

Carnegie Mellon

COMPARING THE CONTRIBUTIONS OF CONTEXT AND PROSODY IN TEXT-INDEPENDENT DIALOG ACT RECOGNITION

Kornel Laskowski¹ and Elizabeth Shriberg^{2,3}

Language Technologies Institute, Carnegie Mellon University, Pittsburgh PA, USA
 SRI International, Menlo Park CA, USA
 International Computer Science Institute, Berkeley CA, USA

Goal & Approach

Text-independent dialog act (DA) segmentation and classification in **privacy-sensitive** settings.

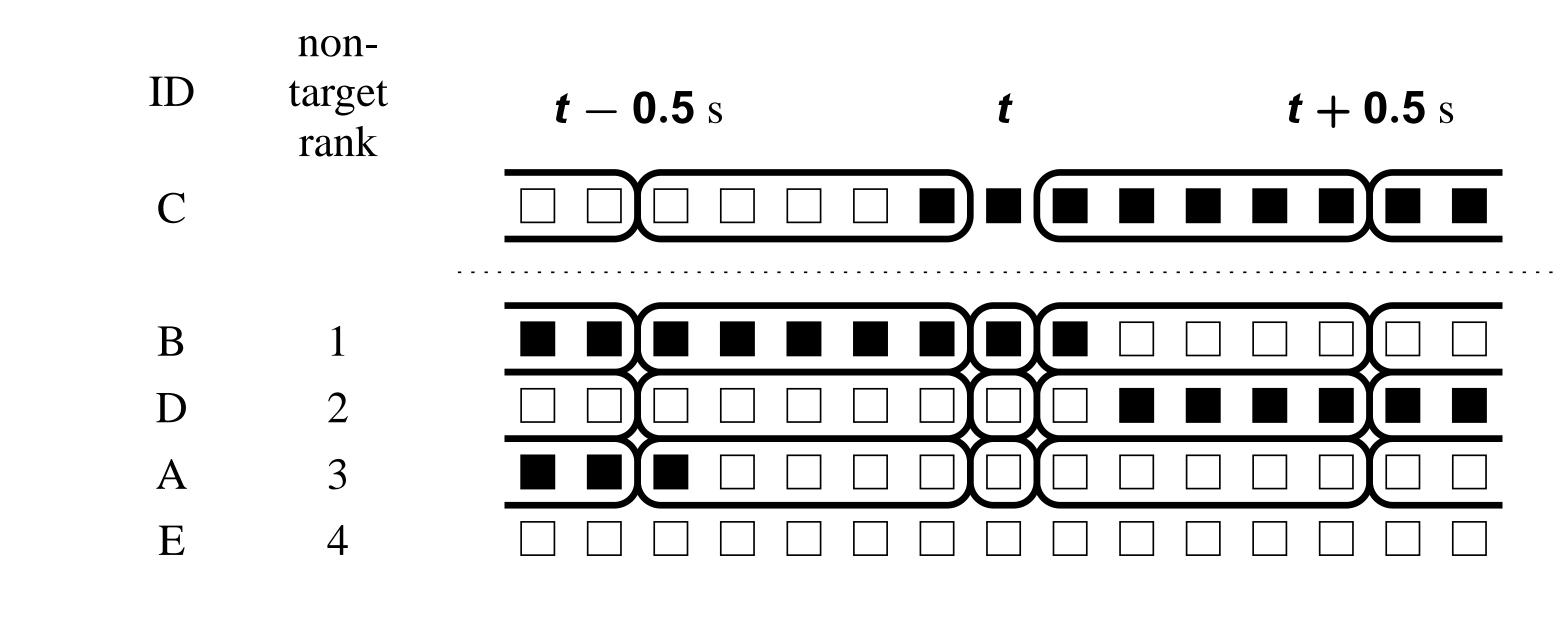
(cannot compute ASR features → no words or word boundaries)

HOW?

- anchor feature computation to unrecognized speech
- construct an acoustic ASR-like decoder, whose states are
- not phonemic sub-segment units
- but prosodic sub-phrase units
- vocabulary consists not of words, but of dialog acts

Questions

- O. (implicit) Is DA recognition at all **possible**, using only features describing loudness, intonation, voice quality, speaking rate, intra-talkspurt location, and inter-participant timing?
- 1. How much does context versus prosody contribute to text-independent DA recognition?
- 2. To what extent are context and prosody features complementary and does this depend on DA type?
- 3. How do these text-independent systems compare to a system that uses the words?


HMM Topology

- any DA subtopology can transition to any DA subtopology
- DA subtopologies connected via inter-DA gaps
- total number of states: 1220
- transitions probabilities trained from forced-alignment
- speech state emissions modeled with GMMs

NON-DA-TERMINAL TALKSPURT GAP TALKSPURT FRAGMENT INTRA-DA TALKSPURT GAP TALKSPURT FRAGMENT TO OTHER DAS TO OTHER DAS

Speech/Non-speech Context Features

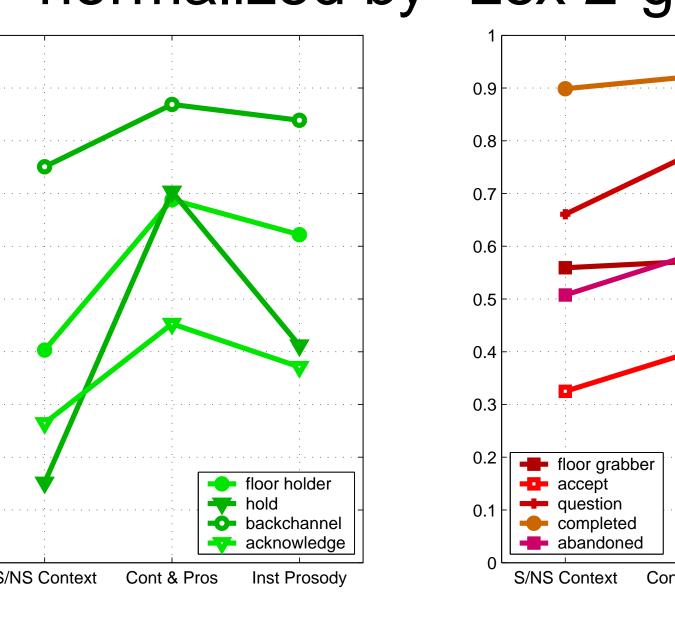
- 10-second S/NS posterior context, in 0.5-second tiles
- target speaker and 3 locally most talkative interlocutors

nstantaneous Prosody Features

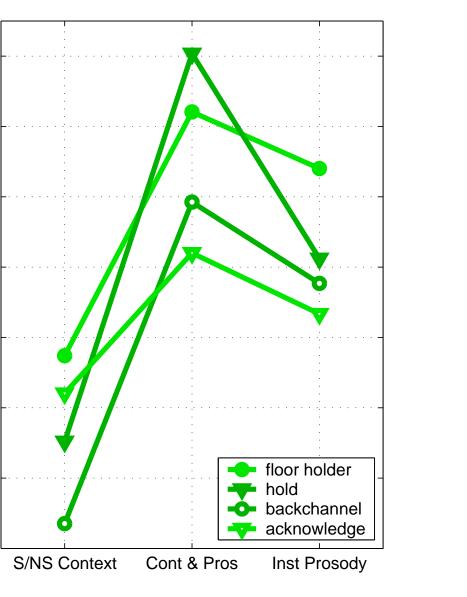
- frame-level features for target speaker only
- features computed only for speech states
- 12 features:
- energy
- delta-energy
- normalized autocorrelation maximum
- Mel-filterbank magnitude cosine difference
- Mel-filterbank log-magnitude cosine difference
- 7 FFV intonation filterbank features

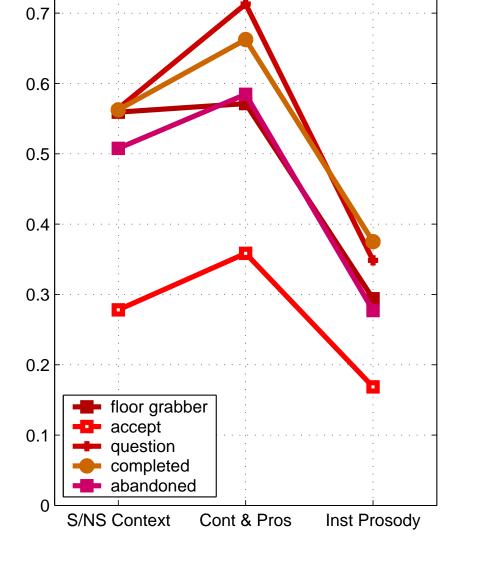
Findings

- 1. Speech/non-speech context and instantaneous prosody achieve comparable performance.
- \longrightarrow mean *F*-scores using prosody are \approx 2.5% higher.
- 2. The two feature streams are (\sim perfectly) complementary.
- \longrightarrow mean F-scores (excl. effect of topology) are additive.
- Combined performance approaches lexical system performance in several cases.
- DA types: questions, 78%rel; backchannels, 87%rel.
- DA boundary types: compl, 92%rel; interr, 131%rel.


Conclusions & Impact

- I. Automatic DA recognition is possible in privacy-sensitive settings; the presented techniques achieve surprisingly good results without words or word boundary information.
- II. Conversational prosody can be modeled directly, using standard acoustic modeling techniques and HMM decoding, independently of automatic speech recognition.
- III. Instantaneous prosody and speech/non-speech context provide important and complementary DA-discriminative information, whose joint utility approaches that of lexical information.


Experiments on ICSI Meeting Corpus, F-scores on EVALSET (11 meetings)


		Topo	Context		Prosody		Cont & Pros		Lex 2-grams	
			g-Opt	c-Opt	g-Opt	c-Opt	g-Opt	c-Opt	g-Opt	c-Opt
DA Types										
mean	prior	21.8	29.3	31.1	31.5	33.7	38.4	39.8	53.0	54.5
floor holder	2.7%	11.3	24.0	25.6	37.7	39.5	43.5	43.7	62.3	63.5
hold	0.3%	†0.0	8.5	†6.3	25.0	17.1	31.8	‡29.2	33.9	‡41.5
floor grabber	0.6%	0.0	12.5	† 13.7	7.2	7.2	11.6	†14.0	24.5	24.5
backchannel	2.8%	†57.1	54.7	† 57.8	48.0	64.6	64.5	66.9	77.0	77.0
acknowledge	1.5%	3.2	15.7	14.9	19.0	20.9	24.2	25.6	56.3	56.3
accept	1.1%	2.6	12.3	†13.0	9.5	8.9	14.0	†16.0	38.1	40.0
statement	84.5%	†91.4	82.3	†91.3	85.8	‡91.8	87.3	‡91.8	91.9	93.3
question	6.6%	8.8	23.9	26.3	19.6	19.6	30.4	30.9	39.8	39.8
DA Termination	Types									
completed		53.1	58.3	62.1	59.1	59.1	63.4	63.7	68.0	69.1
interrupted		0.0	22.6	22.6	10.5	11.8	26.0	28.7	21.9	21.9
abandoned		0.0	6.6	† 6.6	2.4	3.6	5.4	† 7.6	11.4	13.0

text-independent c-Opt performance, normalized by "Lex 2-gram"

text-independent c-Opt performance, normalized by "Lex 2-gram" and excluding effect of "Topo"

