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ABSTRACT

The field of speaker identification has recently seen
significant advancement, but improvements have tended to
be benchmarked on near-field speech, ignoring the more
realistic setting of far-field-instrumented speakers. In this
work we present several findings on far-field speech from
the MIXERS Corpus, in the areas of feature extraction,
speaker modeling, and multichannel score combination.
First, we observe that minimum-variance distortionless
response (MVDR) features outperform Mel-frequency
cepstral coefficient (MFCC) features, and that fundamental
frequency variation (FFV) features offer complimentary
information to both MFCC and MVDR features. Second, we
present evidence that factor analysis significantly improves
system performance, compared to the more traditional
GMM/UBM strategy. Third, we find that frame-based score
competition significantly improves performance under
mismatched conditions with multiple channels available.

Index Terms— Speaker Identification, Distant Speech,
Far-field Speech, Front-end Features, Factor Analysis

1. INTRODUCTION

Speaker identification (SID) is the process of automatically
inferring speaker identity information from the speech
signal. Over the years, automatic speaker identification has
developed into a mature technology, crucial to a growing
variety of spoken language applications [1-3].

Despite advances, SID systems still lack robustness:
their performance degrades dramatically when the acoustic
training data is mismatched to the test conditions [4-6].

In this work, our starting point is a state-of-the-art

baseline system relying on Mel-frequency cepstral
coefficient (MFCC) features and Gaussian Mixture
Models/Universal ~Background Model (GMM/UBM)

speaker modeling. We present new frontend features and
speaker modeling techniques for speaker identification with
distant microphone speech. The new frontend features
include minimum variance distortionless response (MVDR)
features and fundamental frequency variation (FFV)
features. We also apply factor analysis for speaker modeling
instead of the more traditional GMM/UBM technique.
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Finally, we explore frame-based score competition which
brings significant gain under mismatched conditions when
multiple acoustic/channel conditions are available.

2. MIXERS DATA

In this paper, we conduct our experiments on the MIXERS
corpus [7], which is a new data collection with cross-channel
recordings of face to face interviews used for speaker
recognition evaluation undertaken by the Linguistic Data
Consortium (LDC). The purpose of the MIXERS collection
was to collect conversational speech in a variety of settings.
The interviews were conducted at the LDC in Philadelphia,
PA and at ICSI in Berkeley, CA. All participants took part in
three separate sessions, each of which involved two 30-
minute interviews, separated by a 30-minute break. Further
details regarding this corpus can be found in [7]. Figure 1
shows the microphone setup in the interview room. The
setup includes 14 microphone channels at several distances
from the speaker location. In this paper we only used the
distant microphone channels labeled as from 04 to 12.
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Figure 1: Microphone setup in the MIXERS5 data collection
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3. FRONT-END FEATURES
3.1 Baseline Features
The baseline front-end features are MFCCs, which are
commonly used in speech and speaker recognition systems.

We use the first 20 coefficients in this paper. Speakers are
modeled with Gaussian mixture models (GMMs), whose
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training involves adaptation away from a universal
background model (UBM) [15].

3.2 Minimum Variance Distortionless Response (MVDR)

As an alternative to MFCCs, we explore warped minimum
variance  distortionless response (MVDR) cepstral
coefficients [9]. The latter have been shown to offer superior
speech recognition performance in adverse acoustic
conditions [8]. Although speech recognition and speaker
recognition exhibit the divergent requirements of speaker-
independent phoneme-discrimination and of speaker
discrimination, respectively, improvements in one field have
occasionally found application in the other. The flowchart
in Figure 2 compares the MFCC-based front end and warped
MVDR-based front end for speaker recognition. In order to
compute the warped MVDR cepstral coefficients
(WMVDRCC), we replace the Fourier transformation,
including the Mel-scale filter bank, with warped MVDR
spectral estimation [8].
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Figure 2: MFCC and WMVDRCC computation

The MVDR representation is governed by a free
parameter, namely the model order, which influences
spectral resolution. A higher model order shows more detail
of the fine structure of the spectrum and partially captures
fundamental frequency information, while a low model order
reduces the influence of the excitation and the transfer
function of the vocal tract. Our previous work [9] indicates
that a higher model order is better for speaker recognition on
distorted speech. We used order of 40 in this paper.

3.3. Fundamental Frequency Variation (FFV)

The FFV representation is a 7-element characterization of
within-frame variation in fundamental frequency. Its
computation, which obviates the need to first estimate the
fundamental frequency itself, was described in detail in [10];
here, space limitations allow for only a brief account.
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Following pre-emphasis (1-0.97z "), the signal is framed
into 32 ms overlapping windows, with a frame step of 8 ms.
Two frequency spectra, F; and F, are computed for the left
and right halves of each frame, respectively, using tapered
and largely disjoint windows. Each of the two spectra is then
dilated in frequency, over a continuum of dilation factors,
while the other spectrum is kept constant. A modified dot-
product yields a measure of alignment g(r) of their
respective harmonic trains, for dilation factor . The
representation is then passed through a filterbank; five of the
filters represent quickly falling pitch, slowly falling pitch,
flat pitch, slowly rising pitch, and quickly rising pitch. The
remaining 2 filters are used for normalization via a global
whitening transform. In previous work [11], we observed
significant performance improvement by combining MFCC
and FFV features at the score level.

4. FACTOR ANALYSIS (FA)

Joint Factor Analysis (JFA) [12] can be seen as one of the
model compensation methods and has been proved to be
very useful in dealing with the channel variability in speaker
verification tasks; therefore we applied this technique into
our task of speaker identification.
The full JFA consists of three basic components:
Eigenchannel, Eigenvoice and classical MAP. However, a
heavy computation is required to estimate all the parameters
in the complete form. To implement our FA system, we
applied similar strategy as in the ALIZE/SpkDet toolkit [13].
In this paper, a simplified variant of the full JFA is applied
with the form:
{M(S) =M +d=(S)

M (8)=M(S)+ p2x (S)
Where M, M(s) and M,(s) represent the supervectors for the
speaker-independent model, speaker-dependent models and
speaker- and utterance-dependent models; d is a diagonal
square matrix with the same dimension as the supervectors,
representing the parameters of classical MAP for speaker
models; z(s) is a random vector with normal distribution; x is
a transformation matrix with lower dimensions representing
the channel space; and x;(s) is a random vector with normal
distribution representing the location of the current utterance
in the channel space.

(M

5. FRAME-BASED SCORE COMPETITION (FSC)

The goal of frame-based score competition is to combine
information from multiple models. We assume that multiple
mismatched models have the potential of better coverage of
unknown test space. The key extension in the FSC approach
is to use a set of multiple GMM models per speaker, which
are trained on audio from multiple microphone channels
(“CH”). For each test frame we compare feature vector x; to



the multiple GMMs ®]in for speaker k, and choose the

C

to be the
J=1
frame score; CH; refers channel i; and C is the total number
of channels. The likelihood score of the test trial against the
model for speaker £ is given by:

CH ;
highest log likelihood score LL(xn |©, ]J

c

N N CH ;
LL(X |©;)= SLL(x, |©;)= 3 max{LL(xn 10, 1)}

n=l1 n=1 Jj=1
The speaker identity is then decided by selecting the k for
which LL(X|®;) is maximum. Note that this process

makes no assumption about the identity of the test channel.
Also, the competition process differs from mono-channel
scoring in that per-frame log likelihood scores for different
speakers are not necessarily derived from the same channel.
Further details are available in [14].

6. EXPERIMENTAL RESULTS
6.1. Experimental Setup

We conducted our experiments results on the MIXERS data
collected at LDC. We used only the distant microphone
channels, which are the nine channels labeled 04 to 12 in

Figure 1. There are in total 66 speakers (39 female and 27

male). The speaker models are trained on speech data from

session 2 and tested on speech data from session 3. We
define two train-test conditions:

e Long-Long: 90-sec of training and 30-sec of test, 983
test trials in total

e  Short-Short: 30-sec of training and 10-sec of test, 2949
test trials in total
For FA training (estimation of the transformation

matrix), two data sets are used:

e SREO8 development data, including 6 speakers and
288 audio files (8 channels each speaker). This is
labeled as SRE08 in the following section.

e  MIXERS ICSI data, including 20 speakers and 280
audio files (14 channels each speaker). This is labeled
as ICSI in the following section.

50 channel factors are used in all of our experiments.

6.2. Experimental Results

The results under the Long-Long train-test condition are
shown in Figure 3 and 4. From Figure 3 we can see that
MVDR features achieve better performance than MFCC
features under mismatched condition. The performance of
the FFV system alone is not comparable to the performance
of the other two systems; however, combination with FFV
features is always beneficial, as shown in Figure 4,
indicating that FFV information is complementary to that in
MFCC or MVDR features. A relative improvement of 19%
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over the best single system under mismatched condition and
a relative improvement of 12% over the best single system
under matched conditions are achieved.
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Figure 3: SID accuracy (Long-Long, single features)
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Figure 4: SID accuracy (Long-Long, combined features)
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Figure 5: SID accuracy (Short-Short, single features)
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Figure 6: SID accuracy (Short-Short, combined features)

Figures 5 and 6 show the results under the Short-Short
train-test condition, in which less audio was used for both
training and testing. The trends are similar to those observed
for the Long-Long condition; an relative improvement of
18% over the best single system under the mismatched
condition, and a relative improvement of 21% over the best
single system under the matched condition were achieved.
FFV features appear complementary to both MFCC and
MVDR features in the Short-Short condition as well.

We applied FSC only in the MVDR system under the
mismatched condition, which means that for example when
the test channel is 04, then the multiple competing models
are models trained on channel 05 to 12 respectively, no



model trained on channel 04. We can see from Figure 7 that
FSC significantly improves system performance for the
mismatched condition. A relative improvement of 42% was
observed when using FSC for the best single-feature-type
system in the Long-Long condition; for the combined system
with three front-end features, FSC improves performance by
29% relatively. Similarly, in the short-short condition,
relative improvements of 34% and 20% were observed for
the best single-feature-type system and for the combined
system, respectively.
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Figure 7: Improvement due to FSC for the best single-
feature-type system (MVDR) and the combined system with
all three front-end features under mismatched condition

Table 1: SID accuracy (Long-Long and matched)
baseline [FA-SRE08| impv. | FA-ICSI| impv.
MFCC|96.03% | 96.54% 12.8% | 97.86% | 46.1%
MVDR|95.73% | 96.75% | 23.9% | 98.07% | 51.4%

Table 2: SID accuracy (Long-Long and mismatched)

baseline | FA-SRE08 | impv. |FA-ICSI| impv.
MFCC |85.81% | 89.94% | 29.1% | 94.18% | 59.0%
MVDR |87.72% | 90.84% | 25.4% | 95.16% | 60.6%
Tables 1 and 2 compare the speaker identification

performance under the Long-Long train-test condition of the
baseline system with GMM/UBM speaker modeling and the
system with factor analysis applied. We can see that factor
analysis provides significant improvements over the baseline
UBM/GMM speaker modeling approach. We all compared
the performance of factor analysis based on different FA
training data, SREO8 vs. ICSI. FA trained on ICSI data
achieved better performance that trained on SRE08 data. We
think the reason is that ICSI data as part of the MIXERS
data collection is more similar to the test data. We observed
the same trend under the Short-Short train-test condition.

7. CONCLUSIONS

In this paper we conducted speaker identification
experiments on the MIXERS corpus with distant
microphone speech. We applied two new sets of features
(MVDR and FFV) for speaker feature extraction, factor
analysis for speaker modeling, and frame-based score
competition for likelihood score computation when multiple
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distant channels are available. Our results show: (la) that
MVDR features outperform traditional MFCC features
under mismatched conditions; (1b) that FFV features are
complementary to MFCC and MVDR features, leading to
20% relative improvements; that (2) factor analysis can
significantly improve performance compared to the
GMM/UBM strategy; and that (3) frame-based score
competition can significantly improve performance under
mismatched conditions when multiple acoustic/channel
conditions are available.
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