Modeling Other Talkers for Improved Dialog Act Recognition in Meetings

Kornel Laskowski¹ & Elizabeth Shriberg^{2,3}

¹Carnegie Mellon University, Pittsburgh PA, USA ²SRI International, Menlo Park CA, USA ³International Computer Science Institute, Berkeley CA, USA

10 September, 2008

Introduction

•000000

```
SPKR A:
SPKR B:
SPKR C:
SPKR D:
```

Introduction

000000

Introduction

000000

TASK: segment into dialog acts and classify into dialog act types

Introduction

000000

TASK: segment into dialog acts and classify into dialog act types

Why use only speech/non-speech information?

- sensitive data in which word information must be masked for privacy reasons
 - Wyatt et al, "Capturing spontaneous conversation and social dynamics: A privacy-sensitive data collection effort", 2007.
- noisy data where word recognition performs poorly
- image-only data in which speech activity has to be inferred from video only
- resource-poor languages in which ASR and/or lexical DA recognizers may be unavailable
- contexts requiring speed: SAD is faster than ASR

Why do we care about DAs?

Introduction

Because sometimes, we want

- to discard specific DA types **Example 1**: summarization systems
 - retain only speech implementing propositional content
- to detect the absence of specific DA types **Example 2**: spoken dialogue systems
 - change strategy when active listening cues not offered
- to detect the presence of specific DA types **Example 3**: discourse analysis systems
 - atypical flooring behavior may indicate grounding problems
- DA segmentation important even when DA classification is not

DA Types in ICSI Meetings

Propositional Content DA Types

- **statement**, s (85%)
- question, q (6.6%)

"Short" DA Types

Feedback Types (5.4%)

- backchannel, b (2.8%)
- acknowledgment, bk (1.5%)
- assert, aa (1.1%)

Floor Mechanism Types (3.6%)

- floor holder, fh (2.7%)
- floor grabber, fg (0.6%)
- hold, h (0.3%)

Goal of This Work

Introduction

0000000

Use only speech activity patterns to segment and classify DAs.

Previous Research on DA Recognition in Meetings

lots of work, e.g.

Introduction

- Ang, Liu & Shriberg, ICASSP 2005.
- Ji & Bilmes. ICASSP 2005.
- Zimmermann, Stolcke & Shriberg, ICASSP 2006.
- Dielmann & Renals, MLMI 2007.
- relying on one or more of
 - true DA boundaries (i.e., DA classification only)
 - word identities (true or ASR)
 - word boundaries (true or ASR)
- work in which DA boundaries, word boundaries, and word identities are not assumed has not been done

Previous Research on Talkspurt Modeling in Meetings

also lots of work, e.g.

Introduction

- Brdiczka, Maisonnasse & Reignier, ICMI 2005.
- Rienks, Zhang, Gatica-Perez & Post, ICMI 2005.
- Laskowski, Ostendorf & Schultz, SIGdial 2007.
- Favre, Salamin, Dines & Vinciarelli, ICMI 2008.
- collect and model statistics over long observation intervals
- explicit modeling of speech activity for segmenting and classifying talk in individual talkspurts (and from other participants) has not been done

- decoding the state of one participant at a time

- decoding the state of one participant at a time

- decoding the state of one participant at a time

- decoding the state of one participant at a time
- may have 1:1 correspondence between DAs and TSs
- and 1:1 correspondence between DA-gaps and TS-gaps
- but may also have TS gaps inside DAs
- 1:N correspondence between DAs and TSs
 → explicitly model intra-DA silence
- opposite (N:1 correspondence) may also occur
 entertain possibility that DA boundaries occur anywhere

- decoding the state of one participant at a time
- may have 1:1 correspondence between DAs and TSs
- and 1:1 correspondence between DA-gaps and TS-gaps
- but may also have TS gaps inside DAs
- 1:N correspondence between DAs and TSs
 → explicitly model intra-DA silence
- opposite (N:1 correspondence) may also occur
 entertain possibility that DA boundaries occur anywhere

- decoding the state of one participant at a time
- may have 1:1 correspondence between DAs and TSs
- and 1:1 correspondence between DA-gaps and TS-gaps
- but may also have TS gaps inside DAs
- 1:N correspondence between DAs and TSs
 explicitly model intra-DA silence
- opposite (N:1 correspondence) may also occur
 entertain possibility that DA boundaries occur anywhere

Summary

- decoding the state of one participant at a time
- may have 1:1 correspondence between DAs and TSs
- and 1:1 correspondence between DA-gaps and TS-gaps
- but may also have TS gaps inside DAs
- 1:N correspondence between DAs and TSs
- opposite (N:1 correspondence) may also occur
 entertain possibility that DA boundaries occur anywhere

- decoding the state of one participant at a time
- may have 1:1 correspondence between DAs and TSs
- and 1:1 correspondence between DA-gaps and TS-gaps
- but may also have TS gaps inside DAs
- 1:N correspondence between DAs and TSs
 - → explicitly model intra-DA silence
- opposite (N:1 correspondence) may also occur
 - entertain possibility that DA boundaries occur anywhere

- decoding the state of one participant at a time
- may have 1:1 correspondence between DAs and TSs
- and 1:1 correspondence between DA-gaps and TS-gaps
- but may also have TS gaps inside DAs
- 1:N correspondence between DAs and TSs
 - ----- explicitly model intra-DA silence
- opposite (N:1 correspondence) may also occur
 - ---- entertain possibility that DA boundaries occur anywhere

- decoding the state of one participant at a time
- may have 1:1 correspondence between DAs and TSs
- and 1:1 correspondence between DA-gaps and TS-gaps
- but may also have TS gaps inside DAs
- 1:N correspondence between DAs and TSs
 - ---- explicitly model intra-DA silence
- opposite (N:1 correspondence) may also occur
 - ---- entertain possibility that DA boundaries occur anywhere

SPKR B:

Proposed HMM Topology for Conversational Speech

- the complete topology consists of
 - a DA sub-topology for each of 8 DA types
 - fully connected via inter-DA GAP subnetworks

- decoding one participant (SPKR) at a time
- at instant t, model the thumbnail image of context
- want invariance under participant-index rotation
- want a fixed-size feature vector: consider only *K* others
- model features using state-specific GMMs (after LDA)

- decoding one participant (SPKR) at a time
- at instant t, model the thumbnail image of context
 - consider a temporal context of width
- want invariance under participant-index rotation
- want a fixed-size feature vector: consider only *K* others

- decoding one participant (SPKR) at a time
- at instant t, model the thumbnail image of context
 - consider a temporal context of width T
- want invariance under participant-index rotation
- want a fixed-size feature vector: consider only K others
 model features using state specific GMMs (after LDA)

- decoding one participant (SPKR) at a time
- at instant t, model the thumbnail image of context
 consider a temporal context of width T
- want invariance under participant-index rotation
 - rank "OTH" participants by local speaking time
- want a fixed-size feature vector: consider only *K* others
- model features using state-specific GMMs (after LDA)

- decoding one participant (SPKR) at a time
- at instant t, model the *thumbnail image* of context
 consider a temporal context of width T
- want invariance under participant-index rotation
 - rank "OTH" participants by local speaking time
- want a fixed-size feature vector: consider only K others
- model features using state-specific GMMs (after LDA)

- decoding one participant (SPKR) at a time
- at instant t, model the thumbnail image of context
 - consider a temporal context of width T
- want invariance under participant-index rotation
 - rank "OTH" participants by local speaking time

- decoding one participant (SPKR) at a time
- at instant t, model the thumbnail image of context
 - consider a temporal context of width T
- want invariance under participant-index rotation
 - rank "OTH" participants by local speaking time
- ullet want a fixed-size feature vector: consider only K others
- model features using state-specific GMMs (after LDA)

Summary

- decoding one participant (SPKR) at a time
- at instant t, model the thumbnail image of context
 - consider a temporal context of width T
- want invariance under participant-index rotation
 - rank "OTH" participants by local speaking time
- want a fixed-size feature vector: consider only K others

- decoding one participant (SPKR) at a time
- at instant t, model the thumbnail image of context
 - consider a temporal context of width T
- want invariance under participant-index rotation
 - rank "OTH" participants by **local** speaking time
- want a fixed-size feature vector: consider only K others
- model features using state-specific GMMs (after LDA)

Experiments

Introduction

- How well can SAD predict DA boundaries and types?
 - in this work, we decided to use oracle speech activity
 - want to know the inherent information
- three specific questions
 - Do other talkers matter?
 - How many others (K) should be considered?
 - What width (T) of temporal context is needed?
- K and T have a conversation analysis interpretation
 - talk is predominantly one-at-a-time $\longrightarrow K$ is small
 - turns are locally managed $\longrightarrow T$ is small

Effect of Context Size (T) and Number (K) of Interlocutors

- considering $K \ge 1$ most-talkative interlocutors is always better
- considering the K = 1 most-talkative suffices
- performance for $K \ge 1$ flattens out as $T \longrightarrow 10$ seconds

Effect of Adding Other Talkers

Introduction

DA Type		K = 0		K = 3	$\Delta F/F_{orig}$
Statement	S	91.4	\rightarrow	91.3	-0.08
Question	q	23.4	\longrightarrow	26.3	$+12.3\dagger$
Backchannel	b	56.7	\rightarrow	57.8	$+1.9\dagger$
Acknowledgment	t bk	12.6	\longrightarrow	14.9	+18.5
Assert	aa	8.7	\longrightarrow	13.0	$+49.4\dagger$
Floor holder	fh	21.7	\rightarrow	25.6	+18.3†
Floor grabber	fg	10.4	\longrightarrow	13.7	+31.8
Hold	h	1.1	\longrightarrow	6.3	$+485.6\dagger$

- large improvements for all but statements and backchannels
- for backchannels, already doing well at K=0

Further Results

Introduction

- by adding speech activity, we achieved improvements over a state-of-the-art lexical DA recognizer
 - particularly for floor grabbers, asserts, and questions
 - remarkable because the lexical system uses true words
- large and significant improvements for DA-terminal phenomena, in particular for interruption ($F = 10.7\% \rightarrow$ 22.6%)

Summary

Introduction

GOAL:

- given only speech/non-speech activity
- jointly segment and classify into DAs

APPROACH:

- frame-level HMM decoding
- consider (target speaker and) interlocutor activity

RESULTS:

- can actually get a lot out of speech/non-speech
- it's useful to model the other talkers
- \bullet sufficient to consider the single locally most-talkative interlocutor, K=1
- ullet sufficient to consider a temporal window of T=10 seconds
- additional benefit: complimentary to lexical information
- additional benefit: improved recognition of DA termination

THANK YOU

Summary ○●○

DA Type		LEXICAL		Lexical &	ΔF
<i>7</i> 1				VocInt	(% rel)
Floor grabber	fg	24.5	\rightarrow	27.0	+9.8*
Hold	h	41.5	\longrightarrow	42.3	+2.0*
Floor holder	fh	63.5	\rightarrow	64.5	+1.5
Backchannel	Ъ	77.0	\rightarrow	77.9	+1.1*
Acknowledgme	nt bk	56.3	\rightarrow	56.0	-0.5
Assert	aa	40.0	\rightarrow	42.0	+5.0*†
Question	q	39.8	\longrightarrow	42.5	+6.8*†
Statement	s	93.3	\longrightarrow	93.5	+0.2*†
Interruption		21.9	\rightarrow	34.1	+56.0*†
Abandonment		13.0	\longrightarrow	14.4	+10.3 †
Termination		69.1	\longrightarrow	69.6	+0.7 †