Kornel Laskowski^{1,2}, Mari Ostendorf³ & Tanja Schultz^{1,2}

¹Cognitive Systems Labs, Universität Karlsruhe
 ²Language Technologies Institute, Carnegie Mellon University
 ³Dept. Electrical Engineering, University of Washington

June 20, 2008

Introduction

00000

- talkspurt start/end times = text-independence
- \bullet at time t,
 - vocal activity of participant $k: \mathbf{q}_{\ell}[k] \in \mathbb{V} = \{\square, \blacksquare\} = \{0, 1\}$
- we'll use a discretized version (frame step = 200 ms)

- talkspurt start/end times = text-independence
- \bullet at time t,
 - vocal activity of participant k: q_t[k] ∈ V ≡ {□, ■} = {0,1}
 entire K-participant conversation: q_t ∈ V^K
- we'll use a discretized version (frame step = 200 ms)

- talkspurt start/end times = text-independence
- at time t,
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version (frame step = 200 ms)

- talkspurt start/end times = text-independence
- at time t,
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version (frame step = 200 ms

- talkspurt start/end times = text-independence
- at time t,
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version (frame step = 200 ms)

- talkspurt start/end times = text-independence
- at time t,
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version (frame step = 200 ms)

- talkspurt start/end times = text-independence
- at time t,
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - ullet entire K-participant conversation: $oldsymbol{q}_t \in \mathbb{V}^K$
- we'll use a discretized version (frame step = 200 ms)

- talkspurt start/end times = text-independence
- at time t,
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - ullet entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version (frame step = 200 ms)

- talkspurt start/end times = text-independence
- at time t,
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - ullet entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version (frame step = 200 ms)

- talkspurt start/end times = text-independence
- at time t,
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version (frame step = 200 ms)

- talkspurt start/end times = text-independence
- at time t,
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - ullet entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version (frame step = 200 ms)

for all time,

- a useful partition of the conversation participants
 - role
 - influence
 - seniority
 - e dominance
 - ranking (of the above)

- a useful partition of the conversation participants
 - role
 - influence
 - seniority
 - dominance
 - ranking (of the above)

- for all time,
 - the class of participant k: g |k| ∈ U ≡ {L₁,···, L_N}
 K participant groups g ∈ U ≡ h(G)

- a useful partition of the conversation participants
 - role
 - influence
 - seniority
 - dominance
 - ranking (of the above)

for all time

• the class of participant $k: \mathbf{g}[k] \in \mathcal{C} \equiv \{C_1, \dots, C_N\}$ • K-participant group: $\mathbf{g} \in \mathbb{C} \equiv h(\mathcal{C})$

- a useful partition of the conversation participants
 - role
 - influence
 - seniority
 - dominance
 - ranking (of the above)

- for all time,
 - the class of participant k: $\mathbf{g}[k] \in \mathcal{C} \equiv \{C_1, \cdots, C_N\}$
 - *K*-participant group: $\mathbf{g} \in \mathbb{C} \equiv h(\mathcal{C})$

- a useful partition of the conversation participants
 - role
 - influence
 - seniority
 - dominance
 - ranking (of the above)

- for all time,
 - the class of participant k: $\mathbf{g}[k] \in \mathcal{C} \equiv \{C_1, \cdots, C_N\}$
 - *K*-participant group: $\mathbf{g} \in \mathbb{C} \equiv h(\mathcal{C})$

- \bigcirc given a **sequence** of T K-participant states \mathbf{q}_t
- compute & model features F
- \bigcirc infer required equivalence classes $\mathbf{g}[k]$ of each participant

- \bullet given a **sequence** of T K-participant states \mathbf{q}_t
- compute & model features F
- \odot infer required equivalence classes g[k] of each participant

- \odot given a **sequence** of T K-participant states \mathbf{q}_t
- 2 compute & model features F
- \odot infer required equivalence classes $\mathbf{g}[k]$ of each participant

- \odot given a **sequence** of T K-participant states \mathbf{q}_t
- 2 compute & model features F
- \odot infer required equivalence classes $\mathbf{g}[k]$ of each participant

Outline of Talk

- 0. ... Intro (Motivation & Related Work)
- 1. Computational Framework
- 2. Experiments
- 3. Conclusions

- having observed a conversation/meeting, being able to say something about the participants is a basic competence in conversation understanding
- lots of research in psycho- and socio-linguistics, 1950-

```
    conversion analysis
    small group research
    mon-verbal interaction
```

 findings suggest that a participant's talkspurt deployment timing is conditioned on

- having observed a conversation/meeting, being able to say something about the participants is a basic competence in conversation understanding
- lots of research in psycho- and socio-linguistics, 1950-

 findings suggest that a participant's talkspurt deployment timing is conditioned on

- having observed a conversation/meeting, being able to say something about the participants is a basic competence in conversation understanding
- lots of research in psycho- and socio-linguistics, 1950-
 - converation analysis
 - small group research
 - non-verbal interaction
- findings suggest that a participant's talkspurt deployment timing is conditioned on

- having observed a conversation/meeting, being able to say something about the participants is a basic competence in conversation understanding
- lots of research in psycho- and socio-linguistics, 1950-
 - converation analysis
 - small group research
 - non-verbal interaction
- findings suggest that a participant's talkspurt deployment timing is conditioned on

- having observed a conversation/meeting, being able to say something about the participants is a basic competence in conversation understanding
- lots of research in psycho- and socio-linguistics, 1950
 - converation analysis
 - small group research
 - non-verbal interaction
- findings suggest that a participant's talkspurt deployment timing is conditioned on

- having observed a conversation/meeting, being able to say something about the participants is a basic competence in conversation understanding
- lots of research in psycho- and socio-linguistics, 1950-
 - converation analysis
 - small group research
 - non-verbal interaction
- findings suggest that a participant's talkspurt deployment timing is conditioned on

- having observed a conversation/meeting, being able to say something about the participants is a basic competence in conversation understanding
- lots of research in psycho- and socio-linguistics, 1950-
 - converation analysis
 - small group research
 - non-verbal interaction
- findings suggest that a participant's talkspurt deployment timing is conditioned on
 - instrumental status characteristics, e.g. task-specific skills
 - "diffuse status characteristics", e.g. gender, age, race, etc.

- having observed a conversation/meeting, being able to say something about the participants is a basic competence in conversation understanding
- lots of research in psycho- and socio-linguistics, 1950-
 - converation analysis
 - small group research
 - non-verbal interaction
- findings suggest that a participant's talkspurt deployment timing is conditioned on
 - instrumental status characteristics, e.g. task-specific skills
 - "diffuse status characteristics", e.g. gender, age, race, etc.

- static characterization of meeting participants
 - dominance rankings: Rienks & Heylen, 2005
 - influence rankings: Rienks et al., 2006
- static characterization of radio talk show participants
 - roles: Vinciarelli, 2007
- dynamic characterization of meeting participants
 - roles: Banerjee & Rudnicky, 2004
 - roles: Zancanaro et al., 2006
 - roles: Rienks et al., 2006
- static characterization of conversations
 - meeting types: Laskowski et al., 2007

- static characterization of meeting participants
 - dominance rankings: Rienks & Heylen, 2005
 - influence rankings: Rienks et al., 2006
- static characterization of radio talk show participants
 - roles: Vinciarelli, 2007
- dynamic characterization of meeting participants
 - roles: Banerjee & Rudnicky, 2004
 - roles: Zancanaro et al., 2006
 - roles: Rienks et al., 2006
- static characterization of conversations
 - meeting types: Laskowski et al., 2007

- static characterization of meeting participants
 - dominance rankings: Rienks & Heylen, 2005
 - influence rankings: Rienks et al., 2006
- static characterization of radio talk show participants
 - roles: Vinciarelli, 2007
- dynamic characterization of meeting participants
 - roles: Banerjee & Rudnicky, 2004
 - roles: Zancanaro et al., 2006
 - roles: Rienks et al., 2006
- static characterization of conversations
 - meeting types: Laskowski et al., 2007

- static characterization of meeting participants
 - dominance rankings: Rienks & Heylen, 2005
 - influence rankings: Rienks et al., 2006
- static characterization of radio talk show participants
 - roles: Vinciarelli, 2007
- dynamic characterization of meeting participants
 - roles: Banerjee & Rudnicky, 2004
 - roles: Zancanaro et al., 2006
 - roles: Rienks et al., 2006
- static characterization of conversations
 - meeting types: Laskowski et al., 2007

Detecting Participant Types Independently

- cannot model interaction with specific other types
 - feature space with non-specific others may be non-convex
- 2 may require recombination heuristics
 - \geq 2 participants may be assigned a unique type

- cannot model interaction with specific other types
 - feature space with non-specific others may be non-convex
- 2 may require recombination heuristics
 - ≥2 participants may be assigned a unique type

- cannot model interaction with specific other types
 - feature space with non-specific others may be non-convex
- 2 may require recombination heuristics
 - ≥2 participants may be assigned a unique type

- cannot model interaction with specific other types
 - feature space with non-specific others may be non-convex
- 2 may require recombination heuristics
 - ≥2 participants may be assigned a unique type

- cannot model interaction with specific other types
 - feature space with non-specific others may be non-convex
- 2 may require recombination heuristics
 - ≥2 participants may be assigned a unique type

Problems:

- cannot model interaction with specific other types
 - feature space with non-specific others may be non-convex
- 2 may require recombination heuristics
 - ≥2 participants may be assigned a unique type

Problems:

- cannot model interaction with **specific** other types
 - feature space with non-specific others may be non-convex
- 2 may require recombination heuristics
 - ≥2 participants may be assigned a unique type

Problems:

- cannot model interaction with **specific** other types
 - feature space with non-specific others may be non-convex
- may require recombination heuristics
 - ≥2 participants may be assigned a unique type

Problems:

- cannot model interaction with **specific** other types
 - feature space with non-specific others may be non-convex
- may require recombination heuristics
 - \bullet \geq 2 participants may be assigned a unique type

Solution: model participants jointly

- F describes interaction between all K participants
- 2 the most likely **group** assignment \mathbf{g}^* is identified by enumerating over all possible group assignments $\mathbf{g} \in h(\mathcal{C})$

$$\mathbf{g}^* = \underset{\mathbf{g} \in h(\mathcal{C})}{\operatorname{arg max}} P(\mathbf{g}|\mathbf{F})$$

$$= \underset{\mathbf{g} \in h(\mathcal{C})}{\operatorname{arg max}} \underbrace{P(\mathbf{g})}_{MM} \underbrace{P(\mathbf{F}|\mathbf{g})}_{BM}$$

- F describes interaction between all K participants
- 2 the most likely **group** assignment \mathbf{g}^* is identified by enumerating over all possible group assignments $\mathbf{g} \in h(\mathcal{C})$

$$\mathbf{g}^{*} = \underset{\mathbf{g} \in h(\mathcal{C})}{\operatorname{arg max}} P(\mathbf{g}|\mathbf{F})$$

$$= \underset{\mathbf{g} \in h(\mathcal{C})}{\operatorname{arg max}} \underbrace{P(\mathbf{g})}_{MM} \underbrace{P(\mathbf{F}|\mathbf{g})}_{BM}$$

- lacktriangle **F** describes interaction between **all** K participants
- ② the most likely **group** assignment \mathbf{g}^* is identified by enumerating over all possible group assignments $\mathbf{g} \in h(\mathcal{C})$

$$\mathbf{g}^{*} = \underset{\mathbf{g} \in h(\mathcal{C})}{\arg \max} P(\mathbf{g} | \mathbf{F})$$

$$= \underset{\mathbf{g} \in h(\mathcal{C})}{\arg \max} \underbrace{P(\mathbf{g})}_{MM} \underbrace{P(\mathbf{F} | \mathbf{g})}_{BM}$$

- lacktriangle **F** describes interaction between **all** K participants
- ② the most likely **group** assignment \mathbf{g}^* is identified by enumerating over all possible group assignments $\mathbf{g} \in h(\mathcal{C})$

$$\mathbf{g}^{*} = \underset{\mathbf{g} \in h(\mathcal{C})}{\arg \max} P(\mathbf{g} | \mathbf{F})$$

$$= \underset{\mathbf{g} \in h(\mathcal{C})}{\arg \max} \underbrace{P(\mathbf{g})}_{MM} \underbrace{P(\mathbf{F} | \mathbf{g})}_{BM}$$

- lacktriangle **F** describes interaction between **all** K participants
- ② the most likely **group** assignment \mathbf{g}^* is identified by enumerating over all possible group assignments $\mathbf{g} \in h(\mathcal{C})$

$$\mathbf{g}^{*} = \underset{\mathbf{g} \in h(\mathcal{C})}{\arg \max} P(\mathbf{g} | \mathbf{F})$$

$$= \underset{\mathbf{g} \in h(\mathcal{C})}{\arg \max} \underbrace{P(\mathbf{g})}_{MM} \underbrace{P(\mathbf{F} | \mathbf{g})}_{BM}$$

- lacktriangle **F** describes interaction between **all** K participants
- ② the most likely **group** assignment \mathbf{g}^* is identified by enumerating over all possible group assignments $\mathbf{g} \in h(\mathcal{C})$

$$\mathbf{g}^{*} = \underset{\mathbf{g} \in h(\mathcal{C})}{\arg \max} P(\mathbf{g} | \mathbf{F})$$

$$= \underset{\mathbf{g} \in h(\mathcal{C})}{\arg \max} \underbrace{P(\mathbf{g})}_{MM} \underbrace{P(\mathbf{F} | \mathbf{g})}_{BM}$$

- lacktriangle **F** describes interaction between **all** K participants
- ② the most likely **group** assignment \mathbf{g}^* is identified by enumerating over all possible group assignments $\mathbf{g} \in h(\mathcal{C})$

$$\mathbf{g}^{*} = \underset{\mathbf{g} \in h(\mathcal{C})}{\arg \max} P(\mathbf{g} | \mathbf{F})$$

$$= \underset{\mathbf{g} \in h(\mathcal{C})}{\arg \max} \underbrace{P(\mathbf{g})}_{MM} \underbrace{P(\mathbf{F} | \mathbf{g})}_{BM}$$

What is h(C)?

That depends on what $\mathcal C$ is...

- each of K types assigned to exactly one participant
- h(C) is a permutation space
- |h(C)| = K!

- each participant can be one of any N types
- h(C) is a Cartesian product
- $|h(\mathcal{C})| = N^K$

Unique Types

- each of K types assigned to exactly one participant
- h(C) is a permutation space
- |h(C)| = K!

- each participant can be one of any N types
- h(C) is a Cartesian product
- $\bullet |h(\mathcal{C})| = N^K$

Unique Types

$$\mathcal{C} = \{C_1, C_2, \cdots, C_K\}$$

- each of K types assigned to exactly one participant
- h(C) is a permutation space
- |h(C)| = K!

- each participant can be one of any N types
- h(C) is a Cartesian product
- $\bullet |h(\mathcal{C})| = N^K$

Unique Types

$$\mathcal{C} = \{C_1, C_2, \cdots, C_K\}$$

- each of K types assigned to exactly one participant
- h(C) is a permutation space
- |h(C)| = K!

- each participant can be one of any N types
- h(C) is a Cartesian product
- $\bullet |h(\mathcal{C})| = N^K$

Unique Types

$$\mathcal{C} = \{C_1, C_2, \cdots, C_K\}$$

- each of K types assigned to exactly one participant
- h(C) is a permutation space
- |h(C)| = K!

- each participant can be one of any N types
- h(C) is a Cartesian product
- $\bullet |h(\mathcal{C})| = N^K$

Unique Types

$$\mathcal{C} = \{C_1, C_2, \cdots, C_K\}$$

- each of K types assigned to exactly one participant
- h(C) is a permutation space
- $|h(\mathcal{C})| = K!$

- each participant can be one of any N types
- h(C) is a Cartesian product
- $\bullet |h(\mathcal{C})| = N^K$

Unique Types

$$\mathcal{C} = \{C_1, C_2, \cdots, C_K\}$$

- each of K types assigned to exactly one participant
- h(C) is a permutation space
- $|h(\mathcal{C})| = K!$

$$\mathcal{C} = \{C_1, C_2, \cdots, C_N\}$$

- each participant can be one of any N types
- h(C) is a Cartesian product
- $|h(\mathcal{C})| = N^K$

Unique Types

$$\mathcal{C} = \{C_1, C_2, \cdots, C_K\}$$

- each of K types assigned to exactly one participant
- h(C) is a permutation space
- $|h(\mathcal{C})| = K!$

$$\mathcal{C} = \{C_1, C_2, \cdots, C_N\}$$

- each participant can be one of any N types
- h(C) is a Cartesian product

$$\bullet |h(\mathcal{C})| = N^K$$

Unique Types

$$\mathcal{C} = \{C_1, C_2, \cdots, C_K\}$$

- each of K types assigned to exactly one participant
- h(C) is a permutation space
- $|h(\mathcal{C})| = K!$

$$\mathcal{C} = \{C_1, C_2, \cdots, C_N\}$$

- each participant can be one of any N types
- h(C) is a Cartesian product

$$\bullet |h(\mathcal{C})| = N^K$$

Unique Types

$$\mathcal{C} = \{C_1, C_2, \cdots, C_K\}$$

- each of K types assigned to exactly one participant
- h(C) is a permutation space
- $|h(\mathcal{C})| = K!$

$$\mathcal{C} = \{C_1, C_2, \cdots, C_N\}$$

- each participant can be one of any N types
- h(C) is a Cartesian product

$$\bullet |h(\mathcal{C})| = N^K$$

- Unique Roles, $C = \mathcal{R}$
- AMI Meeting Corpus
 - design scenario
 - train: 98 meetings
 - dev: 20 meetings
 - eval: 20 meetings
 - K = 4, always
- $\mathcal{R} = \{PM, ME, UI, ID\}$

- ullet Seniority Levels. $\mathcal{C}=\mathcal{S}$
- ICSI Meeting Corpus
 - naturally occurring
 - 3 meeting types
 - (Bed,Bmr,Bro)
 - train: 33 meetings
 - dev: 18 meetings
 - eval: 16 meetings
 - 3≥K≥9
- $S = \{GRAD, PHD, PROF\}$

Unique Types

- Unique Roles, C = T
- AMI Meeting Corpus
 - design scenario
 - train: 98 meetings
 - dev: 20 meetings
 - eval: 20 meetings
 - K = 4, always
- $\mathcal{R} = \{PM, ME, UI, ID\}$

- Seniority Levels, C = S
- ICSI Meeting Corpus
 - naturally occurring
 - 3 meeting types
 - train: 33 meetings
 - dev: 18 meetings
 - eval: 16 meetings
 - 3≥K≥9
- $S = \{GRAD, PHD, PROF\}$

Unique Types

- Unique Roles, C = R
- AMI Meeting Corpus
 - design scenario
 - train: 98 meetings
 - dev: 20 meetings
 - eval: 20 meetings
 - K = 4, always
- $\mathcal{R} = \{\mathsf{PM}, \mathsf{ME}, \mathsf{UI}, \mathsf{ID}\}$

- Seniority Levels, C = S
- ICSI Meeting Corpus
 - naturally occurring
 - 3 meeting types
 - train: 33 meeting:
 - dev: 18 meetings
 - eval: 16 meetings
 - 3≥K≥9
- $S = \{GRAD, PHD, PROF\}$

Unique Types

- Unique Roles, C = R
- AMI Meeting Corpus
 - design scenario
 - train: 98 meetings
 - dev: 20 meetings
 - eval: 20 meetings
 - K = 4, always
- $\mathcal{R} = \{\mathsf{PM}, \mathsf{ME}, \mathsf{UI}, \mathsf{ID}\}$

- ullet Seniority Levels, $\mathcal{C} = \mathcal{S}$
- ICSI Meeting Corpus
 - naturally occurring
 - 3 meeting types
 - a train: 33 mooting
 - a day: 19 mastings
 - eval: 16 meetings
 - 3>K>9
- $S = \{GRAD, PHD, PROF\}$

Unique Types

- Unique Roles, C = R
- AMI Meeting Corpus
 - design scenario
 - train: 98 meetings
 - dev: 20 meetings
 - eval: 20 meetings
 - K = 4, always
- $\mathcal{R} = \{\mathsf{PM}, \mathsf{ME}, \mathsf{UI}, \mathsf{ID}\}$

- Seniority Levels, C = S
- ICSI Meeting Corpus
 - naturally occurring
 - 3 meeting type: (Bed.Bmr.Bro)
 - train: 33 meetings
 - dev: 18 meetings
 - eval: 16 meetings
 - 3≥K≥9
- $S = \{GRAD, PHD, PROF\}$

Unique Types

- Unique Roles, C = R
- AMI Meeting Corpus
 - design scenario
 - train: 98 meetings
 - dev: 20 meetings
 - eval: 20 meetings
 - K = 4, always
- $\mathcal{R} = \{\mathsf{PM}, \mathsf{ME}, \mathsf{UI}, \mathsf{ID}\}$

- Seniority Levels, C = S
- ICSI Meeting Corpus
 - naturally occurring
 - 3 meeting type: (Bed.Bmr.Bro)
 - train: 33 meetings
 - dev: 18 meetings
 - eval: 16 meetings
 - 3≥*K*≥9
- $S = \{GRAD, PHD, PROF\}$

Unique Types

- Unique Roles, C = R
- AMI Meeting Corpus
 - design scenario
 - train: 98 meetings
 - dev: 20 meetings
 - eval: 20 meetings
 - K = 4, always
- $\mathcal{R} = \{\mathsf{PM}, \mathsf{ME}, \mathsf{UI}, \mathsf{ID}\}$

- ullet Seniority Levels, $\mathcal{C}=\mathcal{S}$
- ICSI Meeting Corpus
 - naturally occurring
 - 3 meeting types (Bed,Bmr,Bro)
 - train: 33 meetings
 - dev: 18 meetings
 - eval: 16 meetings
 - 3≥K≥9
- $S = \{GRAD, PHD, PROF\}$

Unique Types

- Unique Roles, C = R
- AMI Meeting Corpus
 - design scenario
 - train: 98 meetings
 - dev: 20 meetings
 - eval: 20 meetings
 - K = 4, always
- $\mathcal{R} = \{\mathsf{PM}, \mathsf{ME}, \mathsf{UI}, \mathsf{ID}\}$

- Seniority Levels, C = S
- ICSI Meeting Corpus
 - naturally occurring
 - 3 meeting types (Bed,Bmr,Bro)
 - train: 33 meetings
 - dev: 18 meetings
 - eval: 16 meetings
 - 3≥K≥9
- $S = \{GRAD, PHD, PROF\}$

Feature Types in **F**

- probability of vocalizing (V)
- probability of initiating vocalization (VI) in prior silence
- probability of continuing vocalization (VC) in prior non-overlap
- probability of initiating overlap (OI) in prior non-overlap
- probability of continuing overlap (OC) in prior overlap

Feature Types in **F**

- probability of vocalizing (V)
- probability of initiating vocalization (VI) in prior silence
- probability of continuing vocalization (VC) in prior non-overlap
- probability of initiating overlap (OI) in prior non-overlap
- probability of continuing overlap (OC) in prior overlap

Feature Types in **F**

- probability of vocalizing (V)
- probability of initiating vocalization (VI) in prior silence
- oprobability of continuing vocalization (VC) in prior non-overlap
- oprobability of initiating overlap (OI) in prior non-overlap
- probability of continuing overlap (OC) in prior overlap

Feature Types in **F**

- probability of vocalizing (V)
- probability of initiating vocalization (VI) in prior silence
- probability of continuing vocalization (VC) in prior non-overlap
- oprobability of initiating overlap (OI) in prior non-overlap
- oprobability of continuing overlap (OC) in prior overlap

Feature Types in **F**

- probability of vocalizing (V)
- probability of initiating vocalization (VI) in prior silence
- probability of continuing vocalization (VC) in prior non-overlap
- probability of initiating overlap (OI) in prior non-overlap
- oprobability of continuing overlap (OC) in prior overlap

Feature Types in **F**

- probability of vocalizing (V)
- probability of initiating vocalization (VI) in prior silence
- probability of continuing vocalization (VC) in prior non-overlap
- probability of initiating overlap (OI) in prior non-overlap
- probability of continuing overlap (OC) in prior overlap

Models

Introduction

$$P(\mathbf{F}|\mathbf{g}) = \prod_{k=1}^{N} P\left(f_{k}^{V} \mid \theta_{\mathbf{g}[k]}^{V}\right) P\left(f_{k}^{VI} \mid \theta_{\mathbf{g}[k]}^{VI}\right) P\left(f_{k}^{VC} \mid \theta_{\mathbf{g}[k]}^{VC}\right)$$

$$\times \prod_{j \neq k}^{K} P\left(f_{k,j}^{OI} \mid \theta_{\mathbf{g}[k],\mathbf{g}[j]}^{OI}\right) P\left(f_{k,j}^{OC} \mid \theta_{\mathbf{g}[k],\mathbf{g}[j]}^{OC}\right)$$

$$P(\mathbf{g}) = \frac{1}{Z_{\mathbf{g}}} \prod_{k=1}^{K} P(\mathbf{g}[k])$$

Models

ullet behavior model (BM), where heta is a 1-dimensional Gaussian

$$P(\mathbf{F}|\mathbf{g}) = \prod_{k=1}^{K} P\left(f_{k}^{V} | \theta_{\mathbf{g}[k]}^{V}\right) P\left(f_{k}^{VI} | \theta_{\mathbf{g}[k]}^{VI}\right) P\left(f_{k}^{VC} | \theta_{\mathbf{g}[k]}^{VC}\right)$$

$$\times \prod_{j \neq k}^{K} P\left(f_{k,j}^{OI} | \theta_{\mathbf{g}[k],\mathbf{g}[j]}^{OI}\right) P\left(f_{k,j}^{OC} | \theta_{\mathbf{g}[k],\mathbf{g}[j]}^{OC}\right)$$

membership model (MM)

$$P(\mathbf{g}) = \frac{1}{Z_{\mathbf{g}}} \prod_{k=1}^{K} P(\mathbf{g}[k])$$

Models

• behavior model (BM), where θ is a 1-dimensional Gaussian

$$P(\mathbf{F}|\mathbf{g}) = \prod_{k=1}^{K} P\left(f_{k}^{V} | \theta_{\mathbf{g}[k]}^{V}\right) P\left(f_{k}^{VI} | \theta_{\mathbf{g}[k]}^{VI}\right) P\left(f_{k}^{VC} | \theta_{\mathbf{g}[k]}^{VC}\right)$$

$$\times \prod_{j \neq k}^{K} P\left(f_{k,j}^{OI} | \theta_{\mathbf{g}[k],\mathbf{g}[j]}^{OI}\right) P\left(f_{k,j}^{OC} | \theta_{\mathbf{g}[k],\mathbf{g}[j]}^{OC}\right)$$

membership model (MM)

$$P(\mathbf{g}) = \frac{1}{Z_{\mathbf{g}}} \prod_{k=1}^{K} P(\mathbf{g}[k])$$

Unique Role \mathcal{R} Classification

Feature	AMI
Type	\mathcal{R}
f_k^V	44
f_k^V f_k^{VI}	*41
f_k^{NC}	34
$f_{k,i}^{OI}$	*53
$f_{k,j}^{\ \mathcal{OC}}$	_
best*	53
all	46
priors	25

Aside: Looking for the Leader

• find one unique role only, $\mathbf{g}[k] \in \mathcal{L} = \{L \equiv \mathsf{PM}, \neg L\}$

Leader \mathcal{L} Detection

Introduction

Feature	AMI		
Type	\mathcal{R}	\mathcal{L}	
f_k^V	44		
f,VI	*41	*60	
f_k^{VC}	34	_	
$f_{k,i}^{OI}$	*53	*60	
f ^{OI} f ^{OC} f _{k,j}	_		
best*	53	60	
all	46	75	
priors	25	25	

Seniority Level Feature Distributions

Seniority Level ${\cal S}$ Classification

Feature	ΙA	ICSI	
Type	\mathcal{R}	\mathcal{L}	\mathcal{S}
f_k^V	44	_	*52
f_k^{VI}	*41	*60	52
f_k^{VI} f_k^{VC}	34	_	_
$f_{k,j}^{OI}$ f_{li}^{OC}	*53	*60	*59
$f_{k,j}^{OC}$	_	_	*59
best*	53	60	61
all	46	75	58
priors	25	25	45

Conversation-Type-Dependent ${\mathcal S}$ Classification

• condition models on automatically inferred meeting type

Feature	AMI		ICSI	
Type	\mathcal{R}	\mathcal{L}	\mathcal{S}	$\mathcal{S} t^*$
f_k^V	44	_	*52	*57
f_k^{VI}	*41	*60	52	56
f_k^{VC}	34	_	_	62
$f_{k,i}^{OI}$	*53	*60	*59	*59
$f_{k,j}^{OC}$	_	_	*59	*63
best*	53	60	61	67
all	46	75	58	57
priors	25	25	45	45

- ullet assigned unique roles ${\cal R}$ in the AMI corpus
 - 53% accuracy, 37% rel error reduction over baseline
 - improves to 75%, when only manager (PM) is sought
 - best features: initiation of talkspurts in silence and in overlap
- seniority level S in the ICSI corpus

- ullet assigned unique roles ${\cal R}$ in the AMI corpus
 - 53% accuracy, 37% rel error reduction over baseline
 - improves to 75%, when only manager (PM) is sought
 - best features: initiation of talkspurts in silence and in overlap
- seniority level S in the ICSI corpus

- ullet assigned unique roles ${\cal R}$ in the AMI corpus
 - 53% accuracy, 37% rel error reduction over baseline
 - improves to 75%, when only manager (PM) is sought
 - best features: initiation of talkspurts in silence and in overlap
- seniority level S in the ICSI corpus

- ullet assigned unique roles ${\cal R}$ in the AMI corpus
 - 53% accuracy, 37% rel error reduction over baseline
 - improves to 75%, when only manager (PM) is sought
 - best features: initiation of talkspurts in silence and in overlap
- ullet seniority level ${\cal S}$ in the ICSI corpus
 - 61% accuracy, 29% rel error reduction over baseline
 - improves to 67%, with conditioning on inferred meeting type
 - improves to 73%, with conditioning on true meeting type
 - best features: overal talkspurt production, initiation and continuation of talkspurts in overlap

- ullet assigned unique roles ${\cal R}$ in the AMI corpus
 - 53% accuracy, 37% rel error reduction over baseline
 - improves to 75%, when only manager (PM) is sought
 - best features: initiation of talkspurts in silence and in overlap
- ullet seniority level ${\cal S}$ in the ICSI corpus
 - 61% accuracy, 29% rel error reduction over baseline
 - improves to 67%, with conditioning on inferred meeting type
 - improves to 73%, with conditioning on true meeting type
 - best features: overal talkspurt production, initiation and continuation of talkspurts in overlap

- ullet assigned unique roles ${\cal R}$ in the AMI corpus
 - 53% accuracy, 37% rel error reduction over baseline
 - improves to 75%, when only manager (PM) is sought
 - best features: initiation of talkspurts in silence and in overlap
- ullet seniority level ${\cal S}$ in the ICSI corpus
 - 61% accuracy, 29% rel error reduction over baseline
 - improves to 67%, with conditioning on inferred meeting type
 - improves to 73%, with conditioning on true meeting type
 - best features: overal talkspurt production, initiation and continuation of talkspurts in overlap

- ullet assigned unique roles ${\cal R}$ in the AMI corpus
 - 53% accuracy, 37% rel error reduction over baseline
 - improves to 75%, when only manager (PM) is sought
 - best features: initiation of talkspurts in silence and in overlap
- ullet seniority level ${\cal S}$ in the ICSI corpus
 - 61% accuracy, 29% rel error reduction over baseline
 - \bullet improves to 67%, with conditioning on inferred meeting type
 - improves to 73%, with conditioning on true meeting type
 - best features: overal talkspurt production, initiation and continuation of talkspurts in overlap

Introduction

- Participant Characterization
 A talkspurt deployment timing is predictive
 A first baseline for several of the explored tasks
 A several process of the explored tasks
 A several pro
- ② Dialogue Systems

Speech Activity Detection

- Participant Characterization
 - talkspurt deployment timing is predictive
 - first baseline for several of the explored tasks
 - proposed framework allows for inclusion of potentially complementary information, to prosodic/lexical/semantic features
- Dialogue Systems

Speech Activity Detection

- Participant Characterization
 - talkspurt deployment timing is predictive
 - first baseline for several of the explored tasks
 - proposed framework allows for inclusion of potentially complementary information, to prosodic/lexical/semantic features
- Dialogue Systems
 agent talkspurt deployment may contribute to agent
 personality
- Speech Activity Detection

- Participant Characterization
 - talkspurt deployment timing is predictive
 - first baseline for several of the explored tasks
 - proposed framework allows for inclusion of potentially complementary information, to prosodic/lexical/semantic features
- ② Dialogue Systems
- Speech Activity Detection

Participant Characterization

- talkspurt deployment timing is predictive
- first baseline for several of the explored tasks
- proposed framework allows for inclusion of potentially complementary information, to prosodic/lexical/semantic features

Oialogue Systems

- agent talkspurt deployment may contribute to agent personality
- Speech Activity Detection

Participant Characterization

- talkspurt deployment timing is predictive
- first baseline for several of the explored tasks
- proposed framework allows for inclusion of potentially complementary information, to prosodic/lexical/semantic features

② Dialogue Systems

agent talkspurt deployment may contribute to agent personality

3 Speech Activity Detection

- performance likely to improve with conditioning on participant characteristics
- or joint inference of SAD and participant characteristics

Participant Characterization

- talkspurt deployment timing is predictive
- first baseline for several of the explored tasks
- proposed framework allows for inclusion of potentially complementary information, to prosodic/lexical/semantic features

② Dialogue Systems

agent talkspurt deployment may contribute to agent personality

3 Speech Activity Detection

- performance likely to improve with conditioning on participant characteristics
- or joint inference of SAD and participant characteristics

Thank you for attending.

Many thanks also to:

Introduction

- Jean Carletta, for many helpful comments
- Liz Shriberg, for access to the ICSI MRDA Corpus

