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ABSTRACT

Browsing through collections of audio recordings of conversation
nominally relies on the processing of participants’ lexical produc-
tions. The evolving verbal and non-verbal context of those produc-
tions, likely indicative of the degree of participant involvement, is
often ignored. The present work explores the relevance of laughter
to the retrieval of conversation intervals in which the speech of one
or more participants is prosodically or pragmatically marked as in-
volved. Experiments indicate that the relevance of laughter depends
on its temporal distance to the laugher’s speech. The results suggest
that in order to be pertinent to downstream emotion recognition ap-
plications, laughter detection systems must first and foremost detect
that laughter which is most temporally proximate to the laugher’s
speech.

Index Terms— Emotion detection, Laughter modeling, Vocal
activity modeling, Speech retrieval, Meetings.

1. INTRODUCTION

The ability to index and search through audio recordings of multi-
party conversation, and meetings in particular, is becoming increas-
ingly important as the number and size of such collections grow. At
the current time, search through meeting audio is almost entirely re-
stricted to that through the automatically or manually prepared tran-
scripts of what is said, through textual sources derived from them, or
through textual artifacts prepared by the participants themselves [1].

A potentially important capability of conversational audio
browsing is that of identifying intervals based not on what partici-
pants say, but on how emotionally involved they are while speaking.
The analogy of radio summaries of sporting events illustrates that
conversational involvement may be worth retrieving to potential
users. Previous work on involved speech in multiparty meetings
has shown that it is correlated with prosodic variables [2] and man-
ually annotated dialog act types [3], but no system based on such
information has been put forward for its detection and indexing.

To the author’s best knowledge, the only published detector for
involved speech in meetings, whose accuracy significantly exceeds
majority class guessing, is one that identifies intervals containing
involved speech [4]. Its performance relies on the detection of co-
located laughter, defined here to be laughter, from any participant,
found in the temporal vicinity of that speech. Performance has been
shown to be highest when only laughter produced simultaneously
with speech by the same participant, known as speech-laughter [5],
is considered. This presents a problem for fully automatic system
development. A recent study of the occurrence of laughter in meet-

978-1-4244-4296-6/10/$25.00 ©2010 IEEE

5226

ings [6] has shown that speech-laughs account for less than 4% of all
laughter by time, and therefore less than 0.4% of all vocalization ef-
fort by time. Although the detection of laughter is currently gaining
attention [7, 8], this prior makes the successful acoustic treatment of
speech-laughs in the near term unlikely.

The current work explores the detection of intervals containing
involved speech based on only the non-speech laughter produced by
meeting participants. Using data described in Section 2, the results
of [4] are first duplicated in Section 3 as a baseline. Section 4 then
proposes a framework for the analysis of speech and laughter collo-
cation. The experiments in Section 5 indicate that of all non-speech
laughter, voiced laughter which is most proximate to the laugher’s
speech is most salient to the proposed task, and that annotation with
temporal distance improves retrieval scores. These findings, sum-
marized in Section 6, present an important opportunity for future
acoustic laughter detection efforts. At the present time, detection
has focused on those instances of laughter which are transcribed as
isolated utterances [7, 8].

2. DATA

The experiments presented rely on the ICSI Meeting Corpus [9]
which consists of 75 meetings, each with 3 to 9 participants. The
meetings would have occurred even if they were not recorded; to-
gether they comprise 63 hours of longitudinal interaction. The
corpus is accompanied by orthographic transcription, lexical item
forced alignment, and dialog act (DA) annotation [10]. It includes,
per DA, an attribute signaling that the speaker is “more involved
(emotionally or ‘interactively’) [and/or that] there is a higher degree
of interaction by participants who are trying to get the floor” [11].
Also available is a segmentation of laughter and its classification
into voiced and unvoiced bouts [12]. As proposed in [4], the meet-
ings in the corpus are separated into TRAINSET (of 29 meetings),
DEVSET (of 31), and EVALSET (of 15).

For each meeting, three binary human-generated segmentations
are prepared; reference as opposed to automatically inferred seg-
mentations are used in order to quantify the amount of information
which is present, rather than the amount that is detectable using cur-
rent state-of-the-art technologies. These three segmentations are:
(1) speech S, from forced alignment of manually transcribed words
[10]; (2) voiced laughter Ly, from [6, 12]; and (3) involved speech
S1, formed by allowing each lexical item to inherit the involvement
attribute of the dialog act it belongs to. It should be noted that S and
Ly are not disjoint (due to speech-laughs).
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3. BASELINE

All systems in this work model participant-attributed vocal activity
for the detection of intervals containing Sy, regardless of which par-
ticipant produces the latter. The interval size is 60 seconds, informed
by observations in the original description of involvement in this data
[2]. To generate a sufficient amount of exemplars for training, devel-
opment, and testing, an interval step of 15 seconds is used. For each
interval, the baseline system [4] extracts a feature vector f which
consists of the proportion of interval duration for which each partici-
pant vocalizes, given the £y segmentation, and sorted by decreasing
magnitude. The vector is padded with zeros to a length of 9, which
is relevant for those meetings that contain fewer than 9 participants
(the maximum in the ICSI data).

For each interval’s f, a support vector machine trained using
TRAINSET yields a hypothesized label (“containing S;” or “not con-
taining S;”). Forward feature selection is performed by maximizing
either classification accuracy or ['-score, the unweighted harmonic
mean of recall and precision, using DEVSET. This leads to two sys-
tems relying on potentially dissimilar features; where this is the case,
accuracies and F'-scores are reported only for that of the two systems
which has been optimized for the measure in question.

The performance of the baseline is shown in Table 1. Features
drawn from laughter segmentations, and from logical intersections
with laughter segmentations, lead to F'-scores exceeding 50% (ex-
cept the intersection of unvoiced laughter (L) with speech, Ly NS,
which is near-empty). Unvoiced laughter appears to be much less
relevant to this task than does voiced laughter, and features drawn
from the latter often outperform those drawn from all laughter. This
is felicitous, since voiced laughter is acoustically easier to detect [13]
than unvoiced laughter (and hence than all £).

Feature Set Accuracy, % F-Score, %
DEVSET EVALSET | DEVSET EVALSET

guess, priors 60.9 61.2 — —
guess, major. 72.9 73.7 — —
f(S) 74.4 75.3 344 28.0
f(L) 80.4 80.8 64.6 64.8
f(LNS) 81.2 83.3 68.9 70.6
f(LN=S) 80.4 80.8 64.6 64.8
f(Lv) 81.5 81.6 65.1 64.3
f(LyNS) 82.9 85.6 69.5 67.1
f(Ly N=S) 81.5 81.4 65.0 67.1
f(Lu) 76.4 77.4 56.3 55.1
f(LunS) 73.7 72.6 27.6 21.9
f(Ly N-S) 76.4 774 56.3 55.1

Table 1. Baseline system accuracies and F'-scores for retrieval of
60-second meeting intervals containing involved speech, based on
features drawn from logical combinations of the speech S and laugh-
ter £ reference segmentations. Numbers in italics are from [4].

Table 1 also shows that speech-laughs, £y N S, lead to the best
classification accuracies and F'-scores. This is unsurprising, and
such laughter is likely not only to be informative of intervals con-
taining involved speech but also to identify the involved participant.
However, current laughter detection systems do not consider speech-
laughs, and are unlikely to do so in the near term owing to that laugh-
ter type’s infrequence [12]; most such systems focus on a two-way
distinction between speech and laughter, or the two-way distinction
between laughter and silence [7, 8], and are limited to bouts that have
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been transcribed as separate utterances, suggesting that those bouts
may be temporally distant from the laugher’s speech.

The remainder of this work focuses on the much more realistic
expectation of acceptable detection of voiced laughter not produced
simultaneously with speech, i.e. £y N —=S. The experiments rely on
the reference segmentation of this subset of all laughter, produced
using the £y and S segmentation described in Section 2.

4. AN ANALYSIS FRAMEWORK

This work qualifies voiced laughter instants by measuring their tem-
poral proximity to the laugher’s own speech. This is achieved by
masking out (i.e. discarding) voiced laughter which falls outside
of a particular proximity range relative to that speech. Masks are
defined using a segmentation Y, logical AND (Y = Y1 N T2)
and complement (Y' = —Y) operations, and temporal extension
Y' = o (71, Y, 7r). The latter consists of pre-padding “on” inter-
vals in T with 77, seconds and post-padding them with 7r seconds.

Figure 1 depicts the process of isolating laughter which occurs
at least 74 seconds and at most 72 seconds prior to the laugher’s
speech, as well as at least 7/ seconds and at most 755 seconds ante-
rior to the laugher’s speech. The starting point is a speech segmen-
tation S and a voiced laughter segmentation Ly, shown in panel (a).
In panel (b), the temporal extension operator o is applied to S, with
arguments 77 and 77, to produce the intermediate segmentation Y1 ;
its complement is shown as Y2, and identifies instants that occur at
least 7;* seconds before and at least 77 seconds after any speech
from the depicted participant. Panel (c) depicts the construction of
T3, similar to Y1, but with arguments TE and T}§ ; Y3 identifies
those instants that occur at most 72 seconds before and at most 75
seconds after any speech from the same participant. Panel (d) shows
the voiced laughter segmentation Ly, before and after logical AND
with Y4, which is the logical AND of Y5 and Y'3. The resulting Y5
identifies the remaining laughter as specified by the arguments 77,
Th, 72, and 75 .

Three families of masks are proposed: Y*!*¢¢, TPT°% and 795!,

4.1. Masks Ystc®

These masks are at most 1 s in duration. There are 3 subfamilies of
these masks, depending on their location relative to laugher’s speech:

e pre-talkspurt masks, Y3\¢ (1) = —o(r—1,S,7) N
o (1,8,0), consisting of slices of up to 1 second in duration,
at least 7 — 1 seconds before subsequent speech, at most 7
seconds before subsequent speech, and at least 7 seconds
after antecedent speech;

e post-talkspurt masks, Tf,ljff (r) = =o(r,S,7—1) N
o (0,8, 1), consisting of slices of up to 1 second in duration,
at least 7 — 1 seconds after antecedent speech, at most 7 sec-
onds after antecedent speech, and at least 7 seconds before
subsequent speech; and

slice

o inter-talkspurt masks, Ciyrer (7) = -0 (r— 1,8, 7—1) N
o(r,8,0) N o(0,S,7), consisting of slices of 1 second
in duration, at least 7 — 1 seconds after antecedent speech, at
most 7 seconds after antecedent speech, at least 7 — 1 seconds
before subsequent speech, and at most 7 seconds before sub-
sequent speech. The latter category consists of all those slices
that are equally proximate to antecedent and subsequent talk-
spurts.

From these three subfamilies, 2 additional families of masks are
derived by composition.
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Fig. 1. Masking voiced laughter £y with a mask constructed using
speech S; time 7 is shown from left to right. The process of arriving
at the final binary trajectory in panel (d), from the given speech and
laughter segmentations for a particular participant shown in panel
(a), is as described in the text.

4.2. Masks YTP"oF

The first derived family includes instants from the edge of proxi-
mate speech to 7 seconds away from it, defining a cumulative mask
YP"% Three subfamilies are considered:

o pre-talkspurt masks, Y2r0" (1) = \JI,_, Yohice (7');
o post-talkspurt masks, Y00°0 (1) = UL _, T;i}ff (7'); and
o inter-talkspurt masks, Y2\ 7" (1) = UL _, Yilkiee (7).

4.3. Masks T

The second derived family of masks consists of compositions of
Tse which extend from 7 seconds from the edge of proximate
speech to 10 seconds away:

U, T5iee (7);
e post-talkspurt masks, Tzz;fgtt (r) = UT/_T Tf,loff (t'); and

o inter-talkspurt masks, Y&58, (1) = Ui(,):T Tslice (7).

e pre-talkspurt masks, Tg?et (1) =
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Fig. 2. Proportion (in %, along the y-axis) of voiced laughter by
time, per mask Y3/ (7); 7 shown in seconds along the z-axis.
a € {pre,inter, post}.

5. EXPERIMENTS

Figure 2 shows the proportion of voiced laughter found within each
Tse mask, as indexed by temporal distance 7 from speech, for all
three subfamilies of masks (pre, post, inter). As can be seen, the
occurrence of voiced laughter decreases exponentially with temporal
distance away from proximate speech. There is also far more voiced
laughter following speech than preceding it. It appears likely that
that for 7 > 10 seconds the exponential trend observed for all three
of pre-talkspurt, post-talkspurt, and inter-talkspurt voiced laughter
continues, making the amount of voiced non-speech laughter beyond
7 = 10 too sparse for modeling. In the remainder of this paper, only
the slices 7 € [1, 10] are considered; together, they account for 68%
of all voiced non-speech laughter by time.

With this in mind, the experiments of Section 3 are repeated us-
ing only the subset of voiced laughter given by Y/ = YT (1) N
Ly, for each of ten masks indexed by 7 € [1,2,--- ,10] seconds
and each of the three subfamilies of masks « € {pre, post, inter}.
Classification accuracy for EVALSET is shown in panel (a) of Fig-
ure 3. It is evident that the most relevant voiced non-speech laughter
is that found in immediate proximity to laugher’s speech; F'-scores
which lie above 50% are to be found for all three of pre-talkspurt,
post-talkspurt, and inter-talkspurt contexts for 7 = 1, and only for
the post-talkspurt context for 7 = 2. As 7 — 10 seconds, the ac-
curacies for voiced laughter approach those obtained with majority
class guessing (i.e., that no interval contains involved speech calSr).

It also appears that, at least for 7 < 4, post-talkspurt voiced
laughter is more relevant than pre-talkspurt voiced laughter, and that
for 7 = 1 inter-talkspurt voiced laughter is most relevant. The lat-
ter may be due to the fact that inter-talkspurt laughter is much more
likely to “bleed” from or into the laugher’s ongoing verbal produc-
tion, making that production involved and potentially marking the
current interval as containing involved speech S;. Other laughter is
arguably less likely to have affected speech production.

The performance of the system using voiced laughter which is
found ar most T seconds away from the laugher’s closest talkspurt,
identified by the first derived family of masks (Y?"’?) defined in
Subsection 4.2, is shown in panel (b) of Figure 3. It can be seen that
classification accuracy for pre-talkspurt and post-talkspurt voiced
laughter never exceeds that for all voiced non-speech laughter, at
any value of the threshold 7 past which all voiced laughter is dis-
carded. Post-talkspurt laughter appears to be more relevant than pre-
talkspurt laughter. Second, except for voiced pre-talkspurt laughter
at small values of 7, the accuracy actually decreases as more and
more distant voiced non-speech laughter is considered.
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Fig. 3. Classification accuracy (in %, along the y-axis) as a function of 7 (in seconds, along the x-axis), for features f extracted from: (a)
laughter in 1-second slices 7 seconds away from speech, using T, (7) N Lv-; (b) laughter in 7-second slices immediately proximate to speech,
using Y2 (1) N Lv; and (c) laughter in 10 — 7-second slices 7 seconds away from speech, using Y%¢! (7) N Ly .

Panel (c) of Figure 3 shows results for voiced laughter which
is found at least T seconds away from the laugher’s closest talk-
spurt, given by intersection with the second derived family of masks
(T4t of Subsection 4.3. Classification accuracies appear to fall
steeply towards the accuracy achieved by majority class guessing.

As a final experiment, the feature selection scheme is ex-
posed to features drawn from all of the 1-second-slice subseg-
mentations Y5/°® () N Ly. Doing so entails feature selection
in a space not of 9 features, but of 9 x 3 x 10 features, namely
F =, UL, £(rs (r)NLy). To a certain degree, this ap-
proach is tantamount to annotating slices of laughter of up to 1 sec-
ond in duration with temporal proximity to and co-orientation with
the laugher’s nearest talkspurt. Accuracies for a system modeling
F are 83.2% and 84.4% for DEVSET and EVALSET, respectively;
the corresponding F-scores are 71.2% and 70.3%, respectively.
These numbers should be compared to those for f (Ly N'S) in Ta-
ble 1. For EVALSET, this classification accuracy is a 3% absolute
improvement over the unannotated, complete voiced non-speech
laughter segmentation Ly, representing a 16% relative reduction
of classification error. Notably, F'-scores are higher than for the
speech-laugh segmentation (£y N &) which has been shown to be
more difficult to produce automatically [13].

6. CONCLUSIONS

This work has explored the relevance of voiced non-speech laughter
to the retrieval of intervals containing involved speech. A novel
means of studying conversational phenomena was proposed, via
speech-segmentation-defined masking operators.  Experiments
showed that laughter which is temporally closest to the laugher’s
speech is most indicative of co-located involved speech from any
participant to the conversation, and that laughter following speech is
more relevant than laughter preceding speech. Conditioning voiced
non-speech laughter on its temporal proximity to the laugher’s
speech resulted in a 3.3% absolute improvement in both classifica-
tion accuracy and F'-score, representing a 16% relative reduction of
classification error over a system with no such annotation. These are
crucial findings, of which future laughter detection efforts should
take note when considering utility to downstream applications.
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