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Abstract. Laughter is a key element of human-human interaction, oc-
curring surprisingly frequently in multi-party conversation. In meetings,
laughter accounts for almost 10% of vocalization effort by time, and is
known to be relevant for topic segmentation and the automatic charac-
terization of affect. We present a system for the detection of laughter,
and its attribution to specific participants, which relies on simultane-
ously decoding the vocal activity of all participants given multi-channel
recordings. The proposed framework allows us to disambiguate laughter
and speech not only acoustically, but also by constraining the number of
simultaneous speakers and the number of simultaneous laughers indepen-
dently, since participants tend to take turns speaking but laugh together.
We present experiments on 57 hours of meeting data, containing almost
11000 unique instances of laughter.

1 Introduction

Laughter is a key element of human-human interaction, occurring surprisingly
frequently in multi-party conversation. In meetings, laughter accounts for almost
10% of vocalization effort by time [1]. It has been identified as potentially relevant
to discourse segmentation [2], to inference of humorous intent and detection of
interlocutor-specific emotional expression [3], and to classification of perceived
emotional valence [4]; several of these tasks call for not only the detection of
laughter, but also its correct attribution to specific participants. Laughter is
known to lead to the temporary abandonment of turn-taking policy, making its
detection relevant in topic change detection [5], important for meeting browsing
[6], and potentially instrumental to the identification of conversational hotspots,
of which an overwhelming majority is associated with amusement [7].

Laughter detection in meetings has received some attention, beginning with
[2] in which farfield group laughter was detected automatically, but not at-
tributed to specific participants. Subsequent research has focused on laugh-
ter/speech classification [8, 9] and laughter/non-laughter segmentation [10, 11].
However, in both cases, only a subset of all laughter instances, those not oc-
curring in the temporal proximity of the laugher’s speech, was considered. Fur-
thermore, in segmentation work, some form of pre-segmentation was assumed
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to have eliminated long stretches of channel inactivity [10, 11]. These measures
have led to significantly higher recall and precision rates than would be obtained
by a fully automatic segmenter with no a priori channel activity knowledge.

The aim of the current paper is to provide a first fully automatic baseline
system for the detection and participant attribution of laughter as it occurs
naturally in multiparticipant conversation. While in single-participant recordings
laughter can be detected using a speech recognizer augmented with laughter
models, in multiparticipant contexts audio must first be segmented and crosstalk
from background participants to each channel suppressed. The latter represents a
significant challenge for vocal activity detectors in meetings [12]. In constructing
the proposed baseline system, we rely on several contrastive aspects of laughter
and speech, including acoustics, duration, and the degree of vocalization overlap.

This work begins with a description of the meeting data used in our exper-
iments (Section 2), which was selected to be exactly the same as in previous
work [2, 10, 8, 9, 11]. However, our aim is to detect all laughter-in-interaction,
including laughter which is interspersed among lexical items produced by each
participant. We describe our multiparticipant vocal activity model in Section 3
and quantify the performance of its implementation in Section 4. Contrastive ex-
periments are presented in Section 5, leading to a discussion of various aspects
of the proposed task. Finally, we compare our findings and observations with
those of other authors in Section 6, before concluding in Section 7.

2 Data

As in other work on laughter in naturally occurring meetings [2, 10, 8, 9, 11], we
use the ICSI Meeting Corpus [13]. 67 of the 75 meetings in the corpus are of one
of three types, Bed, Bmr, and Bro, representing longitudinal recordings of three
groups at ICSI. The total number of distinct participants in these three subsets
is 23; there are 3 participants who attend both Bmr and Bro meetings, and only
1 participant who attends both Bmr and Bed meetings. Importantly, none of the
meeting types have a fixed number of participants per meeting, allowing us to
demonstrate the applicability of our methods to arbitrary group sizes.

We rely on two reference segmentations of the ICSI corpus, one for speech
and one for laughter. The speech segmentation was constructed using the word
start and end times from automatic forced alignment, available in the ICSI
MRDA Corpus [14]. Inter-word gaps shorter than 0.3 s have been bridged to
yield talkspurts [15], consisting of one or more words (and/or word fragments);
this process, as well as the 0.3 s threshold, has been used extensively in NIST
Rich Transcription Meeting Recognition evaluations [16]. The corresponding seg-
mentation of laugh bouts [17] has recently been built for this data [1, 18] using
the available mark-up in the orthographic transcription and a combination of
automatic and manual alignment methods. Intervals during which a participant
both laughs and speaks (a phenomenon referred to as “speech-laughs” [19]) have
been mapped to speech only, such that the categories of silence N , speech S,
and laughter L are mutually exclusive.
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The majority of experiments we present are performed using one type of
meeting in the corpus, the Bmr meetings. In [2, 8, 9, 11, 10], the first 26 Bmr meet-
ings were designated as training data, and the last 3 held out for testing. We
retain that division in the current work.

3 Multiparticipant 3-state Vocal Activity Recognition

3.1 Model Topology

Detection in the proposed system consists of Viterbi decoding in a hidden Markov
model (HMM) state space which simultaneously describes the state of all K
participants to a particular conversation C. Each participant k, 1≤k≤K, can
occupy one of three acoustically distinct (AD) states: speech S, laughter L,
and non-vocalization N ; where convenient, we will also refer to vocalization
V ≡ ¬N ≡ S ∪L. Furthermore, each AD state is implemented by a left-to-right
state sequence, enforcing a minimum duration constraint on AD state occu-
pation. A projection of the complete K-participant HMM topology onto the
state subspace of any single participant is shown in Figure 1. Each minimum
duration constraint TΥ

min, Υ ∈ {S,L,N}, yields the corresponding number of
single-participant topology states per AD state, NΥ

min ≡ ⌈TΥ
min/Tstep⌉, where

Tstep is the frame step or shift. As a result, the single-participant state subspace
consists of N =

∑

Υ NΥ
min states.

A consequence of the above is that a multiparticipant conversation C, of
K participants, can be in one of NK states. To render search computationally
tractable, we admit only a fraction of these states during decoding, via three
constraints: (1) the number of simultaneously speaking participants can be no
greater than KS

max; (2) the number of simultaneously laughing participants can
be no greater than KL

max; and (3) the number of participants not in the “default”
state N (0) can be no greater than K¬N

max. The resulting space consists of Neff

states, {Si}, with 1≤i≤Neff . Each state Si emits a multi-channel observation
with time-independent emission probability bi.

Transition from state Si to state Sj , Si → Sj , with 1≤i≤Neff and 1≤j≤Neff ,
is possible provided that for each speaker k, the single-participant transition
Si [k] → Sj [k] is licensed by Figure 1. An allowed transition Si → Sj is taken
with time-independent probability aij = P (qt+1 = Sj |qt = Si ), where qt is
the multiparticipant state of the meeting at time t.

3.2 Acoustic Model

We seek to define the probability density that a particular multi-channel ob-
servation Xt ∈ ℜK×F , where F is the number of features drawn from a single
channel in an observation window of Tsize in duration, is emitted from a multi-

participant state Si. The main difficulty is that K, the number of participants,
may vary from conversation to conversation, and we wish to avoid having to train
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Fig. 1. A projection of the full HMM multiparticipant state space onto the state sub-
space of a single participant. Shown are three acoustically distinct (AD) states, each
duplicated 5 times to illustrate how minimum AD state occupation is enforced. N (0)

represents the default long-time inactive state.

variable-length observation models. We address this difficulty as in [20], by in-

troducing the factorial decomposition P (Xt |Si ) =
∏K

k=1 P (Xt [k] | ζ (Si, k) ).
Each factor is a Gaussian mixture model (GMM) likelihood

P (X [k] | ζ (Si, k) ) =

M
∑

m=1

pζ(i,k),mP
(

X [k] | N
(

µζ(i,k),m, σ2
ζ(i,k),m

))

, (1)

where M is the number of GMM components,
∑M

m=1 pζ(i,k),m = 1 and N
(

µ, σ2
)

is a multivariate, diagonal-covariance Gaussian distribution. The number of di-
mensions is equal to F , the number of single-channel features computed. ζ (i, k)
represents the state of the kth close-talk microphone, as explained below.

Although modeling each microphone as being in one of three states is the
most natural approach to N/S/L segmentation, efforts in single-participant
N/S segmentation have extended this model to farfield activity states (ie. [21]).
In [22], three states were considered: S, N , and VF , the latter corresponding to
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only farfield speech. We make the corresponding extension here, whereby

ζ (i, k) ≡















S, if Si [k] = S
L, if Si [k] = L
VF , if Si [k] = N and ∃j such that Si [j] 6= N
N , if Si [j] = N ∀j .

(2)

As a result, there are 4K multimicrophone states; however, only 3K of them
correspond to valid conversation states (e.g., all participants cannot be in VF ).

All 4 single-microphone acoustic models are defined over a feature space of
F = 41 features: log-energy, 13 Mel-frequency cepstral coefficients (MFCCs; ex-
cluding C0), their first- and second-order derivatives, as well as the minimum and
maximum normalized log-energy differences (NLEDs). The latter two features
were designed for differentiating between nearfield and farfield vocal activity [23].
Using the reference speech and laughter segmentation of all 26 Bmr meetings, one
Gaussian mixture with M = 64 components was trained per model to maximize
the class-conditional likelihood of the training data.

3.3 Transition Model

We seek to a time-independent probability that conversation C will transition
out of a multiparticipant state Si into a multiparticipant state Sj . As with
emission probabilities, the fundamental difficulty is the potential for K to not
be known, or ever seen in the training material.

Although a full exposition of our transition model considerably exceeds the
current space limitations, we mention that the model probabilities are indepen-
dent both of the identities of all participants and of their assignment to particular
channels k, namely that

aij = P (qt+1 = Sj |qt = Si )

= P (R · qt+1 = R · Sj |R · qt = R · Si ) . (3)

where R is an arbitrary K×K row rotation operator. We refer the reader to [24]
for full details of the model, its general training algorithm, and its application.

Here, the transition model probabilities aij were trained using forced-alignment
of the reference 3-way N/S/L multiparticipant segmentation. To achieve this,
each frame qt was assigned a pseudo-likelihood P (qt|Si) = αd, where d is the
number of mismatched participant states between qt and Si, and α is a small
number (10−4). The Viterbi pass was performed with all allowed transitions
aij having a probability of unity (leading to

∑

i aij ≥ 1), to not disfavor self-
transitions at high fan-out states.

4 Performance of Proposed System

The HMM topology described in Subsection 3.1 was constructed with frame step
and size of Tstep = Tsize = 0.1 seconds, as in our work on V/¬V segmentation
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[25]. The minimum duration constraints Tmin ≡
(

TS
min, TL

min, TN
min

)

were set to
(0.2, 0.4, 0.3) seconds, leveraging our findings in [25] and [1]. The latter work, in
which it was shown that overlap rates are higher for laughter than for speech, has
also led us to impose the overlap constraints Kmax ≡

(

KS
max,KL

max,K¬N
max

)

=
(2, 3, 3). System sensitivity to these settings is explored in Section 5.

Table 1. Confusion matrix for 3-way N/S/L participant-state recognition for the
system described in Section 3. Reference (Ref) class membership is shown in rows,
hypothesized membership in columns. Time is shown in minutes; the total duration of
the analyzed audio is 827 minutes. Total reference and hypothesized state occupation
(total), per state, is given in italics in the last column and row, respectively.

Hypothesized as
Ref

N S L total

N 685.4 7.8 22.9 716.2

S 11.0 79.0 4.5 94.4

L 6.5 1.0 9.2 16.6

total 702.9 87.8 36.6

With emission and transition probabilities inferred as described in Subsec-
tions 3.2 & 3.3, the system was applied to the 3 Bmr meetings in the testset.
The resulting confusion matrix is shown in Table 1. As can be seen, the prior
distribution over the three classes N , S, and L (column 5), is significantly un-
balanced. Laughter is hypothesized for 9.2 minutes out of the total 16.6 present,
yielding a recall of 55.2%. However, laughter is also hypothesized for 22.9 min-
utes of nearfield silence, pulling precision down to 25.1%. In fact, the largest
confusions in the matrix are seen between laughter and nearfield silence. Prelim-
inary analysis suggests that this is due to laughter models capturing participants’
breathing. Unvoiced laughter in particular is perceptually similar to exhalation.
This suggests that, in future work, voiced and unvoiced laughter should be mod-
eled separately, especially given that unvoiced laughter is overlapped with other
unvoiced laughter only infrequently; the same is not true for voiced laughter [18].

5 Contrastive Experiments

In this section, we would like to answer the following questions:

1. What role do minimum duration constraints play in detecting laughter?

2. What role do vocalization overlap constraints play in detecting laughter?

3. How does detection performance generalize to unseen datasets?

We train alternate systems to answer each question, and contrast performance
with that of the system from Section 4. Recall, precision, and F -scores of both
speech and laughter V ≡ S ∪ L, of speech alone S, and of laughter alone L, are
shown over the full 13.8 hours of test audio.
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5.1 Minimum Duration Constraints

To determine the impact of duration modeling on system performance, we train
two alternate transition models, differing in the minimum duration constraints
Tmin ≡

(

TS
min, TL

min, TN
min

)

from the system described in Section 4. The first of
these systems involves a fully-connected (ergodic) HMM topology, on which no
minimum duration constraints are imposed (ie. Tmin = (0.1, 0.1, 0.1) seconds,
given our analysis frame step Tstep = 0.1 s). The second system enforces equal
minimum duration constraints of 0.3 s on each of the three AD states, N , S, and
L; its Tmin is (0.3, 0.3, 0.3) seconds. In every other respect, these two systems
are identical to that in Section 4; performance of all three is shown in Table 2.

Table 2. Recall (R), precision (P) and F -score (F) as a function of minimum du-
ration constraints Tmin ≡

`

TS
min, TL

min, TN
min

´

. The frame step and frame size are
identically 100ms, and the maximum simultaneous vocalization constraints Kmax ≡
`

KS
max, KL

max, K¬N
max

´

are (2, 3, 3) for all systems shown. Performance is shown for vo-
calization V = S ∪L (versus N ) in columns 2-4, for S (versus ¬S = N ∪L) in columns
5-7, and for L (versus ¬L = N ∪ S) in columns 8-10. The system from Section 4 is
identified with “§4”; best performance on each metric, across systems, is in bold.

V ≡ S ∪ L S L
Tmin (s)

R P F R P F R P F

(0.1, 0.1, 0.1) 84.1 72.8 78.1 82.3 89.9 86.0 55.9 22.1 31.7
(0.3, 0.3, 0.3) 84.5 75.1 79.5 83.7 90.4 86.9 54.7 24.2 33.6

§4 (0.2, 0.4, 0.3) 84.3 75.3 79.5 83.6 90.0 86.7 55.2 25.1 34.5

As the table shows, the system with equal minimum duration constraints of
300 ms on the occupation of each of N , S, and L outperforms the ergodic system
on all measures except recall of laughter, which is lower by 1.2%. In particular,
we note a 2.3% increase in V precision and a 2.1% increase in L precision. This
variation is expected since the non-ergodic system cannot hypothesize spurious
single-frame segments, which are unlikely to be vocal productions for physiolog-
ical reasons. For assessing whether minimum duration constraints discriminate
between speech and laughter, the Tmin = (0.3, 0.3, 0.3) system is most appropri-
ate because both it and the system in Section 4 allow each participant to be in
one of 9 states; in the ergodic system, that number of state is 3. Table 2 shows
that both the recall and precision of laughter are higher in the (0.2, 0.4, 0.3)
system than in the (0.3, 0.3, 0.3) system, and suggests that minimum duration
constraints can be used to advantage when detecting laughter-in-interaction in
multi-channel audio.

5.2 Maximum Simultaneous Vocalization Constraints

Second, we assess the impact of limiting the maximum number of participants
allowed to simultaneously vocalize by modifying the maximum simultaneous
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vocalization constraints Kmax ≡
(

KS
max,KL

max,K¬N
max

)

. For this purpose, we
construct 3 alternate systems. The first, whose Kmax = (2, 2, 2), allows up to
two participants to be in single-participant states other than N (0), and up to
two participants to be simultaneously speaking or laughing. This is a standard
extension of our meeting recognition V/¬V segmenter [25]. The second alternate
system, whose Kmax = (2, 2, 3), adds two additional cases: (1) only two par-
ticipants speaking and only one participant laughing; and (2) only two partici-
pants laughing and one participant speaking. Finally, the third alternate system
(Kmax = (3, 2, 3)) adds the case of only three participants speaking and none
laughing. In contrast, the system desribed in Section 4, allows for only three par-
ticipants laughing and none speaking. The Kmax = (3, 2, 3) could be expected
to outperform the Kmax = (2, 3, 3) system if speech exhibited higher rates of
overlap than does laughter. All 4 systems are shown in Table 3.

Table 3. Recall (R), precision (P), and F -score (F) as a function of maximum si-
multaneous vocalization constraints Kmax ≡

`

KS
max, KL

max, K¬N
max

´

. The frame step
and frame size are identically 100ms, and the minimum duration constraints Tmin ≡
`

TS
min, TL

min, TN
min

´

are (0.2, 0.4, 0.3) seconds for all systems shown. Symbols as in Ta-
ble 2.

V ≡ S ∪ L S L
Kmax

R P F R P F R P F

(2, 2, 2) 80.5 82.1 81.3 83.3 90.6 86.8 36.9 27.8 31.7
(2, 2, 3) 84.0 76.1 79.9 84.0 89.0 86.4 48.8 24.3 32.4
(3, 2, 3) 84.1 76.1 79.9 84.2 88.6 86.4 49.1 24.6 32.8

§4 (2, 3, 3) 84.3 75.3 79.5 83.6 90.0 86.7 55.2 25.1 34.5

As Table 3 shows, increasing K¬N
max from 2 to 3 increases recall but reduces

precision; the effect is more dramatic for L than for S because more of laughter
than of speech occurs in overlap. Allowing a third simultaneous speaker decreases
S precision by 0.4% and increases S recall by 0.2%. In contrast, allowing a
third simultaneous laugher increases L precision by 0.8%, and at the same time
increases L recall by 6.4%.

5.3 Generalization to Other Data

To close this section, we explore the performance of the system described in
Section 4 on several other datasets drawn from the ICSI Meeting Corpus. In
Table 4, we show the performance of our system on the Bro meetings, of which
there are 23, and on the Bed meetings, of which there are 15. Both of these sets
were completely unseen during development, and consist of 116 and 81 total
hours of single-channel audio, respectively.

We note first of all that although V recall and precision are lower on Bmr(test)
than on Bmr(train) by 0.8% and 0.4%, respectively, the differences are small. This
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Table 4. Recall (R), precision (P ), and F -score (F) of the system described in Section 4
on different subsets of the ICSI Meeting Corpus. pV(L) is the proportion of vocalization
time spent in laughter. Symbols as in Table 2.

V ≡ S ∪ L S L
Test data pV(L)

R P F R P F R P F

train 10.91 85.1 75.7 80.1 83.4 89.8 86.5 53.0 19.4 28.4
Bmr

test 14.94 84.3 75.3 79.5 83.6 90.0 86.7 55.2 25.1 34.5

Bro (all) 5.94 83.7 73.2 78.1 81.1 90.6 85.6 57.8 11.4 19.0
Bed (all) 7.53 88.5 65.2 75.1 84.6 85.7 85.2 58.7 10.0 17.0

suggests that model complexity is low and the system not particularly prone to
overfitting. It is more surprising that V performance on the training data is not
higher, and may be indicative of the difficulty of the task.

As can be seen, laughter detection for Bmr(test) is better than for Bmr(train),
and much better in both Bmr subsets than for either the Bed or Bro meetings. It
appears that L precision is strongly correlated (r = 0.943) with the proportion
of vocalization time spent in laughter (pV(L) in column 3). Although pV(L) is
higher for Bed meetings than for Bro meetings, F -scores are higher for the latter
for all three of V, S, and L. This is likely attributable to the fact that fewer of
the Bed meeting participants than of the Bro meeting participants are present
in the Bmr training data (cf. Section 2).

The above findings indicate that the proposed data split [2, 8, 9, 11, 10] is not
particularly helpful in predicting laughter detection performance on unseen data.
This is because the Bmr test meetings contain an atypically high proportion of
transcribed laughter, even within the Bmr subset, rendering the distribution of
vocal activity types more balanced than elsewhere in the corpus, and therefore
detection results more optimistic. Further analysis is required to assess the cor-
relation between detectability and factors such as participant identity, laughter
quality, and the degree of laughter overlap by time.

6 Qualitative Comparison with Related Work

As mentioned in the Introduction, aspects of laughter detection in meetings have
been treated in [2, 8, 9, 11, 10]. Although the goal of each of the aforementioned
publications was different from ours, we present several common and differenti-
ating aspects in Table 5.

In the earliest work, [2], the authors dealt with multiple farfield microphones,
in an effort to identify simultaneous laughter from the majority of participants
present, with no intention of attributing laughter to specific participants. These
three aspects make [2] the most dissimilar from among the work cited in Table 5.

Research on laughter/speech classification [8, 9] has assumed the presence of
manual pre-segmentation into intervals of approximately 2 s in duration and
anticipates balanced priors in the testset. Furthermore, it treats only 47% of the
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transcribed laugh bouts, namely those which have been assigned their own ut-
terances by the original ICSI transcription team. Although these conditions are
different from the ones faced in the current work, [9] has shown that focusing on
only 28% of the transcribed laugh bouts, those considered clearly perceptible,
decreases EERs by 4%. This suggests that N/S/L segmentation may benefit by
treating different types of laughter differently, especially if applications distin-
guish among laughter types.

Table 5. Overview of previous research on laughter/speech (L/S) classification and
laughter/non-laughter (L/¬L) segmentation, and of the current work, in terms of sev-
eral differentiating aspects.

L/S class. L/¬L segm. this
Aspect

[8] [9] [11] [10] [2] work

close-talk microphones X X X X X

farfield microphones X

single channel at-a-time X X X X

multi-channel at-a-time X X

participant attribution X X X X X

only group laughter X

only isolated laughter X X X

only clear laughter X

rely on pre-segmentation X X ?
rely on prior rebalancing X X ?
rely on channel exclusion ? X

Research in laughter/non-laughter segmentation [11, 10] is more relevant to
the current work. This is not least because, as we have shown, nearfield laugh-
ter tends to be confused much more with nearfield silence than with nearfield
speech. In spite of this, and despite identical training and testing data, a direct
performance comparison with the current work is not possible. [10] assumes the
presence of a preliminary (perfect) vocal activity detector which justifies the
exclusion of nearfield channels exhibiting prolonged silence during testing. This
is effectively a form of pre-segmentation which also achieves prior rebalancing,
and the extent to which [10] relies on such exclusion is not documented. Fur-
thermore, contrary to our own unpublished observations, the experiments in [10]
recommend a framing policy with a small frame step but a large frame size; in
conjunction with the current work, a potential emerging strategy is multipass
segmentation in which frame step and frame size decrease and increase, respec-
tively, from one pass to the next.

For completion, it should be noted that low precision continues to be a chal-
lenging problem [12] in speech/non-speech segmentation [26, 21, 22], and auto-
matic speech recognition word error rates are currently 2-3% absolute higher
with automatically produced segments than with manual segmentation [23, 27,
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25]. As our confusion matrix in Section 4 shows, the separation between speech
and silence appears to be easier than that between laughter and silence, and
laughter segmenters exposed to the full duration of meeting audio are likely to
incur more insertions than those exposed only to pre-segmented portions.

7 Conclusions

We have proposed a simultaneous multiparticipant architecture for the detection
of laughter in multi-channel close-talk microphone recordings of meetings. The
implemented system does not rely on any form of manual pre-segmentation, and
achieves laughter recall and precision rates of 55.2% and 25.1%, respectively, on a
commonly used 14-hour dataset in which laughter accounts for 2% of time. These
figures represent the first baseline results for this task, and the findings indicate
that discrimination between nearfield laughter and nearfield silence, rather than
between nearfield laughter and nearfield speech, presents the biggest difficulties.

Our experiments suggest that laughter segmentation stands to benefit from
contrastive constraints placed on the maximum allowed degree of simultaneous
vocalization as well as on minimum allowed state duration. Finally, we have
shown that laughter precision throughout the ICSI Meeting Corpus is most
strongly a function of the proportion of laughter present, and only second a
function of participant novelty.
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