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Goals
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◮ extend NEURAL NETWORKS

◮ to handle UNDEFINED VALUES

◮ fully AUTOMATICALLY
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MOTIVATION: Augment stochastic turn-taking

models with the ability to exploit any

frame-synchronous features, including those

which are not always defined (or modeled as

attended to).

Setting

A “stochastic turn-taking model” predicts a

speaker’s speech activity at instant t given that

speaker’s and their interlocutors’ speech activity at

preceding instants:
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Can extend to other features for the speaker and

their interlocutors at preceding instants:
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But what if some of those other features are

occasionally undefined?
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Findings

dummy

1. The proposed auto-imputing activation

functions ignore undefined features by

design.

2. “Undefined-ness” is expressed using an

auxiliary indicator feature.

3. Prediction results using the proposed

auto-imputing activation functions yield

results which are the same as those

obtained using manual “brute-force”

imputation, for an

easy-to-brute-force-impute feature (energy).

4. Trends observed for unseen data are

identical to those observed for the data used

in algorithm development, suggesting

successful generalizability.

Standard Activation Functions

Dot-Tanh Function (DOT-TANH)

For input variable xi ∈ (−∞,+∞),

hj = tanh zj

zj = bj +

I
∑

i=1

wji · xi .

(Gaussian) Radial Basis Function (GRBF)

For input variable xi ∈ (−∞,+∞),

hj = exp (zj)

zj =

I
∑

i=1

(

−bji · (wji − xi)
2
)

.

Proposed Activation Functions

Bernoulli Radial Basis Function (BRBF)

For input variable ξi ∈ {0, 1},

hj = I
√

zj

zj =

I
∏

i=1

(ωji)
(ξi) · (1 − ωji)

(1−ξi)

Joint Radial Basis Function (JRBF)

For input variable xi ∈ (−∞,+∞) and

indicator variable ξi ∈ {0, 1},

hj = I
√

zj

zj =
I

∏

i=1

(ωji)
(ξi) · (1 − ωji)

(1−ξi)

·
(

exp
(

−bji · (wji − xi)
2
))(ξi)

Impact & Future Work
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The proposed extensions:

1. Permit analysis of the conditioning of future

speech activity on any frame-synchronous

feature with missing values (e.g. pitch).

2. Permit empirical optimization of

normalization strategies for such features.

3. Provide a framework for the unbiased

comparison among multiple features,

potentially conditioned on speaker identity.

4. Permit easy large-scale comparisons of

feature utility across langauges and

conversation types.

5. Permit binary-operator construction of

derived indicator variables which simulate

attention span and instantaneous

attentiveness to interlocutors.

Evaluation

?
1. Draw training and speaker-independent test

sets from the Switchboard-I Corpus

(2-party).

2. Per conversation, segment speech activity

Q trajectories for both parties into 100-ms

frames.

3. Use 10 frames of history for prediction.

4. Per conversation and per participant,

compute the prediction cross-entropy (in

bits per 100 ms).

5. Pick a feature F (in addition to speech

activity) which is easy to “brute-force”

impute; here: F is energy.

6. Set speech activity as the indicator variable

for energy.

7. Compare “brute-force”-imputed to

auto-imputed cross-entropies.

DevSet Results
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Note: 4, 5, and 6 are unfair comparisons to 7,

since manual “brute-force” imputation was realized

using per-conversation, per-participant shifted

Z -normalization, which uses all frames at every

instant, including future frames.

EvalSet Results
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Note: Observed trends are identical to those for

DevSet.
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