Introduction

Recovering Participant Identities in Meetings from a Probabilistic Description of Vocal Interaction

Kornel Laskowski & Tanja Schultz

Cognitive Systems Lab, Universität Karlsruhe Language Technologies Institute, Carnegie Mellon University

23 September, 2008

Outline

Introduction

- Introduction
 - Definitions
 - Motivation
 - Related Work
- Some Concepts
 - Joint vs Independent Classification
 - Shuffling vs Drawing & Shuffling Participants
 - Features
 - Models
- Seriments
- Conclusions

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- formally, at time t

Introduction

000000

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- formally, at time t

Introduction

000000

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- ullet formally, at time t:

Introduction

000000

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- ullet formally, at time t:

Introduction

000000

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- formally, at time t:

Introduction

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- formally, at time t:

Introduction

- vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
- entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- formally, at time t:

Introduction

- vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
- entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- formally, at time t:

Introduction

- vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
- entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version.

Introduction

000000

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- formally, at time t:
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - ullet entire K-participant conversation: $oldsymbol{q}_t \in \mathbb{V}^K$
- we'll use a discretized version

Introduction

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- formally, at time t:
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - ullet entire K-participant conversation: $oldsymbol{q}_t \in \mathbb{V}^K$
- we'll use a discretized version

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- formally, at time t:
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - ullet entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version

000000

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- formally, at time t:
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version

000000

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- formally, at time t:
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version

000000

- vocal activity patterns for all K participants, seen together
- only talkspurt start/end times = text-independence
- formally, at time t:
 - vocal activity of participant k: $\mathbf{q}_t[k] \in \mathbb{V} \equiv \{\Box, \blacksquare\} \equiv \{0, 1\}$
 - entire K-participant conversation: $\mathbf{q}_t \in \mathbb{V}^K$
- we'll use a discretized version

- Do participants to multi-party conversation vary in their exhibited preferences of relative talkspurt deployment timing?
- Are their preferences predicted by their identity?
- Are their preferences predicitive of their identity?

- Oparticipants to multi-party conversation vary in their exhibited preferences of relative talkspurt deployment timing?
 - Trivial: obviously.
- 2 Are their preferences predicted by their identity?
- Are their preferences predicitive of their identity?

- Do participants to multi-party conversation vary in their exhibited preferences of relative talkspurt deployment timing?
 - Trivial: obviously.
- Are their preferences predicted by their identity?
- On Are their preferences predicitive of their identity?

- Operaticipants to multi-party conversation vary in their exhibited preferences of relative talkspurt deployment timing?
 - Trivial: obviously.
- Are their preferences predicted by their identity?
- On Are their preferences predicitive of their identity?

- Do participants to multi-party conversation vary in their exhibited preferences of relative talkspurt deployment timing?
 - Trivial: obviously.
- 2 Are their preferences **predicted by** their identity?
- Are their preferences predicitive of their identity?

Introduction

- contrast participant class profiles with participant profiles

Experiments

- contrast participant class profiles with participant profiles
 - social psychology predicts that preferences of relative timing in talkspurt deployment are predictive of speaker's place in social hierarchy
 - recent progress, computationally
 - not known to what extent classifiers are detecting specific participants
- 2 potential case for participant adaptation at low-level, early processing stages of conversation understanding systems, ie. vocal activity detection

- contrast participant class profiles with participant profiles
 - social psychology predicts that preferences of relative timing in talkspurt deployment are predictive of speaker's place in social hierarchy
 - recent progress, computationally
 - not known to what extent classifiers are detecting specific participants
- 2 potential case for participant adaptation at low-level, early processing stages of conversation understanding systems, ie vocal activity detection

- contrast participant class profiles with participant profiles
 - social psychology predicts that preferences of relative timing in talkspurt deployment are predictive of speaker's place in social hierarchy
 - recent progress, computationally
 - not known to what extent classifiers are detecting specific participants
- operatial case for participant adaptation at low-level, early processing stages of conversation understanding systems, ie. vocal activity detection

- Problem 1: participant identities known (but not assigned)
- Problem 2: participant identities not known

- Problem 1: participant identities known (but not assigned)
 - ① attribute each of *K* identities to one of *K* channels
- Problem 2: participant identities not known

- Problem 1: participant identities known (but not assigned)
 - **1** attribute each of *K* identities to one of *K* channels
- Problem 2: participant identities not known

- Problem 1: participant identities known (but not assigned)
 - 1 attribute each of K identities to one of K channels
- Problem 2: participant identities not known
 - ① draw K identities from a population of $N \gg K$
 - 2 attribute each of K drawn identities to one of K channels

- Problem 1: participant identities known (but not assigned)
 - 1 attribute each of K identities to one of K channels
- Problem 2: participant identities not known
 - **1** draw K identities from a population of $N \gg K$
 - 2 attribute each of K drawn identities to one of K channels

- Problem 1: participant identities known (but not assigned)
 - 1 attribute each of K identities to one of K channels
- Problem 2: participant identities not known
 - **1** draw K identities from a population of $N \gg K$
 - 2 attribute each of K drawn identities to one of K channels

Static characterization using long-term (entire meeting) observation of vocal interaction:

of meeting participants

- of meetings
 - meeting types: Laskowski et al., SIGdial 2007

Static characterization using long-term (entire meeting) observation of vocal interaction:

- of meeting participants
 - dominance rankings: Rienks & Heylen, MLMI 2005
 - influence rankings: Rienks et al., ICMI 2006
 - seniority: Laskowski et al., SIGdial 2008
 - roles: Favre et al., ICMI 2008 (to appear)
- of meetings
 - meeting types: Laskowski et al., SIGdial 2007

Static characterization using long-term (entire meeting) observation of vocal interaction:

- of meeting participants
 - dominance rankings: Rienks & Heylen, MLMI 2005
 - influence rankings: Rienks et al., ICMI 2006
 - seniority: Laskowski et al., SIGdial 2008
 - roles: Favre et al., ICMI 2008 (to appear)
- of meetings
 - meeting types: Laskowski et al., SIGdial 2007

Static characterization using long-term (entire meeting) observation of vocal interaction:

- of meeting participants
 - dominance rankings: Rienks & Heylen, MLMI 2005
 - influence rankings: Rienks et al., ICMI 2006
 - seniority: Laskowski et al., SIGdial 2008
 - roles: Favre et al., ICMI 2008 (to appear)
- of meetings
 - meeting types: Laskowski et al., SIGdial 2007

Related Computational Work on Meetings

Static characterization using long-term (entire meeting) observation of vocal interaction:

- of meeting participants
 - dominance rankings: Rienks & Heylen, MLMI 2005
 - influence rankings: Rienks et al., ICMI 2006
 - seniority: Laskowski et al., SIGdial 2008
 - roles: Favre et al., ICMI 2008 (to appear)
- of meetings
 - meeting types: Laskowski et al., SIGdial 2007

Related Computational Work on Meetings

Static characterization using long-term (entire meeting) observation of vocal interaction:

- 1 of meeting participants
 - dominance rankings: Rienks & Heylen, MLMI 2005
 - influence rankings: Rienks et al., ICMI 2006
 - seniority: Laskowski et al., SIGdial 2008
 - roles: Favre et al., ICMI 2008 (to appear)
- Of meetings
 - meeting types: Laskowski et al., SIGdial 2007

Related Computational Work on Meetings

Static characterization using long-term (entire meeting) observation of vocal interaction:

- of meeting participants
 - dominance rankings: Rienks & Heylen, MLMI 2005
 - influence rankings: Rienks et al., ICMI 2006
 - seniority: Laskowski et al., SIGdial 2008
 - roles: Favre et al., ICMI 2008 (to appear)
- of meetings
 - meeting types: Laskowski et al., SIGdial 2007

- cannot model interaction with specific other participants
- @ may require recombination heuristics
 - a participant may be assigned to ≥2 channels

- cannot model interaction with **specific** other participants
- may require recombination heuristics
 a participant may be assigned to >2 channels

4 D D 4 国 D 4 国 D 4 国 D 4 D D 9 O O O O

Conclusions

- cannot model interaction with **specific** other participants
- may require recombination heuristics
 - a participant may be assigned to >2 channels

- cannot model interaction with specific other participants
- may require recombination heuristicsa participant may be assigned to >2 channels

Problems:

- cannot model interaction with specific other participants
 - feature space with non-specific others may be non-convex
- 2 may require recombination heuristics
 - a participant may be assigned to ≥2 channels

Problems:

- cannot model interaction with specific other participants
 - feature space with non-specific others may be non-convex
- 2 may require recombination heuristics
 - a participant may be assigned to ≥2 channels

Problems:

- cannot model interaction with specific other participants
 - feature space with non-specific others may be non-convex
- may require recombination heuristics
 - a participant may be assigned to ≥ 2 channels

Problems:

- cannot model interaction with **specific** other participants
 - feature space with non-specific others may be non-convex
- may require recombination heuristics
 - a participant may be assigned to ≥ 2 channels

Solution: model participants jointly

Recognizing Participants Jointly

F describes interaction between all K participants

Recognizing Participants Jointly

• F describes interaction between all K participants

probability of vocalizing (V)

Key Concepts

- probability of initiating vocalization (VI) in prior silence
- oprobability of continuing vocalization (VC) in prior non-overlap
- probability of initiating overlap (OI) in prior non-overlap
- probability of continuing overlap (OC) in prior overlap

- probability of vocalizing (V)
- probability of initiating vocalization (VI) in prior silence
- probability of continuing vocalization (VC) in prior non-overlap
- probability of initiating overlap (OI) in prior non-overlap
- probability of continuing overlap (OC) in prior overlap

- probability of vocalizing (V)
- probability of initiating vocalization (VI) in prior silence
- probability of continuing vocalization (VC) in prior non-overlap
- oprobability of initiating overlap (OI) in prior non-overlap
- oprobability of continuing overlap (OC) in prior overlap

- probability of vocalizing (V)
- probability of initiating vocalization (VI) in prior silence
- probability of continuing vocalization (VC) in prior non-overlap
- probability of initiating overlap (OI) in prior non-overlap
- probability of continuing overlap (OC) in prior overlap

- probability of vocalizing (V)
- probability of initiating vocalization (VI) in prior silence
- probability of continuing vocalization (VC) in prior non-overlap
- probability of initiating overlap (OI) in prior non-overlap
- oprobability of continuing overlap (OC) in prior overlap

- probability of vocalizing (V)
- probability of initiating vocalization (VI) in prior silence
- probability of continuing vocalization (VC) in prior non-overlap
- probability of initiating overlap (OI) in prior non-overlap
- probability of continuing overlap (OC) in prior overlap

• know the identities of the K participants,

$$\mathcal{G} = \{Ann, Bob, Cyp\}$$

$$\mathbf{g} \in \mathbb{G} = \{ [A, B, C], [A, C, B], [B, A, C], \dots \}$$

Introduction

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg max}} P(\mathbf{g} | \mathbf{F})$$

• know the identities of the K participants,

$$\mathcal{G} = \{Ann, Bob, Cyp\}$$

• but don't know which channel each participant is on

$$\textbf{g} \in \mathbb{G} \ = \ \{ \ [A,B,C] \, , \ [A,C,B] \, , \ [B,A,C] \, , \, \cdots \, \}$$

- compute features F

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg max}} P(\mathbf{g} | \mathbf{F})$$

• know the identities of the K participants,

$$\mathcal{G} = \{Ann, Bob, Cyp\}$$

• but don't know which channel each participant is on

$$\mathbf{g} \in \mathbb{G} = \{ [A, B, C], [A, C, B], [B, A, C], \dots \}$$

- compute features F

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg max}} P(\mathbf{g} | \mathbf{F})$$

• know the identities of the K participants,

$$\mathcal{G} = \{Ann, Bob, Cyp\}$$

but don't know which channel each participant is on

$$\mathbf{g} \in \mathbb{G} = \{ [A, B, C], [A, C, B], [B, A, C], \dots \}$$

- compute features F
- 2 require a model $P(\mathbf{g}|\mathbf{F})$ such that

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg max}} P(\mathbf{g} | \mathbf{F})$$

• know the identities of the K participants,

$$\mathcal{G} = \{Ann, Bob, Cyp\}$$

but don't know which channel each participant is on

$$\mathbf{g} \in \mathbb{G} = \{ [A, B, C], [A, C, B], [B, A, C], \dots \}$$

- compute features F
- \bigcirc require a model $P(\mathbf{g}|\mathbf{F})$ such that

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg max}} P(\mathbf{g} | \mathbf{F})$$

• know the identities of the K participants,

$$\mathcal{G} = \{Ann, Bob, Cyp\}$$

but don't know which channel each participant is on

$$\boldsymbol{g} \in \mathbb{G} \hspace{2mm} = \hspace{2mm} \left\{ \hspace{2mm} \left[A,B,C \right], \hspace{2mm} \left[A,C,B \right], \hspace{2mm} \left[B,A,C \right], \hspace{2mm} \cdots \hspace{2mm} \right\}$$

- compute features F
- 2 require a model $P(\mathbf{g}|\mathbf{F})$ such that

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg max}} P(\mathbf{g} | \mathbf{F})$$

• know the identities of the K participants,

$$\mathcal{G} = \{Ann, Bob, Cyp\}$$

• but don't know which channel each participant is on

$$\boldsymbol{g} \in \mathbb{G} \hspace{2mm} = \hspace{2mm} \left\{ \hspace{2mm} \left[A,B,C \right], \hspace{2mm} \left[A,C,B \right], \hspace{2mm} \left[B,A,C \right], \hspace{2mm} \cdots \hspace{2mm} \right\}$$

- compute features F
- 2 require a model $P(\mathbf{g}|\mathbf{F})$ such that

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg max}} P(\mathbf{g} | \mathbf{F})$$

• know the identities of the K participants,

$$\mathcal{G} = \{Ann, Bob, Cyp\}$$

but don't know which channel each participant is on

$$\textbf{g} \in \mathbb{G} \ = \ \{ \ [A,B,C] \, , \ [A,C,B] \, , \ [B,A,C] \, , \, \cdots \, \}$$

- compute features F
- 2 require a model $P(\mathbf{g} | \mathbf{F})$ such that

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg max}} P(\mathbf{g} | \mathbf{F})$$

do not know the identities of the K participants,

$$\mathcal{G} \in \mathcal{P} = \{ \text{Ann}, \text{Bob}, \text{Cyp}, \text{Des}, \text{Edi}, \cdots \}$$

• must draw K from $\|\mathcal{P}\| \gg \|\mathcal{G}\|$ alternatives

GOAL: find the correct set \mathcal{G} and its correct permutation \mathbf{g}^*

- compute features F
- 2 require a model $P(\mathbf{g}|\mathbf{F})$ such that

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg max}} P(\mathbf{g} | \mathbf{F})$$

• do not know the identities of the *K* participants,

$$\mathcal{G} \in \mathcal{P} = \{ Ann, Bob, Cyp, Des, Edi, \dots \}$$

• must draw K from $\|\mathcal{P}\| \gg \|\mathcal{G}\|$ alternatives

GOAL: find the correct set \mathcal{G} and its correct permutation \mathbf{g}^*

- compute features F
- \bigcirc require a model $P(\mathbf{g}|\mathbf{F})$ such that

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg max}} P(\mathbf{g} | \mathbf{F})$$

do not know the identities of the K participants,

$$\mathcal{G} \in \mathcal{P} = \{ Ann, Bob, Cyp, Des, Edi, \dots \}$$

• must draw K from $\|\mathcal{P}\| \gg \|\mathcal{G}\|$ alternatives

GOAL: find the correct set \mathcal{G} and its correct permutation \mathbf{g}^*

- compute features F
- 2 require a model $P(\mathbf{g}|\mathbf{F})$ such that

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg max}} P(\mathbf{g} | \mathbf{F})$$

• do not know the identities of the *K* participants,

$$\mathcal{G} \in \mathcal{P} = \{ Ann, Bob, Cyp, Des, Edi, \dots \}$$

• must draw K from $\|\mathcal{P}\| \gg \|\mathcal{G}\|$ alternatives

GOAL: find the correct set \mathcal{G} and its correct permutation \mathbf{g}^*

- compute features F
- 2 require a model $P(\mathbf{g}|\mathbf{F})$ such that

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg max}} P(\mathbf{g} | \mathbf{F})$$

do not know the identities of the K participants,

$$\mathcal{G} \in \mathcal{P} = \{ Ann, Bob, Cyp, Des, Edi, \dots \}$$

• must draw K from $\|\mathcal{P}\| \gg \|\mathcal{G}\|$ alternatives

GOAL: find the correct set \mathcal{G} and its correct permutation \mathbf{g}^*

- compute features F
- 2 require a model $P(\mathbf{g} | \mathbf{F})$ such that

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg \, max}} P(\mathbf{g} | \mathbf{F})$$

but now the arg max may be intractable

Conclusions

do not know the identities of the K participants,

$$\mathcal{G} \in \mathcal{P} = \{ Ann, Bob, Cyp, Des, Edi, \dots \}$$

• must draw K from $\|\mathcal{P}\| \gg \|\mathcal{G}\|$ alternatives

GOAL: find the correct set \mathcal{G} and its correct permutation \mathbf{g}^*

- compute features F
- 2 require a model $P(\mathbf{g} | \mathbf{F})$ such that

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathbb{G}}{\operatorname{arg \, max}} P(\mathbf{g} | \mathbf{F})$$

- ullet assuming (1) a finite number $|\mathcal{P}|$ of candidate participants,
- and (2) existence of a non-unique UNK participant,
- the number of candidate K-assignments is

$$|\mathbb{G}| = \sum_{j=0}^{K} \frac{K!}{(K-j)!j!} \cdot \frac{(|\mathcal{P}|-1)!}{(|\mathcal{P}|-1-j)!}$$

Proposed Search Algorithm:

- ① set $\mathbf{g}[k] = \text{UNK}$, for all $1 \le k \le K$
- ② try each candidate in \mathcal{P} , in each UNK position in \mathbf{g}
- maximize $P(\mathbf{g} | \mathbf{F})$

- ullet assuming (1) a finite number $|\mathcal{P}|$ of candidate participants,
- and (2) existence of a non-unique UNK participant,
- the number of candidate K-assignments is

$$|\mathbb{G}| = \sum_{j=0}^{K} \frac{K!}{(K-j)!j!} \cdot \frac{(|\mathcal{P}|-1)!}{(|\mathcal{P}|-1-j)!}$$

Proposed Search Algorithm:

- ① set $\mathbf{g}[k] = \text{UNK}$, for all $1 \le k \le K$
- ② try each candidate in \mathcal{P} , in each UNK position in \mathbf{g}

The Need for a Greedy Search

- ullet assuming (1) a finite number $|\mathcal{P}|$ of candidate participants,
- and (2) existence of a non-unique UNK participant,
- the number of candidate K-assignments is

$$|\mathbb{G}| = \sum_{j=0}^{K} \frac{K!}{(K-j)!j!} \cdot \frac{(|\mathcal{P}|-1)!}{(|\mathcal{P}|-1-j)!}$$

Proposed Search Algorithm:

- ① set $\mathbf{g}[k] = \text{UNK}$, for all $1 \le k \le K$
- ② try each candidate in \mathcal{P} , in each UNK position in \mathbf{g}

- ullet assuming (1) a finite number $|\mathcal{P}|$ of candidate participants,
- and (2) existence of a non-unique UNK participant,
- the number of candidate K-assignments is

$$|\mathbb{G}| = \sum_{j=0}^{K} \frac{K!}{(K-j)!j!} \cdot \frac{(|\mathcal{P}|-1)!}{(|\mathcal{P}|-1-j)!}$$

Proposed Search Algorithm:

- set $\mathbf{g}[k] = \text{UNK}$, for all $1 \leq k \leq K$
- ② try each candidate in \mathcal{P} , in each UNK position in \mathbf{g}

Experiments

The Need for a Greedy Search

- ullet assuming (1) a finite number $|\mathcal{P}|$ of candidate participants,
- and (2) existence of a non-unique UNK participant,
- the number of candidate K-assignments is

$$|\mathbb{G}| = \sum_{j=0}^{K} \frac{K!}{(K-j)!j!} \cdot \frac{(|\mathcal{P}|-1)!}{(|\mathcal{P}|-1-j)!}$$

Proposed Search Algorithm:

- set $\mathbf{g}[k] = \text{UNK}$, for all $1 \leq k \leq K$
- $oldsymbol{2}$ try each candidate in \mathcal{P} , in each UNK position in $oldsymbol{g}$
- 3 maximize $P(\mathbf{g}|\mathbf{F})$

- ullet assuming (1) a finite number $|\mathcal{P}|$ of candidate participants,
- and (2) existence of a non-unique UNK participant,
- the number of candidate K-assignments is

$$|\mathbb{G}| = \sum_{j=0}^{K} \frac{K!}{(K-j)!j!} \cdot \frac{(|\mathcal{P}|-1)!}{(|\mathcal{P}|-1-j)!}$$

Proposed Search Algorithm:

- set $\mathbf{g}[k] = \text{UNK}$, for all $1 \le k \le K$
- ② try each candidate in \mathcal{P} , in each U_{NK} position in \mathbf{g}
- \odot maximize $P(\mathbf{g}|\mathbf{F})$

The Model $P(\mathbf{g} | \mathbf{F})$

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathcal{G}}{\operatorname{arg \, max}} P(\mathbf{g} | \mathbf{F})$$

$$= \underset{\mathbf{g} \in \mathcal{G}}{\operatorname{arg \, max}} \underbrace{P(\mathbf{g})}_{MM} \underbrace{P(\mathbf{F} | \mathbf{g})}_{BM}$$

$$P(\mathbf{g}) = \prod_{k=1}^{K} P(\mathbf{g}[k])$$

$$(\mathbf{F}|\mathbf{g}) = \prod_{k=1}^{K} P(f_k | \theta_{\mathbf{g}[k]}) \prod_{i \neq k}^{K} P(f_{kj} | \theta_{\mathbf{g}[k], \mathbf{g}[j]})$$

The Model $P(\mathbf{g} | \mathbf{F})$

$$\mathbf{g}^{*} = \underset{\mathbf{g} \in \mathcal{G}}{\operatorname{arg \, max}} P(\mathbf{g} | \mathbf{F})$$

$$= \underset{\mathbf{g} \in \mathcal{G}}{\operatorname{arg \, max}} \underbrace{P(\mathbf{g})}_{MM} \underbrace{P(\mathbf{F} | \mathbf{g})}_{BM}$$

$$P(\mathbf{g}) = \prod_{k=1}^{K} P(\mathbf{g}[k])$$

$$(\mathbf{F}|\mathbf{g}) = \prod_{k=1}^{K} P(f_k | \theta_{\mathbf{g}[k]}) \prod_{i=k}^{K} P(f_{kj} | \theta_{\mathbf{g}[k],\mathbf{g}[j]})$$

Experiments

The Model $P(\mathbf{g} | \mathbf{F})$

$$\mathbf{g}^* = \underset{\mathbf{g} \in \mathcal{G}}{\operatorname{arg \, max}} P(\mathbf{g} | \mathbf{F})$$
$$= \underset{\mathbf{g} \in \mathcal{G}}{\operatorname{arg \, max}} \underbrace{P(\mathbf{g})}_{MM} \underbrace{P(\mathbf{F} | \mathbf{g})}_{BM}$$

$$P(\mathbf{g}) = \prod_{k=1}^{K} P(\mathbf{g}[k])$$

$$P(\mathbf{F}|\mathbf{g}) = \prod_{k=1}^{K} P(f_k | \theta_{\mathbf{g}[k]}) \prod_{i \neq k}^{K} P(f_{kj} | \theta_{\mathbf{g}[k], \mathbf{g}[j]})$$

- ICSI Meeting Corpus (Janin et al, 2003)
 - naturally occurring, $3 \le K \le 9$

$$\mathcal{P} = \{S_1, S_2, \cdots, S_{13}, S_{14}, \text{Unk}\}$$

Introduction

- ICSI Meeting Corpus (Janin et al, 2003)
 - naturally occurring, $3 \le K \le 9$
 - TrainSet: 33 meetings
 - DEVSET: 18 meetings
 - EVALSET: 16 meetings
- 14 participants occur \geq 7 times in TrainSet,

$$\mathcal{P} = \{S_1, S_2, \cdots, S_{13}, S_{14}, \text{Unk}\}$$

time-aligned segmentations for all meetings

- ICSI Meeting Corpus (Janin et al, 2003)
 - naturally occurring, $3 \le K \le 9$
 - TRAINSET: 33 meetings
 - DEVSET: 18 meetings
 - EVALSET: 16 meetings
- 14 participants occur \geq 7 times in TrainSet,

$$\mathcal{P} = \{S_1, S_2, \cdots, S_{13}, S_{14}, \text{Unk}\}$$

- ICSI Meeting Corpus (Janin et al, 2003)
 - naturally occurring, $3 \le K \le 9$
 - TrainSet: 33 meetings
 - DEVSET: 18 meetings
 - EVALSET: 16 meetings
- 14 participants occur \geq 7 times in TrainSet,

$$\mathcal{P} = \{S_1, S_2, \cdots, S_{13}, S_{14}, \text{Unk}\}$$

- time-aligned segmentations for all meetings
 - talkspurts, from ICSI MRDA Corpus (Shriberg et al, 2004)
 - laugh bouts (Laskowski & Burger, 2007)

- ICSI Meeting Corpus (Janin et al, 2003)
 - naturally occurring, $3 \le K \le 9$
 - TrainSet: 33 meetings
 - DEVSET: 18 meetings
 - EVALSET: 16 meetings
- 14 participants occur \geq 7 times in TrainSet,

$$\mathcal{P} = \{S_1, S_2, \cdots, S_{13}, S_{14}, \text{UNK}\}$$

- time-aligned segmentations for all meetings
 - talkspurts, from ICSI MRDA Corpus (Shriberg et al, 2004)
 - laugh bouts (Laskowski & Burger, 2007)

- ICSI Meeting Corpus (Janin et al, 2003)
 - naturally occurring, $3 \le K \le 9$
 - TrainSet: 33 meetings
 - DEVSET: 18 meetings
 - EVALSET: 16 meetings
- 14 participants occur \geq 7 times in TrainSet,

$$\mathcal{P} = \{S_1, S_2, \cdots, S_{13}, S_{14}, \text{Unk}\}$$

- time-aligned segmentations for all meetings
 - talkspurts, from ICSI MRDA Corpus (Shriberg et al, 2004)
 - laugh bouts (Laskowski & Burger, 2007)

- always guessing UNK (majority) class: 22.9%
 - always guessing non-UNK majority class: 11.9%

- always guessing UNK (majority) class: 22.9%
- always guessing non-UNK majority class: 11.9%

- always guessing UNK (majority) class: 22.9%
- always guessing non-UNK majority class: 11.9%

ΔT (ms)	speech
50	55.9

- always guessing UNK (majority) class: 22.9%
- always guessing non-UNK majority class: 11.9%

ΔT (ms)	speech	laughter
50	55.9	36.4

- always guessing UNK (majority) class: 22.9%
- always guessing non-UNK majority class: 11.9%

	ΔT	speech		laughter
	(ms)	all no BCs		laugittei
1	50	55.9	57.6	36.4

- always guessing UNK (majority) class: 22.9%
- always guessing non-UNK majority class: 11.9%

ΔT	speech		laughter
(ms)	all	no BCs	laugittei
50	55.9	57.6	36.4
100	60.2	56.8	42.4
200	60.2	53.4	35.6
400	55.1	58.5	31.4
800	47.5	47.5	38.1
1600	54.2	56.8	32.2

- always guessing UNK (majority) class: 22.9%
- always guessing non-UNK majority class: 11.9%

ΔT	speech		laughter
(ms)	all no BCs		laugittei
50	55.9	57.6	36.4
100	60.2	56.8	42.4
200	60.2	53.4	35.6
400	55.1	58.5	31.4
800	47.5	47.5	38.1
1600	54.2	56.8	32.2

	training	DEVSET	EVALSET
	TRAINSET	69.5	53.9
Problem 1	TRAINSET		57.8
	& DEVSET		37.0
	TRAINSET	29.7	30.4
Problem 2	TRAINSET		34.3
			34.3

- evident: system optimized on Problem 1 for DevSet
- ullet Problem 2 (drawing from ${\mathcal P}$ and permutation) much harder
- additional training data helps

	training	DEVSET	EVALSET
	TRAINSET	69.5	53.9
Problem 1	TRAINSET		57.8
	& DEVSET		51.0
	TRAINSET	29.7	30.4
Problem 2	TRAINSET		34.3
	& DevSet		34.3

- evident: system optimized on Problem 1 for DevSet
- ullet Problem 2 (drawing from ${\cal P}$ and permutation) much harder
- additional training data helps

	training	DEVSET	EVALSET
	TRAINSET	69.5	53.9
Problem 1	TRAINSET		57.8
	& DEVSET		37.0
	TRAINSET	29.7	30.4
Problem 2	TRAINSET		34.3
			54.5

- evident: system optimized on Problem 1 for DevSet
- ullet Problem 2 (drawing from ${\cal P}$ and permutation) much harder
- additional training data helps

	training	DevSet	EVALSET
	TRAINSET	69.5	53.9
Problem 1	TRAINSET	_	57.8
	& DevSet		31.0
	TRAINSET	29.7	30.4
Problem 2	TRAINSET		34.3
	& DevSet		34.3

- evident: system optimized on Problem 1 for DevSet
- ullet Problem 2 (drawing from ${\mathcal P}$ and permutation) much harder
- additional training data helps

Introduction

- relative talkspurt deployment timing preferences
 - are predicted by participant identity
 - are predictive of participant identity (stronger)
- Problem 1, unseen data

Problem 2, unseen data

Conclusions

Introduction

- relative talkspurt deployment timing preferences
 - are predicted by participant identity
 - are predictive of participant identity (stronger)
- Problem 1, unseen data

Problem 2, unseen data

Conclusions

Introduction

- relative talkspurt deployment timing preferences
 - are predicted by participant identity
 - are predictive of participant identity (stronger)
- Problem 1, unseen data

Problem 2, unseen data

Introduction

- relative talkspurt deployment timing preferences
 - are predicted by participant identity
 - are predictive of participant identity (stronger)
- Problem 1, unseen data

Problem 2, unseen data

- relative talkspurt deployment timing preferences
 - are predicted by participant identity
 - are predictive of participant identity (stronger)
- Problem 1, unseen data
 - participant identities are known
 - must only be shuffled
 - correct prediction in over half of the cases
- Problem 2, unseen data

- relative talkspurt deployment timing preferences
 - are predicted by participant identity
 - are predictive of participant identity (stronger)
- Problem 1, unseen data
 - participant identities are known
 - must only be shuffled
 - correct prediction in over half of the cases
- Problem 2, unseen data

- relative talkspurt deployment timing preferences
 - are predicted by participant identity
 - are predictive of participant identity (stronger)
- Problem 1, unseen data
 - participant identities are known
 - must only be shuffled
 - correct prediction in over half of the cases
- Problem 2, unseen data

- relative talkspurt deployment timing preferences
 - are predicted by participant identity
 - are predictive of participant identity (stronger)
- Problem 1, unseen data
 - participant identities are known
 - must only be shuffled
 - correct prediction in over half of the cases
- Problem 2, unseen data
 - participant identities are **not** known
 - must be drawn from larger set and shuffled
 - correct prediction in over a third of the cases

- relative talkspurt deployment timing preferences
 - are predicted by participant identity
 - are predictive of participant identity (stronger)
- Problem 1, unseen data
 - participant identities are known
 - must only be shuffled
 - correct prediction in over half of the cases
- Problem 2, unseen data
 - participant identities are not known
 - must be drawn from larger set and shuffled
 - correct prediction in over a third of the cases

- relative talkspurt deployment timing preferences
 - are predicted by participant identity
 - are predictive of participant identity (stronger)
- Problem 1, unseen data
 - participant identities are known
 - must only be shuffled
 - correct prediction in over half of the cases
- Problem 2, unseen data
 - participant identities are not known
 - must be drawn from larger set and shuffled
 - correct prediction in over a third of the cases

Observed Performance

◆□ → ◆□ → ◆ = → ◆ = → へ Q (

Thank you for attending.

Thanks also to:

• Liz Shriberg, for access to the ICSI MRDA Corpus

