transition from vectors of frame-by-
frame FFV spectra passed through a filterbank
to something more like what we normally as-
sociate with prosody, such as flat, falling, and

rising pitch movements, sequences of FFV
spectra need to be modeled. A standard option
for modeling sequences involves training hid-
den Markov models (HMM). In previous work,
we have used fully-connected hidden Markov
models (HMM) consisting of four states with
one Gaussian per state (see Figure 6). Howev-
er, other HMM topologies are also possible.
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Figure 5. Spectrogram for a 500ms fragment of au-
dio (top panel, upper frequency of 2kHz); the FFV
spectrogram for the same fragment (middle panel);
and the same FFV spectrum (bottom panel) after
being passed through the FBNEW filterbank as
shown in Figure 4.

Figure 6. A fully-connected hidden Markov model

(HMM) consisting of four states with one Gaussian
per state.
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Discussion

We have derived a continuous and instantane-
ous vector representation of variation in fun-
damental frequency and given a detailed de-
scription of the steps involved, including a
graphical demonstration of both the form of the
representation, and its evolution in time. We
have also suggested a method for modeling se-
quences with HMMs and utilizing the represen-
tation in a classification task.

Initial experiments along these lines show
that such HMMs, when trained on dialogue da-
ta, corroborate research on human turn-taking
behavior in conversations. These experiments
also suggest that the representation is suitable
for direct, principled, continuous modeling (as
in automatic speech recognition) of prosodic
sequences, which does not require peak-
identification, dynamic time warping, median
filtering, landmark detection, linearization, or
mean pitch estimation and subtraction
(Laskowski et al., 2008a, 2008b).

We expect the method to be especially use-
ful in situations where online processing is re-
quired, such as in conversational spoken dialo-
gue systems. Further experiments will test the
method in real systems, for example to support
turn-taking decisions. We will also explore the
use of the FFV spectrum in combination with
other sources of information, such as durational
patterns in interaction control.

Immediate next steps include fine-tuning
the filter banks and the HMM topologies, and
testing the results on other tasks where pitch
movements are expected to play a role, such as
the attitudinal coloring of short feedback utter-
ances (e.g. Edlund, House, & Skantze, 2005;
Wallers, Edlund, & Skantze, 2006), speaker
verification, and automatic speech recognition
for tonal languages.
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