A GEOMETRIC INTERPRETATION OF NON-TARGET-NORMALIZED MAXIMUM CROSS-CHANNEL CORRELATION FOR VOCAL ACTIVITY DETECTION IN MEETINGS

Kornel Laskowski

interACT, Universität Karlsruhe, Karlsruhe, Germany kornel@ira.uka.de

Tanja Schultz

interACT, Carnegie Mellon University, Pittsburgh PA, USA tanja@cs.cmu.edu

PROBLEM: WHO spoke WHEN in headset microphone recordings of meetings.

MAIN ISSUE: Crosstalk.

SOLUTION: Train full covariance Gaussian speech/non-speech models on the *test data*.

BUT: Need an unsupervised initial label assignment algorithm.

Signal at source s(t) has power:

$$\wp_s = \int_{\Omega} s^2(t) \, dt$$

Signal at microphone *k*:

$$m_{k}(t) = A_{k} \left(\frac{1}{d_{k}} s \left(t - \frac{d_{k}}{c} \right) + \eta_{k}(t) \right)$$

$$\wp_{\eta_{k}} = \int_{\Omega} \eta_{k}^{2}(t) dt$$

Cross-correlation between channels j and k:

$$\varphi_{jk}(\tau) = \int_{\Omega} m_j(t) \cdot m_k(t-\tau) dt$$

$$= \int_{\Omega} \frac{A_j A_k}{d_j d_k} s\left(t - \frac{d_j}{c}\right) s\left(t - \frac{d_k}{c} - \tau\right) dt$$

Maximum cross-correlation:

$$\max_{\tau} \varphi_{jk}(\tau) = \varphi_{jk} \left(\frac{d_{j} - d_{k}}{c} \right)$$

$$= \frac{A_{j} A_{k}}{d_{j} d_{k}} \int_{\Omega} s^{2} \left(t - \frac{d_{j}}{c} \right) dt$$

$$\cong \frac{A_{j} A_{k}}{d_{j} d_{k}} \mathcal{D}_{s}$$

To describe channel *k*, **Non-Target Normalize** the maximum cross-correlation:

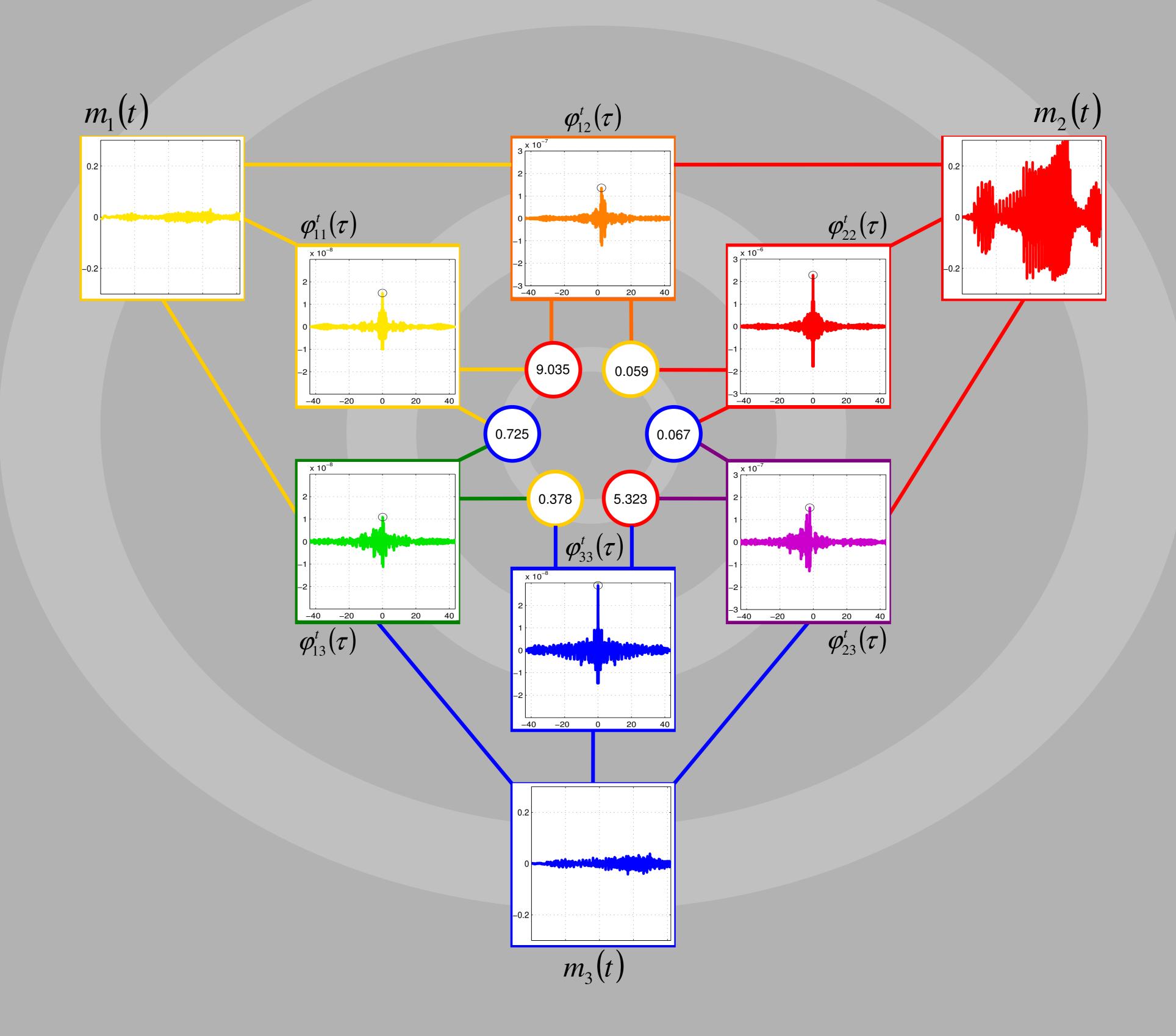
$$\frac{\max_{\tau} \varphi_{jk}(\tau)}{\varphi_{jj}(0)} = \frac{\frac{A_{j}A_{k}}{d_{j}d_{k}} \mathcal{O}_{s}}{A_{j}^{2} \left(\frac{1}{d_{j}^{2}} \mathcal{O}_{s} + \mathcal{O}_{\eta_{j}}\right)}$$

$$= \frac{A_{k}}{A_{j}} \cdot \left[1 - \frac{\mathcal{O}_{\eta_{j}}}{\frac{1}{d_{j}^{2}} \mathcal{O}_{s} + \mathcal{O}_{\eta_{j}}}\right] \cdot \frac{d_{j}}{d_{k}}$$

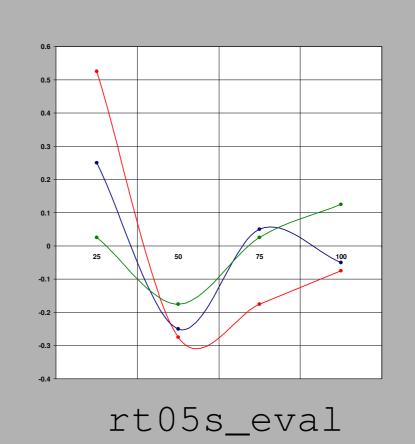
$$\approx \frac{d_{j}}{d_{k}}$$

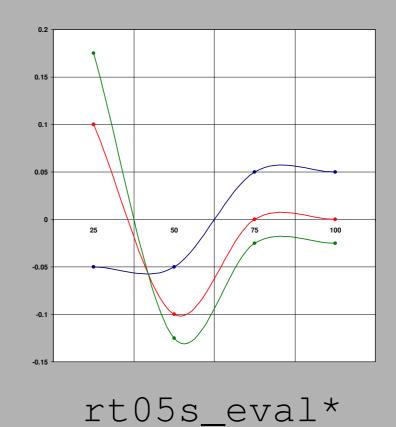
When

$$\prod_{k=1}^{K-1} \prod_{j \neq k} d_j > d_k \quad \text{then} \quad \prod_{j \neq k} \frac{d_j}{d_k} > 1$$


and

$$\log \prod_{i \neq k} \frac{d_j}{d_k} = \sum_{i \neq k} \log \frac{\max_{\tau} \varphi_{jk}^t(\tau)}{\varphi_{ii}^t(0)} > 0$$


Therefore, the initial label assignment criterion


$$\mathbf{q}_{t}[k] = \begin{cases} speech & \text{if } \sum_{j \neq k} \log \frac{\max \varphi_{jk}^{t}(\tau)}{\varphi_{jj}^{t}(0)} > 0 \\ nonspeech & \text{otherwise} \end{cases}$$

assigns speech to channel k when the distance from the source to microphone k is smaller than the geometric mean of the distances from the source to all the remaining microphones

IMPORTANT: Ω must be large enough to accommodate the true inter-speaker separation

