
Introduction SC/¬SC Prediction Experiments Conclusions

Computing the Fundamental Frequency

Variation Spectrum in Conversational
Spoken Dialogue Systems

Kornel Laskowskia,b,
Matthias Wölfelb, Mattias Heldnerc & Jens Edlundc

aCMU, Pittsburgh PA, USA
bUKA(TH), Karlsruhe, Germany

cKTH, Stockholm, Sweden

2 July, 2008

K. Laskowski, M. Wölfel, M. Heldner, J. Edlund Acoustics 2008, Paris, France



Introduction SC/¬SC Prediction Experiments Conclusions

Fundamental Frequency (F0) Variation (FFV)

how does F0 vary in time?

FFV: ongoing work, building on ICASSP 2008 and Speech
Prosody 2008

OUR ULTIMATE GOAL: ability to automatically learn
prosodic sequences characterizing various phenomena
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Canonical Measurement of F0 Variation

1 estimate frame-level autocorrelation

2 find local maxima

3 identify best maximum via dynamic programming across
multiple frames

4 median filter maxima across multiple frames

5 syllabify speech via ASR or landmark detection

6 fit linear model acros multiple frames in same syllable

7 estimate speaker’s baseline pitch across multiple frames

8 normalize out baseline
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Wish List

Would like

a representation which is:

continuous: not undefined in unvoiced regions
instantaneous: no long-distance constraints
distributed: vector-valued rather than scalar-valued
sparse: minimally redundant

and which:

exhibits speaker-independence: no normalization necessary
enjoys perceptual relevance: variation in octaves per time
lends itself to a wealth of ASR HMM modeling techniques

FFV appears to satisfy all these constraints/requirements
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Applications in Speech Technology

identification of places to use back-channel feedback

classification of rhetorical relations

interpretation of discourse markers

dialogue act tagging

identification of speech repairs

here, prediction of speaker change in conversational spoken
dialogue systems
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Outline

1. Introduction & Motivation

2. Speaker-Change Prediction

3. Windowing Experiments

4. Conclusions

K. Laskowski, M. Wölfel, M. Heldner, J. Edlund Acoustics 2008, Paris, France



Introduction SC/¬SC Prediction Experiments Conclusions

Speaker-Change Prediction in Dialogue Systems

in other words: is the speaker finished?

study how humans behave, towards humans

learn from what actually happens: no need to label data

500 ms

f

T t
g ,V

g

T t
g ,N

t

T t
f ,N

Lt =

{

SC if T t
f ,N

− T t
g ,N < 0

¬SC, otherwise
(1)
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Assessing Performance

FALSE POSITIVE RATE
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receiver operating characteristic (ROC)
curves: true vs false positive rate

performance of random guessing: line of
no discrimination

discrimination: area A below the ROC
curve, 0≤A≤1

in this work: area A between the ROC
curve and the line of no discrimination,
0≤A≤1

2
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Data

interactive human-human dialogues

Swedish Map Task Corpus:

Duration Dialogue role g
Data Set

(mn:ss) speakers # EOTs # SCs

DevSet 77:40 F4,F5,M2,M3 480 222
EvalSet 60:39 F1,F2,F3,M1 317 149
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System Architecture

5.

7.

4.

3.

2.

1.

0.

6.

SAD

AUDIO CAPTURE

PREEMPHASIS

WHITENING

FILTERBANK

F0 VARIATION

WINDOWING

LIKELIHOOD

CLASSIFICATION
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Step 2: Windowing (& FFT Computation)

5.

7.

4.

3.

2.

1.

0.

6.

SAD

AUDIO CAPTURE

PREEMPHASIS

WHITENING

FILTERBANK

F0 VARIATION

LIKELIHOOD

CLASSIFICATION

WINDOWING

1 Spectral estimation over left and right
portions of analysis frame.
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Step 3: F0 Variation (FFV) Computation
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FILTERBANK

WINDOWING
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F0 VARIATION

1 Dilate left FFT, dot product with right
FFT; & vice versa. (ICASSP’2008)

2 Maximum over resulting spectrum
represents change in octaves per second.
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Step 4: Application of Filterbank

5.

7.

4.

3.

2.

1.

0.

6.

SAD

AUDIO CAPTURE

PREEMPHASIS

WHITENING

WINDOWING

LIKELIHOOD

CLASSIFICATION

F0 VARIATION

FILTERBANK

1 Compress spectral representation to
7-element vector. (SpeechProsody’2008)
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Step 6: Modeling

5.

7.

4.

3.

2.

1.

0.

6.

SAD

AUDIO CAPTURE

PREEMPHASIS

WHITENING

WINDOWING

F0 VARIATION

FILTERBANK

LIKELIHOOD

CLASSIFICATION

1 For each class (SC/¬SC), train 10
HMMs.

2 Maximum likelihood classification.

3 → 100 candidate dividing hyperplanes.

4 Compute the mean/min/max
discrimination over these 100.

5 Compute the single hyperplane (“prod”)
between 2 class products of 10 models
each.
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Focus of This Work

5.
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WINDOWING

In this work, investigate sensitivity of
speaker-change prediction performance
on windowing policy
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Two Experiments

Observation: Baseline asymmetric windows are known to have
poor frequency resolution.

1 Keep window separation fixed; increase overlap to symmetrize.

2 Keep overlap fixed; increase window separation to symmetrize.
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Experiment 1

keep window maxima a constant tsep apart

less asymmetry ↔ more window support overlap
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Experiment 1

keep window maxima a constant tsep apart
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Experiment 1

keep window maxima a constant tsep apart

less asymmetry ↔ more window support overlap
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Experiment 1

keep window maxima a constant tsep apart

less asymmetry ↔ more window support overlap
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Experiment 1

keep window maxima a constant tsep apart

less asymmetry ↔ more window support overlap
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Experiment 1: Results
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symmetric windows appear to lead to:

lower ROC discrimination than baseline, in all cases
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Experiment 2
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Conclusions

tsep: separation between window maxima

tfra: duration of analysis frame

1 when tsep > 1
3tfra, symmetric-support windows appear best

2 when tsep < 1
3tfra, first priority should be to limit overlap in

support to a maximum of tsep at the expense of symmetry
if necessary

3 results suggest that better ROC discrimination may be
possible when symmetric-support windows are placed even
further apart in time than tried here
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Thanks for attending.

(kornel@cs.cmu.edu)
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