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A Multi-Party Conversation

a social event

of duration T

of K > 2 participants

the predominant activity is talk

What shapes participants’ deployment of talk?
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The Vocal Interaction Chronogram Q

(Chapple, 1940; Dabbs & Ruback, 1987)
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time t,−→

� ≡ Speaking, � ≡ notSpeaking

elides content (“what?”)
expresses form, via evolving local context

chronemics (“when?”)
attribution (“who?”)
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Modeling Chronograms

Given a chronogram Q, want the probability P (Q).

What does this mean?

Constrastive speech exchange systems (Sacks et al, 1974):

conversation

lecture

formal debate

ritual
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Why Model Chronograms?

1 P (Q) can represent a time- independent and participant-
independent prior for speech activity detection

like a language model yields a prior for speech recognition

2 P (Q|G) can yield a similar prior for conversational genre G

allows for inference of “what genre G is this conversation?”

3 P (Q|t) yields a time-dependent prior

allows for inference of “what is happening at instant t?”

4 P (Q|k) yields a participant-dependent prior

allows for inference of “what is the role of participant k?”
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Past Work on Modeling Chronograms

interaction chronography (Chapple, 1939; Chapple, 1949)

modeling in dialogue: K = 2

telecomminications (Norwine & Murphy, 1938; Brady, 1969)
sociolinguistics (Jaffe & Feldstein, 1970)
psycholinguistics (Dabbs & Ruback, 1987)
dialogue systems (cf. Raux, 2008)

modeling in multi-party settings: K > 2

qualitative: Conversation Analysis (Sacks et al, 1974)
quantitative: THIS THESIS
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How to Model Multi-Party Chronograms?

That depends very much on the task.

1 acoustic detection
1 speech
2 laughter

2 intent recognition
1 dialog acts
2 attempts to amuse

3 participant characterization
1 diffuse social status
2 assigned role
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SPEECH
DETECTION
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The Goal of Speech Activity Detection (SAD)

Given multichannel nearfield audio X:
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Produce multi-participant speech chronogram Q :
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Prior Research in SAD in Multi-Party Meetings

nearfield, HMM-based speech activity detection (Acero, 1994)

in meetings: ASR segmentation (Pfau, Ellis & Stolcke, 2001)

crosstalk is the most serious problem

in meetings: multiple microphone states

3 states (Huang & Harper, 2005)
4 states (Wrigley et al, 2005)

in meetings: crosstalk suppression

energy normalization (Boakye & Stolcke, 2006)
echo cancellation (Dines et al, 2006)

all of this work decodes participants one at a time
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The Standard SAD Baseline

hidden Markov model decoder

topology enforced minimum duration constraints

16 ms frame step
500 ms for speech �

500 ms for non-speech �

acoustic model

32 ms frame size
log-energy, MFCCs, ∆s, ∆∆s (39)
Gaussian mixture model (GMM) emissions
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The Crosstalk Problem
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mn036
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mn015

fe004

me012
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How Might Chronogram Modeling Help?

Detection is the inference of the chronogram:

P (Q|X) ∝ P (X|Q) · P (Q)

1 treat Q as a vector-valued process:

· · · , qt−1 =









�

�

�

�









, qt =









�

�

�

�









, qt+1 =









�

�

�

�









, · · ·

2 assume process is 1st-order Markovian:

P (Q) =
T
∏

t=1

P (qt |qt−1)

K. Laskowski Vocal Interaction in Multi-Party Conversation 13



Prolegomena Acoustic Detection Intent Recognition Participant Characterization Summary

The Multi-Participant State Space

if the topology T, of N states, for a single participant is

then the K -participant topology is the Cartesian product of T
q ∈ T× T× · · · × T

the number of multi-participant states is NK
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Joint Transition Model: Degree of Overlap

Want the transition from qt−1 to qt to be:

invariant to participant index rotation

independent of number K of participants

3 replace q with ‖q‖, the number of speaking participants
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Joint Transition Model: Extended Degree of Overlap

Unfortunately,
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Joint Acoustic Model

Can assume multi-channel acoustics to be independent,

P (X|Q) =
K
∏

k=1

P (X [k] |Q [k])

but crosstalk proves that they are not.

The covariance matrix Σ of log-energy

has size K × K

off-diagonal entries are non-zero

off-diagonal entries generalize poorly

depend on room acoustics
depend on inter-participant proximity
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Two-Pass Decoding

A solution to this problem is to:

1 obtain models on test conversation
2 high-precision first pass (Laskowski & Schultz, 2004; 2006)

Non-Target-Normalization of Cross-Correlation Maxima
compute cross-correlation maxima for all channel pairs
can infer relative geometry of all participants

3 train full-covariance log-energy model (from scratch)

4 interpolate with supervised single-participant models
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Classification error on EvalSet

8.68
8.13

4.67

3.95 4.06

16ms 100ms +JTM +JAM +DUR

11.9 %rel
0.47 %abs

6.6 %rel

4.62 %abs
53.2 %rel
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Summary

1 Chronograms make it easy to model joint behavior.

2 This enables control over hypothesized degree of overlap.

participants take turns to talk

3 Limiting potential overlap reduces impact of crosstalk.

4 Error rates reduced by 40-70% relative to standard baseline.

K. Laskowski Vocal Interaction in Multi-Party Conversation 20



Prolegomena Acoustic Detection Intent Recognition Participant Characterization Summary

LAUGHTER
DETECTION
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Laughter is Surprisingly Frequent

what else are participants doing (than can be heard)?

analysis in ICSI Meeting Corpus (67 hours of conversation)

laughter is (Laskowski & Burger, 2007):

the most frequently transcribed non-verbal vocalization
>13,000 bouts of laughter in total
accounts for 9% of all vocal effort
bouts containing some voicing: 66%
bouts containing no voicing: 34%
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Laughter Detection Results, Briefly

extend 2-class SAD topology to 3-class topology

achieves F -scores in the range 30-50%

ERR = misses + false alarms of about 20-30%
higher than reported for the 4000 most audible voiced bouts
EERs < 10% (Truong & van Leeuwen, 2007; Knox et al, 2008)

obtained F = 47.7% only available baseline for all laughter

joint modeling improves F -scores only by ≈ 2%abs

and only for small topologies
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Why Laughter Detection Poorer than Speech Detection

1 laughter not very confusable with speech
2 laughter most confusable with silence

laughter syllables contain long intervening pauses
also, unvoiced syllables sound just like breathing

3 highest F -scores achieved by extending minimum duration
constraints

well beyond the most likely durations of laugh bouts

4 large topologies prohibit joint participant decoding

5 also: joint participant decoding of only limited viability

participants wait their turn to talk
participants do not wait their turn to laugh
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DIALOG
ACT

RECOGNITION
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Time-Dependent Modeling of Chronograms

condition transition probabilities at instant t:

not only on whether participants are talking or not talking
but on what they are trying to achieve by talking
−→ inference of intent
encoded in content-independent dialog act (DA) type

e.g., statements, questions, backchannels

enables text-independent DA recognition
(Laskowski & Shriberg, 2009; 2010)

assign to each instant t, at which a participant is talking,

a DA type
optionally, a DA boundary type

recognition ≡ segmentation AND classification
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Prior Research on Dialog Act Recognition

lots of work in meetings, e.g.

Ang, Liu & Shriberg, ICASSP 2005.
Ji & Bilmes, ICASSP 2005.
Zimmermann, Stolcke & Shriberg, ICASSP 2006.
Dielmann & Renals, MLMI 2007.

relying on one or more of

true DA boundaries (i.e., DA classification only)
word identities (true or ASR)
word boundaries (true or ASR)

work in which DA boundaries, word boundaries, and word
identities are not assumed had not been done
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DA Types in ICSI Meetings

Propositional Content DA Types

statement, s (85%)

question, q (6.6%)

“Short” DA Types

Feedback Types (5.4%)

backchannel, b (2.8%)

acknowledgment, bk (1.5%)

assert, aa (1.1%)

Floor Mechanism Types (3.6%)

floor holder, fh (2.7%)

floor grabber, fg (0.6%)

hold, h (0.3%)
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The Single-Participant DA State Space

one DA-specific sub-topology for each of 8 DA types

fully connected via silence sub-topologies

s

q

h fh

fg

bk

baa
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A DA Sub-Topology

DA-terminal TSF

subtopology
subtopologies

to other DA type

topology

non-DA-terminal TSF

subtopologies

intra-DA gap
subtopologysubtopology

from other DA type

inter-DA gap
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Time-Dependent Modeling of Chronograms

single-participant state space consists of hundreds of states

therefore, model participant transitions independently

but capture a local chronogram snapshop as an emission

OTH2:

OTH1:

SPKR:

OTH3:

OTH4:

T/2T/2

K -independence: retain only 3 most talkative interlocutors

rotation invariance: rotate interlocutors by talkativity rank
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The Probability of Speaking Near DA Types

upper panel: most talkative interlocutor

lower panel: target participant producing the DA

statement floor grabber
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Average 8-class F -scores, EvalSet

54.5

39.8
33.731.1

21.8

TOPO
+ CHRONOGRAM

+ PROSODY + TRUE WORDS
TOPO

+ PROSODY
TOPO

+ CHRONOGRAM
TOPOTOPO
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Punctuation F -scores, EvalSet

TOPO
+ CHRONOGRAM

+ PROSODY + TRUE WORDS
TOPO

+ PROSODY
TOPO

+ CHRONOGRAM
TOPOTOPO

53.9
68.2 62.6 68.6 71.3

K. Laskowski Vocal Interaction in Multi-Party Conversation 34



Prolegomena Acoustic Detection Intent Recognition Participant Characterization Summary

Summary

1 local snapshots of speech chronograms correlate with
production of specific dialog act types

2 correlation sufficiently strong to form the basis of a
text-independent DA recognizer

3 local snapshots of speech chronograms complementary with
prosodic features

4 for several dialog act types and dialog act boundary types,
performance approaches that using models of manually
transcribed word sequences
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HUMOR
DETECTION
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Why Care About Humor?

talk produced not only to communicate facts or control floor

also to regulate socio-emotional state of interlocutors

humor qualifies seriousness of propositional content

only prior research in meetings (Clark & Popescu-Belis, 2004)
indicated detectability not above chance
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Humor Annotation in ICSI Meetings

both statements (s) and questions (q) license the optional j

attempts to amuse or attempts at sarcasm

accounts for 0.6% of speech by time
break j out as a 9th DA type
then run DA recognition, as shown earlier
score only detection of j
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Humor Detection Error Rates, EvalSet

TOPO TOPO
+ TRUE WORDS

TOPO
+ SPEECH

23.7 19.4

71.4
83.3

94.2

TOPO
+ LAUGHTER

TOPO
+ SPEECH

+ LAUGHTER

laughter chronograms = best single source of information
for detecting humor

combination with speech chronograms leads to improvement

combination with lexical system leads to no improvement
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Interlocutor Probability of Laughing
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Interlocutor Probability of Laughing
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Target Speaker Probability of Laughing
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How well do we do with laughter only from the target speaker?

ERR = 31% rather than 23.7%
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Summary

speech chronograms play an important role in
text-independent DA recognition

text-independent: without using words

system approaches performance achievable of a
text-dependent system

laughter chronograms play a crucial role in detection of
attempts to amuse

in either text-independent or text-dependent systems

jokers, in work-place conversations, appear to signal that they
have joked by laughing themselves
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STATUS
CLASSIFICATION
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What can be said of individuals?

observing only the vocal interaction chronogram
(Laskowski, Ostendorf & Schultz, 2007; 2008)

K. Laskowski Vocal Interaction in Multi-Party Conversation 44



Prolegomena Acoustic Detection Intent Recognition Participant Characterization Summary

Prior Research

static characterization of meeting participants

dominance rankings: Rienks & Heylen, 2005
influence rankings: Rienks et al., 2006

static characterization of radio talk show participants

roles: Vinciarelli, 2007

dynamic characterization of meeting participants

roles: Banerjee & Rudnicky, 2004
roles: Zancanaro et al., 2006
roles: Rienks et al., 2006

lots of work in social psychology, for dialogue

human resource allocation
diagnosis of psychological disorders
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Modeling Individual Participation

1 assume participant behavior to be conditionally independent,
given prior joint participant behavior

P (qt |qt−1) =

K
∏

k=1

P (qt [k] |qt−1)

2 infer model for each participant, given test conversation

3 extract specific probabilities as features

4 model using independent Gaussian emission probabilities
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Features F Describing Participant Classes

1 probability of vocalizing (V)

2 probability of initiating vocalization (VI) in prior silence

3 probability of continuing vocalization (VC) in prior non-overlap

4 probability of initiating overlap (OI) in prior non-overlap

5 probability of continuing overlap (OC) in prior overlap
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Features F Describing Participant Classes
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3 probability of continuing vocalization (VC) in prior non-overlap

4 probability of initiating overlap (OI) in prior non-overlap

5 probability of continuing overlap (OC) in prior overlap

k

f V
k
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Features F Describing Participant Classes
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2 probability of initiating vocalization (VI) in prior silence

3 probability of continuing vocalization (VC) in prior non-overlap

4 probability of initiating overlap (OI) in prior non-overlap

5 probability of continuing overlap (OC) in prior overlap

k

f OI
k ,j

j
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Features F Describing Participant Classes

1 probability of vocalizing (V)

2 probability of initiating vocalization (VI) in prior silence

3 probability of continuing vocalization (VC) in prior non-overlap

4 probability of initiating overlap (OI) in prior non-overlap

5 probability of continuing overlap (OC) in prior overlap

k

j

f OC
k ,j
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What Participant Classes Can We Identify?

ICSI Meeting Corpus

naturally occurring meetings

participants self-reported as one of three of:

professor (Prof)
possessing PhD (PhD)
graduate students (Stud)

−→ organizational seniority

67 meetings of one of three types:

professor-student discussions (Bed)
annotation discussions (Bmr)
research discussions (Bro)

presumably, people behave differently in different settings
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Seniority Classification Accuracy

736761
45

CONDITIONED
ON INFERRED

MEETING TYPE

CONDITIONED
ON TRUE

MEETING TYPE

GLOBAL
MODELS

GUESSING
PRIORS

1st-best feature type: continuation of overlap

2nd-best feature type: initiation of overlap

3rd-best feature type: total speaking time proportion
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Seniority Level Feature Distributions
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ROLE
CLASSIFICATION
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Assigned Role in Meetings

Can we detect a role given to a participant, independent of
their diffuse status characteristics?

AMI Meeting Corpus

always K = 4 participants
always 4 roles

project manager (PM)
marketing expert (ME)
user interface designer (UI)
industrial designed (ID)

classification paradigm identical to seniority classification,

except that roles are mutually exclusive

classification: 53% accuracy (guessing priors: 25%)

detection of PM: 75% accuracy
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Feature Distributions for Finding Project Managers
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Participant Characterization Summary

aspects of chronogram patterns correlated with
characterizations of individual participants

diffuse characteristics, e.g. seniority
(temporarily) assigned roles

correlation sufficiently strong to allow for inference of
participant type

first baselines for both text-independent tasks
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Conclusions

1 the chronogram is a deceptively sparse representation
2 appears to contain very rich information

particularly that information which is not explicitly stated

3 it makes it easy to consider participants’ joint behavior

vocal behavior readily synchronizable across participants

4 chronograms are amenable to various modeling alternatives,
leading to successful inference

1 time- and participant-indendent: detection of vocal activity
2 time-dependent: recognition of intent
3 participant-dependent: characterization of participants
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Contributions

1 explicit framework and techniques for modeling chronograms

in a variety of ways, depending on application
shown to corroborate many findings in the social sciences

2 a text-independent conversation understanding system

allowing inference of many aspects of conversation
without ever needing to recognize a word

3 first-ever text-independent baselines for several tasks

detection of all laughter
segmentation and classification of dialog acts
detection of attempts to amuse
classification of (tacit) participant seniority
classification of assigned participant role
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Potential Future Impact

1 it is now possible to automatically compare conversations

across genres
across cultures
across languages

2 it is now possible to perform large-scale, automated validation
of the qualitative findings of

conversation analysis
social psychology
anthropology
and others ...

3 merging conversational content with conversation form is
promising

4 many of the presented systems are amenable to immediate
improvement
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THANK YOU.

Special thanks to: Anton Batliner, Alan Black, Susi Burger,
Jaime Carbonell, Jens Edlund, Christian Fügen, Mattias Heldner,
Qin Jin, Rob Malkin, Florian Metze, Mari Ostendorf, Matthias
Paulik, Tanja Schultz, Liz Shriberg, Richard Stern, Ashish
Venugopal, Stephan Vogel, Alex Waibel & Mattias Wölfel.
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