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ABSTRACT 

 
The field of speaker identification has recently seen 
significant advancement, but improvements have tended to 
be benchmarked on near-field speech, ignoring the more 
realistic setting of far-field-instrumented speakers. In this 
work we present several findings on far-field speech from 
the MIXER5 Corpus, in the areas of feature extraction, 
speaker modeling, and multichannel score combination. 
First, we observe that minimum-variance distortionless 
response (MVDR) features outperform Mel-frequency 
cepstral coefficient (MFCC) features, and that fundamental 
frequency variation (FFV) features offer complimentary 
information to both MFCC and MVDR features. Second, we 
present evidence that factor analysis significantly improves 
system performance, compared to the more traditional 
GMM/UBM strategy. Third, we find that frame-based score 
competition significantly improves performance under 
mismatched conditions with multiple channels available. 
 

Index Terms— Speaker Identification, Distant Speech, 
Far-field Speech, Front-end Features, Factor Analysis 
 

1. INTRODUCTION 
 
Speaker identification (SID) is the process of automatically 
inferring speaker identity information from the speech 
signal. Over the years, automatic speaker identification has 
developed into a mature technology, crucial to a growing 
variety of spoken language applications [1-3].  

Despite advances, SID systems still lack robustness: 
their performance degrades dramatically when the acoustic 
training data is mismatched to the test conditions [4-6]. 

In this work, our starting point is a state-of-the-art 
baseline system relying on Mel-frequency cepstral 
coefficient (MFCC) features and Gaussian Mixture 
Models/Universal Background Model (GMM/UBM) 
speaker modeling. We present new frontend features and 
speaker modeling techniques for speaker identification with 
distant microphone speech. The new frontend features 
include minimum variance distortionless response (MVDR) 
features and fundamental frequency variation (FFV) 
features. We also apply factor analysis for speaker modeling 
instead of the more traditional GMM/UBM technique. 

Finally, we explore frame-based score competition which 
brings significant gain under mismatched conditions when 
multiple acoustic/channel conditions are available. 

    
2. MIXER5 DATA 

 
In this paper, we conduct our experiments on the MIXER5 
corpus [7], which is a new data collection with cross-channel 
recordings of face to face interviews used for speaker 
recognition evaluation undertaken by the Linguistic Data 
Consortium (LDC). The purpose of the MIXER5 collection 
was to collect conversational speech in a variety of settings. 
The interviews were conducted at the LDC in Philadelphia, 
PA and at ICSI in Berkeley, CA. All participants took part in 
three separate sessions, each of which involved two 30-
minute interviews, separated by a 30-minute break. Further 
details regarding this corpus can be found in [7]. Figure 1 
shows the microphone setup in the interview room. The 
setup includes 14 microphone channels at several distances 
from the speaker location. In this paper we only used the 
distant microphone channels labeled as from 04 to 12.  

 
Figure 1: Microphone setup in the MIXER5 data collection 

 
3.  FRONT-END FEATURES 

 
3.1 Baseline Features 
 
The baseline front-end features are MFCCs, which are 
commonly used in speech and speaker recognition systems. 
We use the first 20 coefficients in this paper. Speakers are 
modeled with Gaussian mixture models (GMMs), whose 
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training involves adaptation away from a universal 
background model (UBM) [15].  
 
3.2 Minimum Variance Distortionless Response (MVDR) 
 
As an alternative to MFCCs, we explore warped minimum 
variance distortionless response (MVDR) cepstral 
coefficients [9]. The latter have been shown to offer superior 
speech recognition performance in adverse acoustic 
conditions [8]. Although speech recognition and speaker 
recognition exhibit the divergent requirements of speaker-
independent phoneme-discrimination and of speaker 
discrimination, respectively, improvements in one field have 
occasionally found application in the other.  The flowchart 
in Figure 2 compares the MFCC-based front end and warped 
MVDR-based front end for speaker recognition. In order to 
compute the warped MVDR cepstral coefficients 
(WMVDRCC), we replace the Fourier transformation, 
including the Mel-scale filter bank, with warped MVDR 
spectral estimation [8]. 

 
Figure 2: MFCC and WMVDRCC computation 

 
The MVDR representation is governed by a free 

parameter, namely the model order, which influences 
spectral resolution. A higher model order shows more detail 
of the fine structure of the spectrum and partially captures 
fundamental frequency information, while a low model order 
reduces the influence of the excitation and the transfer 
function of the vocal tract. Our previous work [9] indicates 
that a higher model order is better for speaker recognition on 
distorted speech. We used order of 40 in this paper.  

 
3.3. Fundamental Frequency Variation (FFV) 

 
The FFV representation is a 7-element characterization of 

within-frame variation in fundamental frequency. Its 
computation, which obviates the need to first estimate the 
fundamental frequency itself, was described in detail in [10]; 
here, space limitations allow for only a brief account. 

Following pre-emphasis (1−0.97z−1), the signal is framed 
into 32 ms overlapping windows, with a frame step of 8 ms. 
Two frequency spectra, FL and FR, are computed for the left 
and right halves of each frame, respectively, using tapered 
and largely disjoint windows. Each of the two spectra is then 
dilated in frequency, over a continuum of dilation factors, 
while the other spectrum is kept constant. A modified dot-
product yields a measure of alignment g(r) of their 
respective harmonic trains, for dilation factor r. The 
representation is then passed through a filterbank; five of the 
filters represent quickly falling pitch, slowly falling pitch, 
flat pitch, slowly rising pitch, and quickly rising pitch. The 
remaining 2 filters are used for normalization via a global 
whitening transform. In previous work [11], we observed 
significant performance improvement by combining MFCC 
and FFV features at the score level.  
 

4. FACTOR ANALYSIS (FA) 
 
Joint Factor Analysis (JFA) [12] can be seen as one of the 
model compensation methods and has been proved to be 
very useful in dealing with the channel variability in speaker 
verification tasks; therefore we applied this technique into 
our task of speaker identification. 
The full JFA consists of three basic components: 
Eigenchannel, Eigenvoice and classical MAP. However, a 
heavy computation is required to estimate all the parameters 
in the complete form. To implement our FA system, we 
applied similar strategy as in the ALIZE/SpkDet toolkit [13]. 
In this paper, a simplified variant of the full JFA is applied 
with the form: 

SxSMSM

SdzMSM

hh
  (1) 

Where M, M(s) and Mh(s) represent the supervectors for the 
speaker-independent model, speaker-dependent models and 
speaker- and utterance-dependent models; d is a diagonal 
square matrix with the same dimension as the supervectors, 
representing the parameters of classical MAP for speaker 
models; z(s) is a random vector with normal distribution; μ is 
a transformation matrix with lower dimensions representing 
the channel space; and xh(s) is a random vector with normal 
distribution representing the location of the current utterance 
in the channel space. 
 

5.  FRAME-BASED SCORE COMPETITION (FSC) 
 
The goal of frame-based score competition is to combine 
information from multiple models. We assume that multiple 
mismatched models have the potential of better coverage of 
unknown test space. The key extension in the FSC approach 
is to use a set of multiple GMM models per speaker, which 
are trained on audio from multiple microphone channels 
(“CH”). For each test frame we compare feature vector ix  to 
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the multiple GMMs iCH
k for speaker k, and choose the 

highest log likelihood score 
C

j

jCH
knxLL

1
| to be the 

frame score; CHi refers channel i; and C is the total number 
of channels. The likelihood score of the test trial against the 
model for speaker k is given by: 

N

n

C

j

jCH
kn

N

n
knk xLLxLLXLL

1 11
|max||  

The speaker identity is then decided by selecting the k for 
which kXLL |  is maximum. Note that this process 
makes no assumption about the identity of the test channel. 
Also, the competition process differs from mono-channel 
scoring in that per-frame log likelihood scores for different 
speakers are not necessarily derived from the same channel. 
Further details are available in [14]. 
 

6. EXPERIMENTAL RESULTS 
 
6.1. Experimental Setup 
 
We conducted our experiments results on the MIXER5 data 
collected at LDC. We used only the distant microphone 
channels, which are the nine channels labeled 04 to 12 in 
Figure 1. There are in total 66 speakers (39 female and 27 
male). The speaker models are trained on speech data from 
session 2 and tested on speech data from session 3. We 
define two train-test conditions: 
 Long-Long: 90-sec of training and 30-sec of test, 983 

test trials in total  
 Short-Short: 30-sec of training and 10-sec of test, 2949 

test trials in total 
For FA training (estimation of the transformation 

matrix), two data sets are used: 
 SRE08 development data, including 6 speakers and 

288 audio files (8 channels each speaker). This is 
labeled as SRE08 in the following section.  

 MIXER5 ICSI data, including 20 speakers and 280 
audio files (14 channels each speaker). This is labeled 
as ICSI in the following section. 

50 channel factors are used in all of our experiments. 
 
6.2. Experimental Results 
 
The results under the Long-Long train-test condition are 
shown in Figure 3 and 4. From Figure 3 we can see that 
MVDR features achieve better performance than MFCC 
features under mismatched condition. The performance of 
the FFV system alone is not comparable to the performance 
of the other two systems; however, combination with FFV 
features is always beneficial, as shown in Figure 4, 
indicating that FFV information is complementary to that in 
MFCC or MVDR features. A relative improvement of 19% 

over the best single system under mismatched condition and 
a relative improvement of 12% over the best single system 
under matched conditions are achieved. 
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Figures 5 and 6 show the results under the Short-Short 

train-test condition, in which less audio was used for both 
training and testing. The trends are similar to those observed 
for the Long-Long condition; an relative improvement of 
18% over the best single system under the mismatched 
condition, and a relative improvement of 21% over the best 
single system under the matched condition were achieved. 
FFV features appear complementary to both MFCC and 
MVDR features in the Short-Short condition as well. 

We applied FSC only in the MVDR system under the 
mismatched condition, which means that for example when 
the test channel is 04, then the multiple competing models 
are models trained on channel 05 to 12 respectively, no 

Figure 3: SID accuracy (Long-Long, single features) 

Figure 4: SID accuracy (Long-Long, combined features) 

Figure 5: SID accuracy (Short-Short, single features) 

Figure 6: SID accuracy (Short-Short, combined features) 
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model trained on channel 04. We can see from Figure 7 that 
FSC significantly improves system performance for the 
mismatched condition. A relative improvement of 42% was 
observed when using FSC for the best single-feature-type 
system in the Long-Long condition; for the combined system 
with three front-end features, FSC improves performance by 
29% relatively. Similarly, in the short-short condition, 
relative improvements of 34% and 20% were observed for 
the best single-feature-type system and for the combined 
system, respectively. 

69.4
74.8

79.7
88.8 90.9 93.5

60
70
80

90
100

MVDR All Three FSC

Short-Short Long-Long

 
Figure 7: Improvement due to FSC for the best single-

feature-type system (MVDR) and the combined system with 
all three front-end features under mismatched condition 

 
Table 1: SID accuracy (Long-Long and matched) 

 baseline FA-SRE08 impv. FA-ICSI impv. 
MFCC 96.03% 96.54% 12.8% 97.86% 46.1% 
MVDR 95.73% 96.75% 23.9% 98.07% 51.4% 

 
Table 2: SID accuracy (Long-Long and mismatched) 

 baseline FA-SRE08 impv. FA-ICSI impv. 
MFCC 85.81% 89.94% 29.1% 94.18% 59.0% 
MVDR 87.72% 90.84% 25.4% 95.16% 60.6% 

 
Tables 1 and 2 compare the speaker identification 
performance under the Long-Long train-test condition of the 
baseline system with GMM/UBM speaker modeling and the 
system with factor analysis applied. We can see that factor 
analysis provides significant improvements over the baseline 
UBM/GMM speaker modeling approach. We all compared 
the performance of factor analysis based on different FA 
training data, SRE08 vs. ICSI. FA trained on ICSI data 
achieved better performance that trained on SRE08 data. We 
think the reason is that ICSI data as part of the MIXER5 
data collection is more similar to the test data. We observed 
the same trend under the Short-Short train-test condition.  
 

7. CONCLUSIONS 
 
In this paper we conducted speaker identification 
experiments on the MIXER5 corpus with distant 
microphone speech. We applied two new sets of features 
(MVDR and FFV) for speaker feature extraction, factor 
analysis for speaker modeling, and frame-based score 
competition for likelihood score computation when multiple 

distant channels are available. Our results show: (1a) that 
MVDR features outperform traditional MFCC features 
under mismatched conditions; (1b) that FFV features are 
complementary to MFCC and MVDR features, leading to 
20% relative improvements; that (2) factor analysis can 
significantly improve performance compared to the 
GMM/UBM strategy; and that (3) frame-based score 
competition can significantly improve performance under 
mismatched conditions when multiple acoustic/channel 
conditions are available. 
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