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Abstract
Dialog act (DA) recognition is an important intermediate task
is speech understanding systems. Although past research has
demonstrated that prosody can improve the performance of rec-
ognizers relying primarily on words, how prosody fares on its
own is not well understood. The current work continues an
ongoing investigation into settings in which both words and
word boundaries are unavailable, whether for privacy, secu-
rity, speed, or availability of technology reasons. A system is
presented with long acoustic frames, which renders the model-
ing of prosodic context tractable. The system is then extended
by concatenating features computed for temporally proximate
frames, from both the target speaker and from non-target in-
terlocutors. Experiments indicate that the increased frame size
and target-speaker prosodic context improve recognition per-
formance, in particular for floor holders, accepts, and DA ter-
mination types. Non-target-speaker prosodic context is shown
to have a large positive impact on the detection of DA inter-
ruption. These results suggest that the improved framework
holds promise for the general decoding of prosodic phenomena
in spontaneous speech, independently of speech recognition.
Index Terms: prosodic features, dialog act tagging, cross-
speaker modeling, HMM modeling of prosody, meetings

1. Introduction
Dialog act (DA) recognition, or the simultaneous segmentation
and classification of conversational speech into dialog acts, is
known to be important in speech understanding systems. Ex-
amples of useful DA distinctions are those between statements,
questions, acknowledgments, and floor control mechanisms.
Although past work has focused largely on lexical information,
prosodic features have been shown to be beneficial and compli-
mentary to words, for segmentation [1, 2, 3, 5] as well as for
classification [1, 3, 4, 5, 6]. However, the computation of most
prosodic features makes some use of word information, at least
in the form of word boundaries. To the growing community of
researchers interested in privacy-sensitive settings, where words
are not available because spectral features cannot be computed
[7, 8], such systems offer only a limited starting point.

Recently, a text-independent DA recognizer, based on a hid-
den Markov model (HMM) decoder, was proposed to compare
the performance of multiparticipant speech/non-speech context
features to that of prosodic features [9]. The decoder operated
at a frame step of 100 ms, a size commensurate with the du-
rations of dialogue phenomena which are of interest here, but
for expediency relied on an acoustic feature vector which was
computed every 8 ms, using frames 32 ms in duration [10]. This

required a run-time frame-rate conversion [9].
There are several reasons why this may be suboptimal.

First, the perceptual quantities relevant to HMM-based DA
recognition may be better captured with frame-level features
computed for timespans longer than 32 ms. However, it is not
known whether the prosodic features proposed in [10], which
model intonation but avoid the direct inference of pitch, are use-
ful when computed for longer frames. Second, parity with the
decoder frame step during feature computation potentially en-
tails order-of-magnitude savings in time complexity, making it
a valid pursuit in its own right. Finally, and most importantly,
a longer feature computation frame step would render tractable
the explicit modeling of long-term prosodic interdependencies.
Of course, extending the feature computation frame step by a
factor of 12.5 also reduces by the same factor the number of fea-
ture vectors available for model training. For rarely occurring
phenomena, this may undermine the above potential benefits.

The current work addresses these concerns by explicitly
asking the following three questions:

1. Can the instantaneous feature vector of [9, 10] be ex-
tended to describe audio frames whose size is larger than
32 ms, at a frame step of 100 ms, without negative im-
pact on DA recognition performance?

2. Does feature-space combination with temporally adja-
cent features from the target participant improve DA
recognition?

3. Does feature-space combination with temporally adja-
cent features from non-target participants improve DA
recognition?

Beginning with the decoder of [9] as a baseline, described in
Section 3, experiments are presented which answer the above
questions, in Section 4. It is shown that extending the fea-
ture computation frame step and frame size of the baseline de-
coder, by redefining the feature extraction algorithm, leads to
improved DA recognition. The subsequently possible model-
ing of temporally proximate prosody from the target speaker is
shown to improve both segmentation and classification perfor-
mance. Modeling non-target-speaker prosody appears to further
improve DA segmentation, at a small cost to classification ac-
curacy. These findings suggest that the proposed framework of-
fers a promising avenue for the inference of prosodic phrasing,
whether in parallel with speech recognition or on its own.

2. Data
The data used in this work is the ICSI Meeting Corpus, con-
sisting of recordings of 75 naturally occurring meetings held by



several groups at ICSI [11, 12]. The previously published split
of this data, into a TRAINSET of 51 meetings, and a DEVSET

and a TESTSET of 11 meetings each, is retained throughout.
The corpus is provided with lexical forced alignment and

DA annotation. Three groups of DA types are of interest, the
first that of floor mechanisms including floor grabbers (fg),
floor holders (fh), and holds (h). The second group consists
of backchannels (b) and acknowledgments (bk), as well as
accepts (aa). These six types have been reported to share a
common vocabulary [12], suggesting that lexical content may
not adequately distinguish among them. All other speech im-
plements either statements (s) or questions (q), representing
propositional-content DAs. The priors of these 8 DA types by
time, for all three datasets, are in the ranges: 1.10–1.18% for
aa, 2.65–2.86% forb, 1.42–1.48% forbk, 0.55–0.63% forfg,
2.29–3.00% forfh, 0.21–0.36% forh, 6.53–6.72% forq, and
84.83–85.18% fors. DAs are terminated in three mutually ex-
clusive ways: they are completed, interrupted, or abandoned.

3. Baseline
In a word-synchronous setting, the role of a DA recognizer is
to assign to each word exactly one DA type, and to potentially
assign to each word’s end exactly one DA boundary type. When
words and word boundaries are not available, however, a differ-
ent underlying unit must be selected. In the current work, as in
[9, 13], that unit is the 100 ms frame (of speech). The role of
a frame-synchronous DA recognizer, then, is to assignto each
such frame exactly one DA type and to potentially assignto
each such frame’s end exactly one DA boundary type. For the
experiments presented here, the speech/non-speech segmenta-
tion is taken from forced-alignment-mediated human reference
transcription [12].

3.1. Topology & Transition Probabilities

Since contiguous intervals of speech, ortalkspurts, may imple-
ment a sequence of DAs, the recognizer must split talkspurts, as
well as merge them across non-speech intervals where neces-
sary. To facilitate discussion, the termtalkspurt fragment (TSF)
is used here to denote a contiguous interval of speech belonging
to exactly one talkspurt and to exactly one DA.

The HMM topology in the present work is that proposed in
[13]. Each DA type is represented by an identical subtopol-
ogy, with states modeling speech at the beginning, middle,
and end of DA-non-terminal and DA-terminal TSFs, and non-
speech both within and between DAs. Final DA-terminal TSF
states bear one of the three possible DA boundaries. DA type
subtopologies are fully connected, allowing any DA type to fol-
low any other.

The state-to-state transition probabilities are trained using
the best Viterbi forced alignment path of the annotated TRAIN-
SET. During decoding, transition probabilities are combined
with emission probabilities additively in the log domain, using
a mixing weightλ with log

2
λ ∈ {−4,−3, . . . , +7, +8}. For

each experiment,λ is tuned to maximize the meanF -score over
the 8 DA types over DEVSET, leading to a globally optimized
system subsequently referred to as “g-Opt”.

3.2. Prosodic Features

Prosodic observables are characterized by the feature vector
proposed in [10], containing correlates of loudness, voice qual-
ity, speech rate, and variation in pitch. These are the frame
energy and the first-order difference in energy, the normalized

maximum of the first peak in the auto-correlation spectrum, the
cosine distance between the Mel spectra, and between the log-
Mel spectra, of the left and right half of each frame, and the 7-
element fundamental frequency variation (FFV) spectrum rep-
resentation, respectively.

As in [9, 10], the feature vector is computed for frames
32 ms in size, at a frame step of 8 ms. The 32 ms constraint
is imposed by the current definition of the FFV spectrum, as
briefly explained here. The spectrum is a one-dimensional func-
tion of a single parameter, thefrequency dilation factor ρ, which
is expressed in octaves per second. The spectrum indicates, for
each value ofρ, the similarity between the magnitude frequency
spectrum of the left half of an audio frame and aρ-dilated ver-
sion of the magnitude frequency spectrum of the right half of
the same frame. The locationρ∗ of the maximum in the spec-
trum, for a voiced frame, indicates the instantaneous change in
fundamental frequency; rather than finding this maximum, the
entire spectrum is passed through a filterbank. The filterbank’s
7 filters include 5 filters capturing various rates of positive and
negative change in F0, plus 2 filters which serve a normalization
purpose.

3.3. Prosodic Emission Probabilities

The 12-element feature vector is modeled by first rotating it us-
ing linear discriminant analysis; the number of retained discrim-
inants is set to maximize the meanF -score on DEVSET. Each
state in the topology has its own associated emission probabil-
ity Gaussian mixture model; the number of Gaussian compo-
nents is set to optimize the same criterion, and is identical for
all states. Because the decoder runs at a frame step of 100 ms,
but the feature vectors in the baseline are computed at a frame
step of 8 ms, the emission score used during Viterbi search is
the average log-likelihood of 12.5 consecutive feature vectors.

3.4. Performance Characterization

The unavailability of words eliminates the possibility of scoring
systems using traditional, word-based metrics [1, 14]. The pri-
mary metric selected to develop the presented systems is the un-
weighted mean of the frame-levelF -scores for the 8 DA types
of interest [13]. Maximizing this metric leads to a single, “glob-
ally optimized” (“g-Opt”) system. To understand how features
affect specific DA types, “condition-optimized” (“c-Opt”) sys-
tems are constructed as in [9] by varyingλ to optimize theF -
score for specific DA types; “c-Opt” systems for other metrics,
such as the overall classification error, are selected in the same
way. In addition,F -scores are computed for specific DA termi-
nation types, as well as for “termination in general” by collaps-
ing the three different DA termination types into one. Also com-
puted is the NIST segmentation error, but this metric must be in-
terpreted with caution when comparing against existing lexical
systems. There, potential DA boundaries are entertained only at
word boundaries [1], which are unavailable to the systems in the
current work; as a result, the number of potential false alarms
is much higher here, as DA boundaries are entertained at every
speech frame.

The performance of the baseline systems is shown in
columns 3 and 4 of Table 1, along with the performance of the
HMM topology alone in column 2 (these numbers are taken
from [9]). As can be seen, the baseline offers much improved
performance over the topology-only system on all metrics, ex-
cept on theF -score for statements and the NIST segmentation
error using the “g-Opt” system. For holds and accepts, the “g-
Opt” system outperforms the two “c-Opt” systems optimized



Baseline Experiment 1 Experiment 2 Rel. Improvement
Topo 32 ms 8ms 256 ms 100 ms 256 ms 100 ms in %, Baseline
only (12.5 frames) (1 frame) (11 frames) to Experiment 2

g-Opt c-Opt g-Opt c-Opt g-Opt c-Opt g-Opt c-Opt%
% % % % % % % %, sig

DA Types
meanF 21.8 31.5 33.7 35.5 36.2 36.6 37.9 +16.2 +12.5 —

F , floor holderfh 11.3 37.7 39.5 45.2 45.2 45.8 48.2 +21.5 +22.0 **
F , holdh 0.0 25.0 17.1 25.3 20.6 21.6 21.6 −13.6 +26.3 *
F , floor grabberfg 0.0 7.2 7.2 8.2 8.2 10.1 10.1 +40.3 +40.3 *
F , backchannelb 57.1 48.0 64.6 57.5 64.4 59.9 64.2 +24.8 −0.6
F , acknowledgmentbk 3.2 19.0 20.9 25.2 25.2 25.3 25.3 +33.2 +21.1 **
F , acceptaa 2.6 9.5 8.9 17.5 17.5 21.9 22.5 +130.5 +152.8 **
F , statements 91.4 85.8 91.8 88.8 91.9 88.4 92.0 +3.0 +0.2 **
F , questionq 8.8 19.6 19.6 16.6 16.6 19.4 19.4 −1.0 −1.0

classification error 17.0 25.9 16.6 21.0 15.9 21.7 15.8 −16.2 −4.8 —

DA Termination Types
F , completed 53.1 59.1 59.1 59.9 59.9 62.7 63.8 +6.1 +8.0 **
F , interrupted 0.0 10.5 11.8 6.7 9.6 14.6 14.6 +39.1 +23.7
F , abandoned 0.0 2.4 3.6 2.4 4.3 6.1 7.0 +154.2 +94.4 **

any type,F 53.9 62.6 62.6 62.4 62.4 66.4 66.4 +6.1 +6.1 —
NIST error 64.7 66.5 63.0 66.5 63.0 66.1 58.5 −0.6 −7.0 —

Table 1: EVAL SET performance for the topology alone, the baseline systems of Section 3, the systems in Experiment 1 (Section 4.1),
the systems in Experiment 2 (Section 4.2), and the relative improvementfrom the baseline systems to the systems in Experiment 2. The
last column includes assessment of statistical significance of the difference inF score in the “c-Opt” condition, atp < 0.005, using
an approximate randomization test. “**” indicates significance when labelsare stratified using reference DA boundaries, “*” indicates
significance only for unstratified labels; rows marked with “—” were not tested.

specifically for the detection of these two DA types. This ap-
pears to be an example of overfitting to DEVSET.

4. Experiments
4.1. Increasing the Frame Step to 100 ms

In a first suite of experiments, the feature computation frame
step of 8 ms is extended to the decoder frame step of 100 ms.
To avoid missing audio, the frame size must also be increased;
experimentation with DEVSET led to a size of 256 ms. While
this presents no problem for those features which correlate with
loudness, voice quality, and speaking rate, the computation of
FFV features at this frame size requires some consideration.

In increasing the frame size along a continuum, Hann pro-
files were adopted for the outside as well as the inside edges of
the left and right window functions. Parameters governing win-
dow extent1 were simply scaled by a factor of 8; no DEVSET

improvement was observed with further perturbation. Adding
two additional filters to the filterbank, representing very quickly
decreasing and very quickly increasing fundamental frequency,
led to a small improvement in meanF -score. This yielded an
FFV feature vector of 9 coefficients, extending the complete
feature vector from 12 to 14 features.

The results for EVAL SET, unseen during these develop-
ments, are shown in columns 5 and 6 of Table 1. The single
system whose meanF -score was maximized (“g-Opt”) shows
a 4.0% absolute improvement in meanF -score over the base-
line; a smaller improvement of 2.5%abs is observed in the mean
computed over the 8 DA-specific “c-Opt” systems. These im-
provements accompany reduction in the classification error.

1Namelytsep, tint, andtext; cf. [10, 15].

The largest “c-Opt” improvements are observed for floor
holders, acknowledgments, and accepts (as well as for
backchannels for the “g-Opt” system), and the largest drop in
F -score for questions. The latter is likely due to the many dif-
ferent types of questions in meeting data, with corresponding
variability in prosodic form [6]. (Holds continue to be better
detected by the “g-Opt” system than by the “c-Opt” system op-
timized for their detection, indicating the same overfitting to
DEVSET as was observed for the baseline.) In general, it can
be concluded that, despite training data ablation, redefinition of
FFV computation does not erode overall DA recognition.

4.2. Temporally Proximate Target-Speaker Frames

In a second experimental suite, the impact of extending the fea-
ture vector for each frame with features computed from the pre-
vious 5 frames and the subsequent 5 frames is explored. This
provides a context of 1 second around the frame of interest,
where an inflection point was observed in preliminary work.
The results are shown in columns 7 and 8 of Table 1. A mean
F -score increase is observed over the results of Experiment 1
(however, in the “g-Opt” condition, the 1.1% increase inF -
score is accompanied by a 0.7% increase in classification error).
Improvements are largest in absolute terms, given both “g-Opt”
and “c-Opt” systems, for floor holders and accepts, a trend that
is also observed for DEVSET (not shown).

Columns 9 and 10 show the relative improvements of Ex-
periment 2 systems with respect to the baseline. In addition
to consistent improvements for floor holders and accepts, and
some recovery in the detection of questions, DA terminations
are better detected, for both completed and abandoned DAs.
This improvement is somewhat serendipitous, as the meanF -



score towards which system components were originally opti-
mized ignored DA terminations.

4.3. Temporally Proximate Non-Target-Speaker Frames

The third and final set of experiments explores what happens
when one includes in the feature vector of each frame not only
the target speaker’s adjacent features, but also the features from
non-target speakers. In [13], it was shown that when model-
ing non-target-speaker speech/non-speech activity for this task,
it was sufficient to include the speech/non-speech activity from
only the locally most talkative other speaker. That idea is re-
employed here, using the 1-second temporal context of refer-
ence speech/non-speech activity around each frame to identify
that non-target speaker and to include their 11 feature vectors
in the feature vector for the current frame. The features are
computed and modeled for these context frames regardless of
whether they are speech or non-speech frames. Ties when rank-
ing non-target speakers are resolved by random selection.

The results are presented in Table 2; columns 7 and 8 from
Table 1 are included for ease of comparison. As can be seen,
the meanF -score over the 8 DA types decreases when non-
target speaker features are included, by< 1.5%, but including
them appears to improve the detection of whether a DA is in-
terrupted: theF -score nearly doubles from 14.6% to 28.4%.
Although theF -scores for normally completed and abandoned
DA termination types fall slightly, this gain yields an increase in
theF -score for termination in general (“any type” in the tables)
by 1.8% in the “c-Opt” condition, as well as a a 2.5% reduction
in the “lenient” NIST boundary error.

Experiment 2 Experiment 3
g-Opt c-Opt g-Opt c-Opt

DA Types
meanF 36.6 37.9 35.8 36.4
classification error 21.7 15.8 21.4 16.1

DA Term. Types
F , completed 62.7 63.8 61.0 63.4
F , interrupted 14.6 14.6 28.4 28.4
F , abandoned 6.1 7.0 4.6 5.4
any type,F 66.4 66.4 66.9 68.2

NIST error 66.1 58.5 65.9 56.0

Table 2: EVAL SET performance for Experiments 2 and 3.

5. Conclusions
This work has described improvements to a novel frame-
synchronous HMM-based decoder of prosodic phenomena. The
modifications, which were three in number, were assessed on
the task of simultaneous segmentation and classification of
spontaneous multi-party speech into dialog acts. First, the
computation of fundamental frequency variation features was
extended to acoustic frames 256 ms in duration. This was
observed to have positive impact on overall DA recognition,
despite the entailed ablation of training material by an or-
der of magnitude. It was also argued that this modification
both reduces time complexity and facilitates the modeling of
longer prosodic context. The latter claim was explored by con-
catenating prosodic features from temporally adjacent frames,
within a 1-second context window. Such inclusion of the target
speaker’s features was shown to yield significant improvements

in DA recognition, particularly for floor holders, accepts, and
DA boundaries. Inclusion of features from the locally most-
talkative non-target speaker was shown to be slightly deleteri-
ous for classification of DA type, but to improve the detection of
interrupted statements and questions. These results are encour-
aging, and recommend further development of DA recognizers
which are both text-independent, relying on no word or word
boundary information, and privacy-sensitive, making use of no
features from which speaker identity can be inferred. The pro-
posed framework offers broad scope for that development, in
both offline and online applications.
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