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Vocal Interaction (Dabbs & Ruback, 1987)

vocal activity patterns for all K participants, seen together

talkspurt start/end times = text-independence

at time t,

vocal activity of participant k : qt [k ] ∈ V ≡ {�, �} ≡ {0, 1}
entire K -participant conversation: qt ∈ VK

we’ll use a discretized version (frame step = 200 ms)
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Participant Characterization

Mary

Jane

Joe

Fred

Sam

a useful partition of the
conversation participants

role
influence
seniority
dominance
ranking (of the above)

for all time,

the class of participant k : g [k ] ∈ C ≡ {C1, · · · , CN}
K -participant group: g ∈ C ≡ h (C)
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What we’re trying to do
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{qt} ∈ VK×T

F

g ∈ h (C)

1 given a sequence of T K -participant states qt

2 compute & model features F

3 infer required equivalence classes g [k] of each participant

K. Laskowski, M. Ostendorf, T. Schultz SIGdial 2008, Columbus OH, USA



Introduction Framework Experiments Conclusions

What we’re trying to do

1

2

3

4

1

2

3

4

{qt} ∈ VK×T

F

g ∈ h (C)

1 given a sequence of T K -participant states qt

2 compute & model features F

3 infer required equivalence classes g [k] of each participant

K. Laskowski, M. Ostendorf, T. Schultz SIGdial 2008, Columbus OH, USA



Introduction Framework Experiments Conclusions

What we’re trying to do

1

2

3

4

1

2

3

4

{qt} ∈ VK×T

F

g ∈ h (C)

1 given a sequence of T K -participant states qt

2 compute & model features F

3 infer required equivalence classes g [k] of each participant

K. Laskowski, M. Ostendorf, T. Schultz SIGdial 2008, Columbus OH, USA



Introduction Framework Experiments Conclusions

What we’re trying to do

1

2

3

4

1

2

3

4

{qt} ∈ VK×T

F

g ∈ h (C)

1 given a sequence of T K -participant states qt

2 compute & model features F

3 infer required equivalence classes g [k] of each participant

K. Laskowski, M. Ostendorf, T. Schultz SIGdial 2008, Columbus OH, USA



Introduction Framework Experiments Conclusions

Outline of Talk

0. ... Intro (Motivation & Related Work)
1. Computational Framework
2. Experiments
3. Conclusions

K. Laskowski, M. Ostendorf, T. Schultz SIGdial 2008, Columbus OH, USA



Introduction Framework Experiments Conclusions

Motivation

having observed a conversation/meeting, being able to say
something about the participants is a basic competence in

conversation understanding

lots of research in psycho- and socio-linguistics, 1950-

converation analysis
small group research
non-verbal interaction

findings suggest that a participant’s talkspurt deployment
timing is conditioned on

instrumental status characteristics, e.g. task-specific skills
“diffuse status characteristics”, e.g. gender, age, race, etc.
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Related Computational Work

static characterization of meeting participants

dominance rankings: Rienks & Heylen, 2005
influence rankings: Rienks et al., 2006

static characterization of radio talk show participants

roles: Vinciarelli, 2007

dynamic characterization of meeting participants

roles: Banerjee & Rudnicky, 2004
roles: Zancanaro et al., 2006
roles: Rienks et al., 2006

static characterization of conversations

meeting types: Laskowski et al., 2007
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Detecting Participant Types Independently
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1 cannot model interaction with specific other types

feature space with non-specific others may be non-convex

2 may require recombination heuristics

≥2 participants may be assigned a unique type

K. Laskowski, M. Ostendorf, T. Schultz SIGdial 2008, Columbus OH, USA



Introduction Framework Experiments Conclusions

Detecting Participant Types Independently

2

3

4
2

3

4

1 1
F1

1 cannot model interaction with specific other types

feature space with non-specific others may be non-convex

2 may require recombination heuristics

≥2 participants may be assigned a unique type

K. Laskowski, M. Ostendorf, T. Schultz SIGdial 2008, Columbus OH, USA



Introduction Framework Experiments Conclusions

Detecting Participant Types Independently

3

4

3

4

1

2

1

2

F2

1 cannot model interaction with specific other types

feature space with non-specific others may be non-convex

2 may require recombination heuristics

≥2 participants may be assigned a unique type

K. Laskowski, M. Ostendorf, T. Schultz SIGdial 2008, Columbus OH, USA



Introduction Framework Experiments Conclusions

Detecting Participant Types Independently

4

4

1 1

2

3

2

3

F3

1 cannot model interaction with specific other types

feature space with non-specific others may be non-convex

2 may require recombination heuristics

≥2 participants may be assigned a unique type

K. Laskowski, M. Ostendorf, T. Schultz SIGdial 2008, Columbus OH, USA



Introduction Framework Experiments Conclusions

Detecting Participant Types Independently

1 1

2

2

3

4

3

4F4

1 cannot model interaction with specific other types

feature space with non-specific others may be non-convex

2 may require recombination heuristics

≥2 participants may be assigned a unique type

K. Laskowski, M. Ostendorf, T. Schultz SIGdial 2008, Columbus OH, USA



Introduction Framework Experiments Conclusions

Detecting Participant Types Independently

1 1

2

2

3

4

3

4F4

Problems:
1 cannot model interaction with specific other types

feature space with non-specific others may be non-convex

2 may require recombination heuristics

≥2 participants may be assigned a unique type

K. Laskowski, M. Ostendorf, T. Schultz SIGdial 2008, Columbus OH, USA



Introduction Framework Experiments Conclusions

Detecting Participant Types Independently

1 1

2

2

3

4

3

4F4

Problems:
1 cannot model interaction with specific other types

feature space with non-specific others may be non-convex

2 may require recombination heuristics

≥2 participants may be assigned a unique type

K. Laskowski, M. Ostendorf, T. Schultz SIGdial 2008, Columbus OH, USA



Introduction Framework Experiments Conclusions

Detecting Participant Types Independently

1 1

2

2

3

4

3

4F4

Problems:
1 cannot model interaction with specific other types

feature space with non-specific others may be non-convex

2 may require recombination heuristics

≥2 participants may be assigned a unique type

K. Laskowski, M. Ostendorf, T. Schultz SIGdial 2008, Columbus OH, USA



Introduction Framework Experiments Conclusions

Detecting Participant Types Independently
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Problems:
1 cannot model interaction with specific other types

feature space with non-specific others may be non-convex

2 may require recombination heuristics

≥2 participants may be assigned a unique type

Solution: model participants jointly
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Detecting Participant Types Jointly
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F

1 F describes interaction between all K participants

2 the most likely group assignment g∗ is identified by
enumerating over all possible group assignments g ∈ h (C)

g∗ = arg max
g∈ h(C)

P ( g |F )

= arg max
g∈ h(C)

P (g )
︸ ︷︷ ︸

MM

P (F |g )
︸ ︷︷ ︸

BM
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What is h (C)?

That depends on what C is...

each of K types assigned to
exactly one participant

h (C) is a permutation space

|h (C) | = K !

each participant can be one
of any N types

h (C) is a Cartesian product

|h (C) | = NK
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In our experiments...

Unique Roles, C = R

AMI Meeting Corpus

design scenario
train: 98 meetings
dev: 20 meetings
eval: 20 meetings
K = 4, always

R = {PM,ME,UI, ID}

Seniority Levels, C = S

ICSI Meeting Corpus

naturally occurring
3 meeting types
(Bed,Bmr,Bro)
train: 33 meetings
dev: 18 meetings
eval: 16 meetings
3≥K≥9

S = {grad,phd,prof}
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Introduction Framework Experiments Conclusions

Feature Types in F

1 probability of vocalizing (V)

2 probability of initiating vocalization (VI) in prior silence

3 probability of continuing vocalization (VC) in prior non-overlap

4 probability of initiating overlap (OI) in prior non-overlap

5 probability of continuing overlap (OC) in prior overlap
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Feature Types in F

1 probability of vocalizing (V)

2 probability of initiating vocalization (VI) in prior silence

3 probability of continuing vocalization (VC) in prior non-overlap

4 probability of initiating overlap (OI) in prior non-overlap

5 probability of continuing overlap (OC) in prior overlap

k

j

f OC
k ,j
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Models

behavior model (BM), where θ is a 1-dimensional Gaussian

P (F |g ) =

K∏

k=1

P
(

f V
k | θV

g[k]

)

P
(

f VI
k | θVI

g[k]

)

P
(

f VC
k | θVC

g[k]

)

×

K∏

j 6=k

P
(

f OI
k,j | θ

OI
g[k],g[j ]

)

P
(

f OC
k,j | θOC

g[k],g[j ]

)

membership model (MM)

P (g ) =
1

Zg

K∏

k=1

P ( g [k] )
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Unique Role R Classification

Feature AMI
Type R

f V
k 44
f VI
k *41
f VC
k 34

f OI
k,j *53

f OC
k,j —

best* 53
all 46

priors 25
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Aside: Looking for the Leader

find one unique role only, g [k] ∈ L = {L ≡ PM,¬L}

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.005

0.01

0.015

0.02

0.025

(¬L,¬L)(¬L,¬L)

(¬L,L)(¬L,L)

(L,¬L)(L,¬L)

feature fVI

fe
at

ur
e 

fO
I

(¬L,¬L)
(¬L,L)
(L,¬L)
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Leader L Detection

Feature AMI
Type R L

f V
k 44 —
f VI
k *41 *60
f VC
k 34 —

f OI
k,j *53 *60

f OC
k,j — —

best* 53 60
all 46 75

priors 25 25
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Seniority Level Feature Distributions
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(PROF,GRAD)(PROF,GRAD)

(PROF,PHD)(PROF,PHD)

feature fV

fe
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fO
C
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(GRAD,PROF)
(PHD,GRAD)
(PHD,PHD)
(PHD,PROF)
(PROF,GRAD)
(PROF,PHD)
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Seniority Level S Classification

Feature AMI ICSI
Type R L S

f V
k 44 — *52
f VI
k *41 *60 52
f VC
k 34 — —

f OI
k,j *53 *60 *59

f OC
k,j — — *59

best* 53 60 61
all 46 75 58

priors 25 25 45
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Conversation-Type-Dependent S Classification

condition models on automatically inferred meeting type

Feature AMI ICSI
Type R L S S|t∗

f V
k 44 — *52 *57
f VI
k *41 *60 52 56
f VC
k 34 — — 62

f OI
k,j *53 *60 *59 *59

f OC
k,j — — *59 *63

best* 53 60 61 67
all 46 75 58 57

priors 25 25 45 45
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Conclusions

assigned unique roles R in the AMI corpus

53% accuracy, 37% rel error reduction over baseline
improves to 75%, when only manager (PM) is sought
best features: initiation of talkspurts in silence and in overlap

seniority level S in the ICSI corpus

61% accuracy, 29% rel error reduction over baseline
improves to 67%, with conditioning on inferred meeting type
improves to 73%, with conditioning on true meeting type
best features: overal talkspurt production, initiation and
continuation of talkspurts in overlap
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Introduction Framework Experiments Conclusions

(Potential) Implications

1 Participant Characterization

talkspurt deployment timing is predictive
first baseline for several of the explored tasks
proposed framework allows for inclusion of potentially
complementary information, to prosodic/lexical/semantic
features

2 Dialogue Systems

agent talkspurt deployment may contribute to agent
personality

3 Speech Activity Detection

performance likely to improve with conditioning on participant
characteristics
or joint inference of SAD and participant characteristics
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Thank you for attending.

Many thanks also to:

Jean Carletta, for many helpful comments

Liz Shriberg, for access to the ICSI MRDA Corpus
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