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Abstract

Stochastic turn-taking models provide stationary estimates of

the probability of a conversant’s incipient speech activity, given

their own and their interlocutors’ recent speech activity. Ex-

isting research suggests that such models may be conversant-

specific, and even conversant-discriminative. The present work

establishes this explicitly. It is shown that: (1) the conditioning

context can be relaxed to exploit speech activity which need not

be attributed to specific interlocutors; (2) the same duration of

context can yield better results with a more statistically sound

framework; and (3) results further improve asymptotically with

the consideration of longer conditioning histories. The findings

indicate that inter-conversant variability is a major contributor

of variability across stochastic turn-taking models.

Index Terms: stochastic turn-taking, speech activity, speaker

discrimination, speaking style

1. Introduction

Stochastic turn-taking (STT) models [1] are models of incipi-

ent, participant-attributed, binary-valued speech activity, condi-

tioned on the recent conversational past. In their simplest in-

carnation, the conditioning history is limited to binary-valued

speech activity. In that setting, they are most conveniently

thought of as predictors of the chronograms [2] of conversa-

tions, causally from left to right; an example of such a chrono-

gram is shown in Figure 1.
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Figure 1: A vocal interaction record [3], or speech/non-speech

chronogram [2], for a three-participant conversation whose du-

ration is T 100-ms frames. Time shown from left to right, with

frames numbered 1 through T ; � and � represent speech and

non-speech, respectively.

Since their inception [4, 5] for two-party dialogue, bigram-

based time-independent STT models have been extended to

handle more than two conversants [3, 6], to condition predic-

tions on long history durations [7], and to incrementally adapt

to any time-dependent vagaries of conversations [8]. It is cur-

rently believed that STT model predictions are robust across

participants and types of conversations, although not necessar-

ily across corpus types and/or speech activity annotation or de-

tection methodologies. What is less well understood is what

accounts for the variability observed across STT models.

The current article is an effort to explain some of that

variability, by asking the question

Q1. Does the identity of conversants in the training material

affect model function?.

An affirmative answer would imply that the amount of intra-

conversant variability is lower than the amount of inter-

conversant variability, and vice versa. Work on time-dependent

STT models [8] showed that individual test conversations de-

viate from model expectations, and that the deviation gap can

be closed by incrementally adapting the model to the test con-

versation over time. This suggests the existence of inter- and/or

intra- conversant variability, but does not evaluate their relative

magnitudes.

To provide an answer to Q1, the current article applies time-

independent, participant-specific models to chronograms of test

conversations in which some of those same participants took

part. It adopts the speaker attribution and speaker detection

frameworks of [9], which also modeled chronograms but differ-

ently. It achieves error rates on completely held-out conversa-

tions which are 45.0%rel and 36.4%rel lower, on the attribution

and detection tasks respectively, than reported in [9]. This result

meets a more stringent criterion than necessary to answer Q1 in

the affirmative. It permits concluding that STT models exhibit

considerably more inter-speaker that intra-speaker variability.

2. Data

As conversations, the experiments use 67 naturally-occurring,

spontaneous-speech meetings of the ICSI Meeting Corpus [10],

of type Bed, Bmr, and Bro. 33 meetings comprise the TRAIN-

SET, while the DEVSET and EVALSET consist of 18 and 16

meetings, respectively. A chronogram of the type shown in Fig-

ure 1 is produced using the forced-alignment-mediated start and

end times of lexical tokens transcribed manually from the close-

talk channel of each participant. These start and end time are

provided in the ICSI MRDA Corpus [11].

The number K of conversants is specific to each conver-

sation, varying between 3 and 9. 14 of the participants in the

67 meetings each took part in a sufficient number of meetings

to warrant training a conversant-specific model. The remainder

of the participants became instances of the UNK speaker, for

which a single separate model was trained in each experiment.

3. Baseline

The baseline system in the current article is taken directly from

[9], where a speaker attribution task and a speaker detection

task were treated separately. For the attribution task, the par-

ticipants to a test conversation were assumed to be known in

advance (also permitting the error-free inference of the type u
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of the test conversation, with u ∈ {Bed, Bmr, Bro}). This re-

quired only that their optimal ordering, with respect to the rows

of the test-conversation chronogram, be inferred. The inference

was achieved using a behavior model of the group as a whole.

In the speaker attribution task, the identities of the partic-

ipants to a test conversation of K participants were assumed

not known a priori. Therefore, a group of K identities had to

first be drawn from a population of putative conversants, using

a membership model. The behavior model from the speaker at-

tribution task was then applied to find the optimal permutation

of each selected group.
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Figure 2: An instant t of a chronogram, in (a). The single event

conditioned on the one-participant context for “Ann” is shown

in (b), with the two events conditioned on the two alternative

two-participant contexts for “Ann” are shown in (c). Panels (e)

through (j) depict the situation for “Bob” and “Cid”. It is note-

worthy that in the baseline, the number of modeled events for

each participant depends on the number of other participants.

Briefly, the behavior model for both tasks modeled partici-

pants in the context of their interaction with each of their inter-

locutors, taken one at a time. Instant t in the ficticious three-

party conversation chronogram shown in Figure 2(a), for each

of its three participants, yields one one-participant event (pan-

els (b), (e), and (h)) and two two-partipants events (panels (c),

(d), (f), (g), (i), and (j)). The features used by the baseline sys-

tem are the probabilities of such events, modeled using Gaus-

sian distributions. The overall training procedure for the task at

hand is shown in Algorithm 1. Testing is conducted as in Algo-

rithm 2. Both algorithms are shorthand for much more complete

descriptions in [9].

4. Methods

Applying STT models to the tasks of speaker attribution and

speaker detection permits replacing Algorithm 1 with Algo-

rihm 3 and Algorithm 2 with Algorithm 4. This section de-

scribes the details in and differences among these algorithms;

care has been taken to make the transition in small deltas, per-

mitting an evaluation of the replacement of individual aspects.

Algorithm 1: Training in the baseline system

for each conversationM in TRAINSET do
K = number of participants inM.

Form K-row chronogram C.

Compute K prior probabilities V from C.

Compute 2K × 2K transition probabilities A from

C.

Infer Ising model I from A.

Accum K one-participant features from V and I
intoHk.

Accum K × (K − 1) two-participant features from

I intoHkk′ .

for each of N participants in population P do
Build GaussianHk.

for each of (N − 1) interlocutors do
Build GaussianHkk′ .

Algorithm 2: Testing in the baseline system

K = number of participants in test conversation.

Form K-row chronogram C.

Compute K prior probabilities V from C.

Compute 2K × 2K transition probabilities A from C.

Infer Ising model I from A.

Form K-row chronogram C.

Compute K prior probabilities V from C.

Compute 2K × 2K transition probabilities A from C.

Infer Ising model I from A.

Compute K one-participant features from V and I.

Compute K × (K − 1) two-participant features from I.

for each possible group of K in N do

for each possible permutation of K in K do
Score one-participant features usingHk.

Score two-participant features usingHkk′ .

Compute joint likelihood.

Pick group and permutation which maximizes joint

likelihood.

4.1. Disattributing interlocutor context

An important benefit of STT models is that they permit easy

extension to arbitrarily long conditioning histories; by con-

trast, the baseline system characterized participants in terms of

chronograms chopped up into intervals of two 100-ms frames.

To make this benefit available to the task at hand, the baseline

models have to be structurally simplified. In this article, that

simplification comes from modeling participants in the context

of a generic interlocutor, rather than in the context of each spe-

cific, named interlocutor. Panels (a), (d) and (g) in Figure 3

depict the creation of a 2-row chronogram for each row of the

chronogram in Figure 2(a). The second row in each 2-row

chronogram, which represents a virtual generic interlocutor la-

beled “oth” in Figure 3, contains the exclusive-OR of the speech

activity states of the first-row-participant’s actual interlocutors.

This manipulation, shown to be useful in turn-taking modeling

[7], yields only K one-participant events (panels (b), (e), and
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(h) in Figure 3) and K two-participant events (panels (c), (f),

and (i)).

Algorithm 3: Training in the STT system

for each conversationM in TRAINSET do
K = number of participants inM.

Form K-row chronogram C.

Form K 2-row chronograms Ck from C.

for each k ∈ [1,K] do
Accum conditional counts of first row of Ck into

Hk.

for each of N participants in population P do
Build N -gramHk.

Algorithm 4: Testing in the STT system

K = number of participants in test conversation.

Form K-row chronogram C.

Form K 2-row chronograms Ck.

for each possible group of K in N do

for each possible permutation of K in K do
Score test Ck usingHk.

Accumulate joint likelihood.

Pick group and permutation which maximizes joint

likelihood.

A consequence of a transition to 2-row chronograms is that

the Ising model formalism [12] employed in [9] is no longer

necessary for the estimation of interlocutor-row-conditioned

likelihoods.
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? ? ?Bob Bob Bob

? ? ?Cid Cid Cid
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oth
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t− 1 t t− 1 t t− 1 t

t− 1 t t− 1 t t− 1 t

Figure 3: The same instant as in Figure 2(a); for each partici-

pant, the 3-row chronogram has been collapsed into a two-row

chronogram (panels (b), (d), and (g)) whose second row depicts

the exclusive-OR of that participant’s interlocutors’ speech ac-

tivity states. The number of events modeled for each participant

is not a function of the number of participants.

4.2. Direct first-order model evaluation

Provided that a K-row multi-party chronogram can be concep-

tually replaced with K 2-row “dialogue” chronograms, any con-

versant can be modeled using a structure which is independent

of the number and identities of their interlocutors. STT models

have precisely this characteristic; since they provide the likeli-

hood of a chronogram row, there is no need on an intermediate

modeling structure.

4.3. Extension to longer conditioning histories

Finally, provided that 2-row chronograms can be successfully

modeled using first-order STT models, they can also be mod-

eled using larger-order STT models. In the current article, con-

texts as long as 1 second, consisting of 10 100-ms frames, are

considered. A conditionally independent STT N -gram model

with this context is a 21-gram.

5. Experiments

5.1. Known conversation type and known particant group

Knowing the conversation type permits selecting training ma-

terial from conversations of that type alone, while knowing the

identities of the conversants yields the speaker attribution task.

For a test conversation of K participants, the search space con-

sists of K! equi-probable orderings. As in [9], these are evalu-

ated exhaustively.

Figure 4 shows the DEVSET classification error rate of the

baseline [9] (as described in Section 3); it also shows the per-

formance of that baseline with only maximum likelihood model

estimation, e.g. no smoothing (“noS”). Smoothing was removed

to more easily assess subsequent developments; it can be seen

however that the smoothing proposed in [9] had reduced the

baseline error rate by almost 10%abs.

LONGBL STTCHRAVF AVM JMSnoS noI noV

Sec. 4.3Sec. 4.2Sec. 4.1Sec. 3

39.8

22.0

49.2 48.3
44.9

34.7 34.7
39.0

37.3
40.7

Figure 4: Classification error rates (%) for DEVSET on the

exhaustive-search speaker attribution task, at various stages dur-

ing development. “BL”: baseline, “noS”: BL without smooth-

ing, “AVF”: noS with averaging interlocutor features during

testing, “AVM”: AVF with averaging interlocutor features dur-

ing training, “CHR”: AVM with features drawn from 2-row

chronograms, “noI”: CHR with features estimated not using the

Ising model formalism, “noV”: noI with unigram probability-

of-speaking features removed, “STT”: bigram stochastic turn

taking models applied directly to chronograms, “JMS”: STT

with Jelinek-Mercer smoothing, “LONG”: JMS with greater-

that-first-order models.

The elimination of interlocutor identities, in the features

for individual participants, is shown in columns 3 through 6 of

Figure 4. The averaging over interlocutors of two-participant

features, during testing (“AVF”) and also training (“AVM”),

yields modest reductions over “noS” of 4.3%abs. Drawing two-

participant features from two-row chronograms, representing

each actual participant in the context of a virtual interlocutor
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(representing the inclusive-OR of the speech activity of actual

interlocutors) reduces error rates by more than 10%abs. This

permits for the elimination of Ising model estimation in the pro-

cessing pipeline of [9], in system “noI”.

Finally, column 7 in Figure 4 indicates that excluding the

single unigram feature per participant, namely the probabil-

ity of speaking, is deleterious; it leads to a 6.0%abs increase

in DEVSET error rates. The reason for this modification is

to directly compare with the stochastic turn-taking model ap-

proach, in which single models are N -grams of a fixed order.

First-order N -gram STT models (column 8), without Jelinek-

Mercer interpolation [13], are seen to be only 1.7%abs better.

However, interpolation (column 9) reduces error rates by an

additional 1.7%abs. Extending the conditioning history to 10

frames of context (column 10) reduces the error rate by a fur-

ther 15.3%abs. The 10th column, denoted “LONG”, represents

a 44.7%rel reduction of DEVSET error from the baseline.

5.2. Known type but unknown group

When the identifies in the conversation group are unknown, they

must first be drawn from a population of N putative partici-

pants. This requires drawing of a combination of K items from

N , prior to considering the K! permutations of each draw, thus

making exhaustive search generally intractable. For this reason,

a greedy algorithm is proposed for the speaker detection task.

At each iteration: (1) the lowest negative log-likelihood in the

{ test conversation participants }× { available models } search

matrix is selected; and (2) the model is excluded from subse-

quent iterations unless it is the UNK participant model.

This greedy algorithm was first applied to the speaker de-

tection task of the previous subsection, to estimate the cost

of not performing an exhaustive search. Figure 5 shows the

exhaustive-search baseline (“BL”) and the exhaustive-search

STT-based system (“EXH”) error rates in the first two columns;

it also shows the performance of the greedy-search STT-based

system (“GR”). As can be seen, “GR” incurs unacceptably

higher error rates. It appears that this is due largely to the fact

that some test conversation participants are easier to predict than

others, and these are picked off first by the algorithm. To ad-

dress this problem, a “GRZ” variant was proposed which first

Z-normalizes the search matrix test-participant columns. On

DEVSET, “GRZ” outperforms exhaustive search in the unnor-

malized search matrix.

“GRZ” was then applied to the speaker detection task.

When the test conversation type is known, the population of

training participants is smaller than when the type is unknown.

Column 5 in Figure 5 shows that error rates are approximately

7%abs higher than for the speaker attribution task. ([9] did not

contain a comparable evaluation.)

5.3. Unknown type and unknown group

When also the conversation type is unknown, all training con-

versation types must be considered when a new test conversa-

tion is analyzed. “GRZ” for this case, shown in column seven of

Figure 5, is higher than in the preceding subsection. However, it

is already an improvement over the baseline (“BL”, column six).

Results can be improved further by requiring that the system

implicitly identify the conversation type, via an argmax versus

a sum in the Bayesian computations leading to the search ma-

trix. The reason that the resulting “GRZT” system is better than

“GRZ” is that it forbids combinations of participants which at-

tended different types of training conversations. As can be seen,

“GRZT” reduces the DEVSET error rate from 61.0% in [9] to

BL

KNOWN GROUP
KNOWN TYPE KNOWN TYPE

UNKNOWN GROUP

BLGR GRZ GRZEXH GRZ GRZT

UNKNOWN GROUP
UNKNOWN TYPE

61.0

72.5

50.0

39.8

27.5

22.0
18.6

33.3

26.3

40.2
36.4

48.0

32.2

46.1
41.5

52.9

Figure 5: Classification error rates (%) for DEVSET and

EVALSET in white and black, respectively. “BL”: base-

line, “EXH”: exhaustive search, “GR”: greedy search, “GRZ”:

greedy search with Z-normalization, “GRZT”: greedy search

with Z-normalization and implicit conversation type selection.

32.2%, by 47.2%rel.

6. Discussion

6.1. Generalization

As can be seen in Figure 5, the performance trends observed on

DEVSET are approximately the same as those on the completely

held-out EVALSET. On the exhaustive-search speaker attribu-

tion task, the EVALSET error rate is reduced from 50.0% to

27.5%, by 45.0%rel; the reduction on DEVSET was 44.7%rel.

On the greedy-search speaker detection task, the EVALSET er-

ror rate is reduced from 72.5% to 46.1%, by 36.4%rel. This is

considerable, although smaller than the 47.2%rel reduction for

DEVSET. The results suggest that the improvements reported

in this work broadly generalize to unseen data.

6.2. Impact

Although discriminating among conversants was only a means

and not a goal of the current article, it is conceivable that STT

models will in the future be used for discrimination, particularly

in privacy-sensitive or otherwise ablated contexts. The current

work also has the potential to help in the inference of prototyp-

ical conversational behavior styles.

7. Conclusions

This article hypothesized that the variability observed in STT

models trained on speech/non-speech chronograms is due in

large part to inter-conversant variability. Conversant classifi-

cation experiments were conducted to test this hypothesis. On

the attribution and detection tasks, error rates for completely

held-out sets of conversations were shown to be 45.0%rel and

36.4%rel lower than for previously published systems, which

also relied exclusively on chronograms. This indicates that

intra-speaker variability is smaller than inter-speaker variabil-

ity, in the STT model formalism, and entails that conversants

exhibit approximately stationary STT statistics across conversa-

tions. The findings offer promosing avenues for the description

of conversational turn-taking style.
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