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Goal

Improve speaker identification by modeling intonation bias
(the distribution of speaker-preferred pitch change in octaves per 8 ms).

HOW?

Compute the fundamental frequency variation (FFV) spectrum
and model alongside “traditional” spectral (MFCC) features, ie.

log P (MFCC13 ⊕ FFV7|M) = log P (MFCC13, FFV7|Mstacked)

or

log P (MFCC13 ⊗ FFV7|M) = λMFCC13 log P (MFCC13|MMFCC13)

+λFFV7 log P (FFV7|MFFV7)

Baseline GMM-MFCC SID System
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• 32 ms frames every 8 ms, low-energy frames excluded
• MFCC13 ≡ {MFCC0, MFCC1, · · · , MFCC12}
• cepstral mean subtraction
• Gaussian mixture models (4096)
• ML estimation of universal background model (UBM)
• MAP estimation of speaker GMM means

Data

• Wall Street Journal, LDC CSR-I (WSJ0) & LDC CSR-II (WSJ1)

• read sentences and some spontaneously produced utterances

• 16 kHz wideband audio (Sennheiser HMD414)

• 102 female speakers & 95 male speakers
TRAINSET: 5 minutes of speech per speaker
TESTSET: 3 trials × 1 minute of speech per speaker

• UBMSET: remaining speakers’ speech (70 hours)

What Is the Fundamental Frequency Variation Spectrum?

• dot product of two spectra, FL and FR ...

−16 −6−4 0 +4+6 +16

• ... after dilating one of FL and FR by factor 2ρ

• FFV spectrum is value of dot product over range of ρ
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• after 7-filter filterbank, FFV7 ≡ {FFV−3, · · · , FFV+3}

Findings

dummy

1.Raw FFV7 features offer better than chance performance.

2.Sphering FFV7 features dramatically improves performance.

3.Model-space combination of MFCC13 with sphered FFV7 yields
54% and 40% relative error reductions for female and male
speakers, respectively.

4.Model-space combinations of MFCC13 with FFV7 relative to that
with MFCC7 yields 24–35% and 26–30% relative error
reductions for female and male speakers, respectively.

5.Feature-space combinations of MFCC13 with FFV7 offer no
benefit.

Experiments (identification accuracies, %)

System Female Male

MFCC13 82.0 92.3

MFCC7 43.8 68.8

FFV7 27.8 45.3

PCA(MFCC13) 84.3 91.2

PCA(MFCC7) 44.4 65.2

PCA(FFV7) 62.7 64.2

MFCC13 ⊗ MFCC7 86.3 92.6

MFCC13 ⊗ FFV7 80.7 92.3

PCA(MFCC13) ⊗ MFCC7 87.3 92.3

PCA(MFCC13) ⊗ FFV7 84.6 92.6
MFCC13 ⊗ PCA(MFCC7) 89.2 93.7

MFCC13 ⊗ PCA(FFV7) 91.8 95.4
PCA(MFCC13) ⊗ PCA(MFCC7) 86.9 93.0

PCA(MFCC13) ⊗ PCA(FFV7) 91.5 95.1
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