Computing the Fundamental Frequency Variation Spectrum in Conversational Spoken Dialogue Systems

Kornel Laskowski^{a,b}. Matthias Wölfel^b. Mattias Heldner^c & Jens Edlund^c

> ^aCMU, Pittsburgh PA, USA ^bUKA(TH), Karlsruhe, Germany ^cKTH, Stockholm, Sweden

> > 2 July, 2008

Fundamental Frequency (F0) Variation (FFV)

- how does F0 vary in time?
- FFV: ongoing work, building on ICASSP 2008 and Speech Prosody 2008
- OUR ULTIMATE GOAL: ability to automatically learn prosodic sequences characterizing various phenomena

- estimate frame-level autocorrelation

- estimate frame-level autocorrelation
- find local maxima

- estimate frame-level autocorrelation
- find local maxima
- identify best maximum via dynamic programming across multiple frames

- estimate frame-level autocorrelation
- find local maxima
- identify best maximum via dynamic programming across multiple frames
- median filter maxima across multiple frames

- estimate frame-level autocorrelation
- find local maxima
- identify best maximum via dynamic programming across multiple frames
- median filter maxima across multiple frames
- syllabify speech via ASR or landmark detection

- estimate frame-level autocorrelation
- find local maxima
- identify best maximum via dynamic programming across multiple frames
- median filter maxima across multiple frames
- syllabify speech via ASR or landmark detection
- fit linear model acros multiple frames in same syllable

- estimate frame-level autocorrelation
- find local maxima
- identify best maximum via dynamic programming across multiple frames
- median filter maxima across multiple frames
- syllabify speech via ASR or landmark detection
- fit linear model acros multiple frames in same syllable
- o estimate speaker's baseline pitch across multiple frames

- estimate frame-level autocorrelation
- find local maxima
- identify best maximum via dynamic programming across multiple frames
- median filter maxima across multiple frames
- syllabify speech via ASR or landmark detection
- fit linear model acros multiple frames in same syllable
- o estimate speaker's baseline pitch across multiple frames
- normalize out baseline

Would like

- a representation which is:
 - continuous: not undefined in unvoiced regions
- Illistantanteous. No long-distance constraints
 - a sparse: minimally resturblant
- and which

• FFV appears to satisfy all these constraints/requirements

Would like

- a representation which is:
 - continuous: not undefined in unvoiced regions
 - instantaneous: no long-distance constraints
 - distributed: vector-valued rather than scalar-valued
 - sparse: minimally redundant
- and which

• FFV appears to satisfy all these constraints/requirements

Would like

- a representation which is:
 - continuous: not undefined in unvoiced regions
 - instantaneous: no long-distance constraints

Would like

- a representation which is:
 - continuous: not undefined in unvoiced regions
 - instantaneous: no long-distance constraints
 - distributed: vector-valued rather than scalar-valued

Would like

- a representation which is:
 - continuous: not undefined in unvoiced regions
 - instantaneous: no long-distance constraints
 - distributed: vector-valued rather than scalar-valued
 - sparse: minimally redundant

Would like

- a representation which is:
 - continuous: not undefined in unvoiced regions
 - instantaneous: no long-distance constraints
 - distributed: vector-valued rather than scalar-valued
 - sparse: minimally redundant
- and which:
 - exhibits speaker-independence: no normalization necessary

Would like

- a representation which is:
 - continuous: not undefined in unvoiced regions
 - instantaneous: no long-distance constraints
 - distributed: vector-valued rather than scalar-valued
 - sparse: minimally redundant
- and which:
 - exhibits speaker-independence: no normalization necessary
 - enjoys perceptual relevance: variation in octaves per time

Introduction

Would like

- a representation which is:
 - continuous: not undefined in unvoiced regions
 - instantaneous: no long-distance constraints
 - distributed: vector-valued rather than scalar-valued
 - sparse: minimally redundant
- and which:
 - exhibits speaker-independence: no normalization necessary
 - enjoys perceptual relevance: variation in octaves per time
 - lends itself to a wealth of ASR HMM modeling techniques

Would like

- a representation which is:
 - continuous: not undefined in unvoiced regions
 - instantaneous: no long-distance constraints
 - distributed: vector-valued rather than scalar-valued
 - sparse: minimally redundant
- and which:
 - exhibits speaker-independence: no normalization necessary
 - enjoys perceptual relevance: variation in octaves per time
 - lends itself to a wealth of ASR HMM modeling techniques
- FFV appears to satisfy all these constraints/requirements

- identification of places to use back-channel feedback
- classification of rhetorical relations
- interpretation of discourse markers
- dialogue act tagging
- identification of speech repairs
- here, prediction of speaker change in conversational spoken dialogue systems

- identification of places to use back-channel feedback

- identification of places to use back-channel feedback
- classification of rhetorical relations

- identification of places to use back-channel feedback
- classification of rhetorical relations
- interpretation of discourse markers

- identification of places to use back-channel feedback
- classification of rhetorical relations
- interpretation of discourse markers
- dialogue act tagging

- identification of places to use back-channel feedback
- classification of rhetorical relations
- interpretation of discourse markers
- dialogue act tagging
- identification of speech repairs

- identification of places to use back-channel feedback
- classification of rhetorical relations
- interpretation of discourse markers
- dialogue act tagging
- identification of speech repairs
- here, prediction of speaker change in conversational spoken dialogue systems

Experiments

Outline

- 1. Introduction & Motivation
- 2. Speaker-Change Prediction
- 3. Windowing Experiments
- 4. Conclusions

- in other words: is the speaker finished?
- study how humans behave, towards humans
- learn from what actually happens: no need to label data

$$L_{t} = \begin{cases} SC & \text{if } T_{f,\mathcal{N}}^{t} - T_{g,\mathcal{N}}^{t} < 0 \\ \neg SC, & \text{otherwise} \end{cases}$$
 (1)

Assessing Performance

- receiver operating characteristic (ROC) curves: true vs false positive rate
- performance of random guessing: line of no discrimination
- discrimination: area A below the ROC curve, $0 \le A \le 1$
- in this work: area A between the ROC curve and the *line of no discrimination*, $0 \le A \le \frac{1}{2}$

Assessing Performance

- receiver operating characteristic (ROC) curves: true vs false positive rate
- performance of random guessing: line of no discrimination
- discrimination: area A below the ROC curve, 0≤A≤1
- in this work: area A between the ROC curve and the line of no discrimination, $0 \le A \le \frac{1}{2}$

- receiver operating characteristic (ROC) curves: true vs false positive rate
- performance of random guessing: line of no discrimination
- discrimination: area A below the ROC curve, 0<A<1
- in this work: area A between the ROC curve and the line of no discrimination, $0 \le A \le \frac{1}{2}$

Assessing Performance

- receiver operating characteristic (ROC) curves: true vs false positive rate
- performance of random guessing: line of no discrimination
- discrimination: area A below the ROC curve, 0<A<1
- in this work: area A between the ROC curve and the *line of no discrimination*, $0 \le A \le \frac{1}{2}$

- interactive human-human dialogues
- Swedish Map Task Corpus:

Data Set	Duration	Dialogue role g		
	(mn:ss)	speakers	# EOTs	# SCs
DEVSET	77:40	F4,F5,M2,M3	480	222
EVALSET	60:39	F1,F2,F3,M1	317	149

Introduction

Spectral estimation over left and right portions of analysis frame.

Spectral estimation over left and right portions of analysis frame.

- Dilate left FFT, dot product with right FFT; & vice versa. (ICASSP'2008)
- Maximum over resulting spectrum represents change in octaves per second

Step 3: F0 Variation (FFV) Computation

- Dilate left FFT, dot product with right FFT; & vice versa. (ICASSP'2008)
- Maximum over resulting spectrum represents change in octaves per second.

Compress spectral representation to 7-element vector. (SpeechProsody'2008)

- For each class (SC/¬SC), train 10 HMMs.
- Maximum likelihood classification.
- \bigcirc \rightarrow 100 candidate dividing hyperplanes.
- Compute the mean/min/max discrimination over these 100.
- Compute the single hyperplane ("prod") between 2 class products of 10 models each.

- For each class (SC/¬SC), train 10 HMMs.
- Maximum likelihood classification.

- Compute the mean/min/max discrimination over these 100.
- Compute the single hyperplane ("prod") between 2 class products of 10 models each.

Step 6: Modeling

- For each class (SC/¬SC), train 10 HMMs.
- Maximum likelihood classification.
- \bigcirc \rightarrow 100 candidate dividing hyperplanes.
- Compute the mean/min/max discrimination over these 100.
- Ompute the single hyperplane ("prod") between 2 class products of 10 models each.

Step 6: Modeling

• For each class (SC/ \neg SC), train 10 HMMs.

- Maximum likelihood classification.
- \odot \rightarrow 100 candidate dividing hyperplanes.
- Compute the mean/min/max discrimination over these 100.

Step 6: Modeling

- For each class (SC/¬SC), train 10 HMMs.
- Maximum likelihood classification.
- $\mathbf{0} \rightarrow 100$ candidate dividing hyperplanes.
- Compute the mean/min/max discrimination over these 100.
- Compute the single hyperplane ("prod") between 2 class products of 10 models each.

 In this work, investigate sensitivity of speaker-change prediction performance on windowing policy

Observation: Baseline asymmetric windows are known to have poor frequency resolution.

- Keep window separation fixed; increase overlap to symmetrize.
- Keep overlap fixed; increase window separation to symmetrize.

- keep window maxima a constant t_{sep} apart

- keep window maxima a constant t_{sep} apart

- keep window maxima a constant t_{sep} apart

- keep window maxima a constant t_{sep} apart

- keep window maxima a constant t_{sep} apart

- keep window maxima a constant t_{sep} apart

baseline

symmetric windows appear to lead to:

symmetric

lower ROC discrimination than baseline, in all cases

WINDOW SHAPE

- symmetric windows appear to lead to:

- symmetric windows appear to lead to:
 - lower ROC discrimination than baseline, in all cases

- keep window support overlap constant
- less asymmetry → window maxima further apart

- keep window support overlap constant
- less asymmetry → window maxima further apart

Introduction

- keep window support overlap constant
- less asymmetry → window maxima further apart

- keep window support overlap constant
- less asymmetry → window maxima further apart

Introduction

- keep window support overlap constant
- less asymmetry → window maxima further apart

₀ Laseline

--> more sym -->

symmetric windows appear to lead to:

symmetric

WINDOW SHAPE

Experiment 2: Results

- symmetric windows appear to lead to:
 - higher ROC discrimination than baseline, in all cases
 - smaller variability between best and worst partitions

Experiment 2: Results

- symmetric windows appear to lead to:
 - higher ROC discrimination than baseline, in all cases
 - smaller variability between best and worst partitions

Experiment 2: Results

- symmetric windows appear to lead to:
 - higher ROC discrimination than baseline, in all cases
 - smaller variability between best and worst partitions

- t_{sep} : separation between window maxima
- t_{fra}: duration of analysis frame
- **1** when $t_{sep} > \frac{1}{3}t_{fra}$, symmetric-support windows appear best
- ② when $t_{sep} < \frac{1}{3}t_{fra}$, first priority should be **to limit overlap in support to a maximum of** t_{sep} at the expense of symmetry if necessary
- results suggest that better ROC discrimination may be possible when symmetric-support windows are placed even further apart in time than tried here

Introduction

Thanks for attending.

(kornel@cs.cmu.edu)