Harmonic Structure Transform for Speaker Recognition

Kornel Laskowski & Qin Jin

Carnegie Mellon University, Pittsburgh PA, USA KTH Speech Music & Hearing, Stockholm, Sweden

29 August, 2011

Spectral Transforms in General

Given $\mathbf{x} \equiv$ the energy spectrum of a speech frame,

$$\mathbf{y} = \mathcal{F}^{-1}\left(\log\left(\mathbf{M}^{T}\mathbf{x}\right)\right) - \langle \text{normalization term} \rangle$$

The matrix **M** is a filterbank, whose columns look like:

M defines the number of filters, and their central frequencies, widths, and general shapes.

Spectral Transforms in General

Given $\mathbf{x} \equiv$ the energy spectrum of a speech frame,

$$\mathbf{y} = \mathcal{F}^{-1}\left(\log\left(\mathbf{M}^{T}\mathbf{x}\right)\right) - \langle \text{normalization term} \rangle$$

The matrix **M** is a filterbank, whose columns look like:

M defines the number of filters, and their central frequencies, widths, and general shapes.

Importantly here, the filters of all such filterbanks integrate energy across frequencies **related by adjacency**.

The Harmonic Structure Transform (HST)

In contrast, the HST is implemented by a matrix **H** whose columns look like:

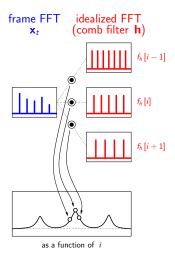
Each filter integrates energy across frequencies **related by harmonicity** (not adjacency).

- this is **novel** (Laskowski & Jin, 2010) for speaker recognition
- related to (Liénard, Barras & Signol, 2008) for pitch detection
- unknown: number of filters, and their fundamental frequencies, tooth widths, and individual tooth shapes

Outline of this Talk

- Baseline Performance
 - What is known?
- Experiments in HSCC Filterbank Design
 - linear spacing in fundamental frequency
 - piecewise linear spacing in fundamental frequency
 - logarithmic spacing in fundamental frequency
 - fundamental frequency range and density
- Score-level Fusion with Standard MFCCs.
- Generalization
- Conclusions

HST Processing



- analysis every 8 ms
- frames 32 ms wide
- comb filter teeth triangular (global width parameter)
- 400 filters, linearly spanning from 50 Hz to 450 Hz
- logarithm at each filter output, then normalization
- decorrelation using LDA
- yields harmonic structure cepstral coefficients (HSCCs)

HSCC Modeling for Classification

As simple as possible.

- one GMM per speaker
 - assume one Gaussian element
 - 2 determine optimal number N_D of LDA dimensions
 - hold No fixed
 - \bullet determine optimal number of N_G Gaussians
- maximum likelihood closed-set classification (MAP under uniform prior)

Available Results (Laskowski & Jin, ODYSSEY 2010)

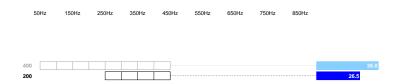
- Wall Street Journal data, mostly read speech
- 100-way closed-set classification, per gender
- \bullet \approx 1500 10-second trials, per gender and dataset
- matched channel and matched multi-session conditions

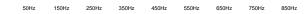
System	Female, ♀		Male, ♂	
System	Dev	Test	Dev	Test
F0	17.6	18.4	26.2	27.4
HST/LDA	99.7	99.9	99.7	99.7
MEL/DCT	98.7	99.3	99.3	98.6
MEL/LDA	98.7	99.3	99.3	98.9

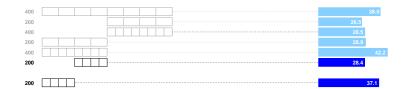
Session Mismatch

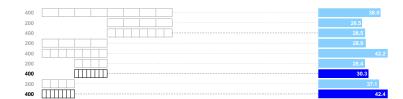
- MIXER5 data, various speaking styles
- 66-way closed-set classification
- \approx 3000 10-second trials, per dataset
- matched channel and matched session: accuracies of 100%
- matched channel but mismatched session:

System	Dev	Test
F0	14.1	16.2
HST/LDA	59.8	68.1
MEL/DCT	74.4	84.4
MEL/LDA	81.5	87.8



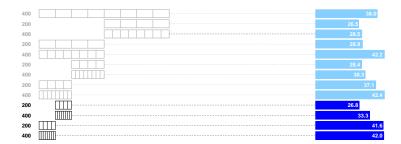




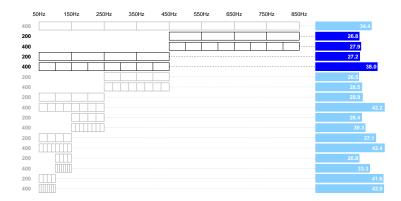


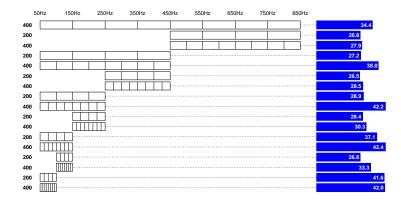
Prolegomena

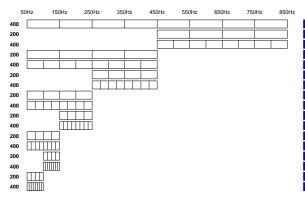
50Hz 150Hz 250Hz 350Hz 450Hz 550Hz 650Hz 750Hz 850Hz

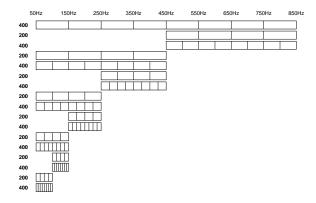


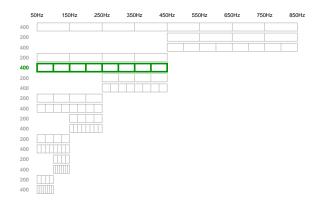
Conclusions

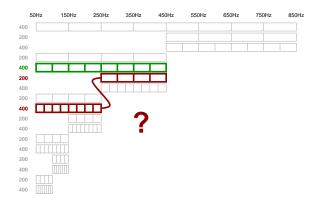


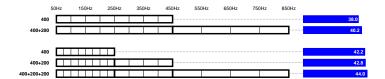


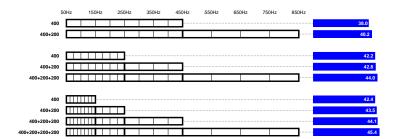




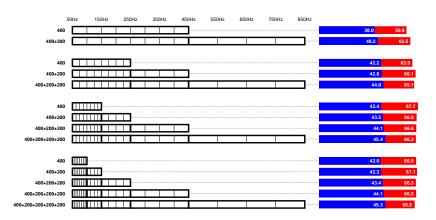










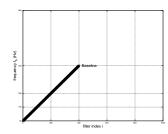


Logarithmic Spacing of Fundamental Frequencies

In the linear case:

Prolegomena

$$f_h[i] = f_h^{min} + \frac{i-1}{N_h-1} \left(f_h^{max} - f_h^{min} \right) \quad 1 \le i \le N_h$$

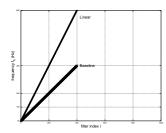


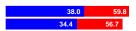
Logarithmic Spacing of Fundamental Frequencies

In the linear case:

Prolegomena

$$f_h[i] = f_h^{min} + \frac{i-1}{N_h-1} \left(f_h^{max} - f_h^{min} \right) \quad 1 \le i \le N_h$$



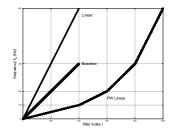


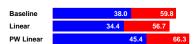
Logarithmic Spacing of Fundamental Frequencies

In the linear case:

Prolegomena

$$f_h[i] = f_h^{min} + \frac{i-1}{N_h-1} \left(f_h^{max} - f_h^{min} \right) \quad 1 \le i \le N_h$$

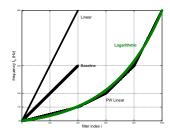




Logarithmic Spacing of Fundamental Frequencies

In the linear case:

$$f_h[i] = f_h^{min} + \frac{i-1}{N_h-1} \left(f_h^{max} - f_h^{min} \right) \quad 1 \le i \le N_h$$

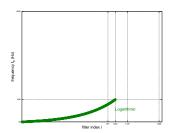


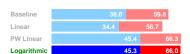
$$f_h[i] = f_h^{min} \left(\frac{f_h^{max}}{f_h^{min}}\right)^{\frac{i-1}{N_h-1}}$$

Three manipulations:

Prolegomena

- fmin: raise to 62.5 Hz
- f_{max} : raise to maximize accuracy (to 4000 Hz)
- N_h : lower to maximize accuracy (to 1129)

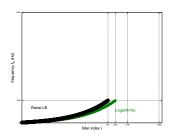


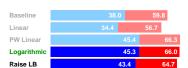


Conclusions

Three manipulations:

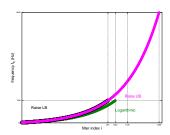
- f_{min} : raise to 62.5 Hz
- f_{max} : raise to maximize accuracy (to 4000 Hz)
- N_h : lower to maximize accuracy (to 1129)

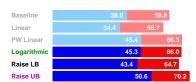




Three manipulations:

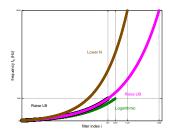
- f_{min} : raise to 62.5 Hz
- f_{max} : raise to maximize accuracy (to 4000 Hz)
- N_h : lower to maximize accuracy (to 1129)





Three manipulations:

- f_{min} : raise to 62.5 Hz
- f_{max} : raise to maximize accuracy (to 4000 Hz)
- N_h: lower to maximize accuracy (to 1129)





Interpolation with Standard MFCCs

- linear interpolation with DCT-decorrelated log-Mel energies
 - 20 coefficients

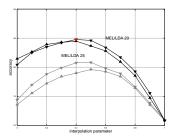
Prolegomena

• 25 coefficients (always worse)

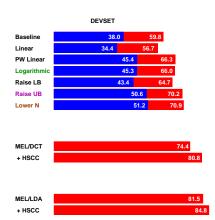


Interpolation with LDA-Rotated MFCCs

- linear interpolation with LDA-decorrelated log-Mel energies
 - 20 coefficients (better in combination)
 - 25 coefficients (better alone)



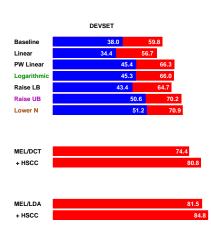
Summary of Accuracy on DevSet

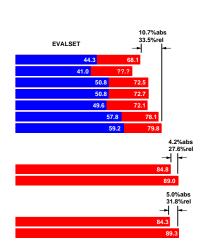


Accuracy on EVALSET

Accuracy on EVALSET

Accuracy on EVALSET





Conclusions

- evaluated the baseline transform in session mismatch
 - viable: twice as many errors an equivalent MFCC system
- errors can be reduced by a third (33.5%rel) by optimizing:
 - the number of filters in the filterbank
 - the fundamental frequency corresponding to each filter
- logarithmic spacing of fundamental frequencies is better than linear spacing
 - more filters for low fundamental frequencies
 - fewer filters for high fundamental frequencies
- in an equivalent MFCC system, errors can be reduced by almost a third (27.6-31.8%rel) via score-level fusion with the improved HST system

Future Directions

- change framing policy from 8 ms/32 ms to something longer
 - intonation and voice quality are **supra**-segmental
 - larger temporal support → greater spectral resolution
- optimize the tooth shape of comb filters
- 3 find a data-independent decorrelation transform
 - leading to a compact (< 25 coefficients) representation
- explore adaptation from a universal background model
- generalize to binary speaker verification (and NIST SREs)

Potential Impact

- 1 a new general representation of the spectrum
- deliberately orthogonal to spectral envelope features (MFCCs, LPCCs, etc.)
 - but computed in an identical manner
- 3 likely beneficial not only for speaker recognition, but also:
 - online speaker diarization
 - classification of "emotional speech"
 - clinical voice quality assessment

Some Interesting Insights ...

Prolegomena

- currently in HST, spectral energy < 300 Hz is zeroed out
 - this improves closed-set speaker classification
 - but the fundamental (zeroth harmonic) is ignored
 - the fundamental is thought to play a role in emotional expression
- 2 that optimal filter spacing is logarithmic is curious
 - independent of the logarithmic tonotopicity of the basilar membrane
 - greater acuity in discriminating among harmonic sounds (not just pure tones)

Conclusions

THANK YOU