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ABSTRACT

Stochastic turn-taking models have traditionally been implemented
as N -grams, which condition predictions on recent binary-valued
speech/non-speech contours. The current work re-implements this
function using feed-forward neural networks, capable of accepting
binary- as well as continuous-valued features; performance is shown
to asymptotically approach that of the N -gram baseline as model
complexity increases. The conditioning context is then extended to
leverage loudness contours. Experiments indicate that the additional
sensitivity to loudness considerably decreases average cross entropy
rates on unseen data, by 0.03 bits per framing interval of 100 ms.
This reduction is shown to make loudness-sensitive conversants ca-
pable of better predictions, with attention memory requirements at
least 5 times smaller and responsiveness latency at least 10 times
shorter than the loudness-insensitive baseline.

Index Terms— Interaction models, neural networks, prosody,
spoken dialogue systems.

1. INTRODUCTION

Among predictive models of turn-taking [1], those offering predic-
tions at every instant are arguably the most relevant to the design
of dialogue systems capable of truly human-like responsiveness.
Although studied for many decades [2, 3, 4, 5, 6, 7, 8], these
models continue to exhibit an important limitation: their imple-
mentation as N -grams circumscribes their direct applicability to
only discrete-valued representations of conditioning context. This
limitation has made it hard to study the impact of quantities which
are continuous-valued (e.g., loudness or pitch), independently of
higher-level linguistic landmarks or assumptions. Prediction using
continuous-valued features has consequently been explored almost
exclusively for detecting speaker change, at the ends of semantically
complete utterances [9] or of contiguous intervals of speech [10],
rather than continuously over all ongoing instants in a conversation.

The current work is concerned with eliminating this shortcom-
ing, by re-implementing turn-taking models using feed-forward neu-
ral networks (NNs), a popular non-linear regression methodology.
The presented experiments demonstrate that NNs achieve asymptot-
ically identical performance in terms of average cross entropy on
unseen data, given the same truncation of speech/non-speech his-
tory for prediction conditioning. More importantly, however, is the
fact that NNs easily accept continuous-valued features. As a partic-
ular example of such a feature, the current work augments stochastic
turn-taking modeling with sensitivity to loudness; its focus is to an-
swer three questions:

• How should models condition predictions of incipient speech
on past loudness estimates in order to maximally reduce av-
erage cross entropy?

• What is the lowest average cross entropy achievable with
loudness-augmented turn-taking models? and

• What is the likely impact of the observed average cross en-
tropy reductions?

Experiments show that contours of loudness, approximated by nor-
malized per-frame log-energy, should be concatenated with speech
activity trajectories in feature space rather than in model space (as in
[6]), in order to give models the opportunity to leverage cross-stream
correlations; it appears that the most relevant information is found in
audio frames which are both speech and very quiet. The absolute
reduction in average cross entropy obtained using this approach, on
unseen data consisting of 200 telephone conversations, is 0.031 bits
per 100 ms frame of audio, a large improvement when compared
to past research [7, 8]. It is shown that the nominal impact of this
improvement is to decrease requisite conversant attentiveness, by re-
ducing memory requirements by a factor of at least 5, and to increase
responsiveness, by enabling predictions of similar or better quality
to be made at least 10 times sooner.

2. N -GRAMS OVER CHRONOGRAMS

A chronogram is a time-aligned per-frame speech activity sequence
for all participants to a conversation. It is merely a convenient for-
malism, described in [2], and here denoted Q. In the current two-
party setting, Q is a K×T matrix with K ≡ 2, where T is the number
of frames. As in [7, 8], the frame step is 100 ms, which corresponds
approximately to half of a syllable at nominal speaking rates. An
example of Q, with each entry qt [k] ∈ {◻,∎}, with ◻ and ∎ repre-
senting non-speech and speech, respectively, and with 1 ≤ t ≤ T and
1 ≤ k ≤K, is

Q = [. . . ∎∎∎∎◻◻◻◻∎◻◻◻∎∎∎∎◻◻ . . . ] . (1)

A stochastic turn-taking model Θ is a device which yields, at
any instant t, the probability that a target participant in Q will be in
state ∎. A target participant is either that represented by the top row
(k = 1) in Q, or that represented by the bottom row (k = 2). In the
stochastic turn-taking modeling tradition, this probability of ∎ can
be conditioned by the target participant’s own past speech activity
states, or by both participants’ past speech activity states. The lat-
ter case is a form of Markov chain coupling, as Θ assumes the two
participants to be conditionally independent (CI) at instant t (inde-
pendent at t but conditioned on the joint past). In the former case,
the two participants are assumed to be unconditionally independent
(UI), and no coupling is possible.

To date, stochastic turn-taking models have been implemented
as N -grams. This is a natural choice, since the conditioning context
is composed of binary-valued events, whose composition is therefore
also discrete-valued. Model performance on a dataset is expressed
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as average cross entropy, in bits, mirroring the use of perplexity in
language modeling. The baseline N -gram models in this work were
described in [7, 8]: they are Jelinek-Mercer-smoothed 11-grams in
the UI case and 21-grams in the CI case, when conditioned on τ = 10

most recent frames for the target participant and for both partici-
pants, respectively.

3. ALTERNATIVE BERNOULLI ESTIMATORS

The N -gram model described above is seen to implement a look-up
table. To “compute” the probability P (qt [k] = ∎), the model looks
at preceding instants τ < t in the Q under test, for either only the kth
row or both rows, depending on whether Θ is a UI or a CI model,
respectively. This context, in its entirety, is a discrete-valued “key”,
using which the model retrieves a single stored value. The retrieved
value is the Bernoulli probability that qt [k] = ∎.

An alternative means of estimating these Bernoulli probabilities
is to actually compute them. Namely, under a mapping ◻ ↦ 0 and∎ ↦ 1, Θ may be implemented as a regressor of arbitrary complex-
ity whose output matches the N -gram estimate to desired precision.
A first aim of the current work is to demonstrate the practical equiv-
alence of N -gram and regressor implementations of Θ. However,
the main motivation for exploring alternative estimators is to allow
P (qt [k] = ∎) to be conditioned on continuous-valued, rather than
only discrete-valued, “keys”.

The most popular non-linear regression scheme in use today is
logistic regression [11], which has been argued to be particularly
well-suited to the “resolution” of overlap in multi-party conversa-
tion [12]. A more flexible scheme, employed in the current work, is
offered by feed-forward neural networks (NNs), whose output layer
activation function is the sigmoid function used in logistic regres-
sion. The appropriate objective function to minimize during learn-
ing in this case is the cross entropy error [13]. All NNs presented
consist of a single hidden layer, with a variable number J of hidden
units. Learning is accelerated via a second-order technique known
as scaled conjugate gradient search [14].

4. APPROXIMATING LOUDNESS WITH ENERGY

Research in psychoacoustics has produced many methods for ap-
proximating perceptual loudness [15] using spectral decomposition,
spectral masking, and/or temporal masking. These models appear
more applicable to single-tone and/or stationary signals than to hu-
man speech. In the current work, loudness is instead approximated
by signal energy, as has become standard in speech technology. The
correlation between loudness and signal energy is sufficiently strong
that the two terms are often used interchangeably in the literature,
despite the fact that authors use different definitions of signal energy.

In the current work, for every conversation, and each channel k

separately, the energy et in the tth frame is computed using

et [k] = log
10

+⌈W/2⌉−1

∑
u=−⌊W/2⌋

w [u] ⋅ x2 [Nt + u] , (2)

where x [⋅] is the discrete-time pressure signal (sampled at 8 kHz).
W is the frame size (of 1600 points, corresponding to 200 ms), N

is the frame step (of 800 points, corresponding to 100 ms), and w [⋅]
is a 200-ms Hann window normalized to unity area and centered
on zero. et is seen to be the logarithm of a weighted sum squared

amplitude1. This arrangement also ensures that the dimensions of
E ≡ {et [k]}, for each conversation, are identical to those of that
conversation’s Q, namely K × T .

5. EXPERIMENTS

5.1. Data

Experiments are conducted using the Switchboard-1 Corpus, as re-
released in 1997 [16]. It consists of 2435 telephone conversations,
each approximately 10 minutes in duration. The corpus was di-
vided into three speaker-disjoint sets in [8], such that TRAINSET,
DEVSET, and TESTSET consist of 762, 227, and 199 conversations,
respectively. During that process, it was not possible to allocate 1247
conversations because their two speakers had already been placed
in different sets. Reference speech/non-speech segmentations were
used, as elsewhere in speech technology when training prior prob-
ability models (e.g. language models). The available forced align-
ments [17] for both conversation sides were used to construct Q.

5.2. Speech Activity Features

The first experiments compare the performance of the baseline
smoothed N -gram models of turn-taking to feed-forward neural
networks, with identical context. The latter are trained “to comple-
tion”, using as many iterations of scaled conjugate gradient search
as it takes for the TRAINSET error difference to reach zero2. The
experiment is repeated using τ ∈ {1,2, . . . , 10} most-recent frames
of history, with J ∈ {1,2,4,8} units in the NN hidden layer. The
DEVSET results are shown in Figure 1 for both the UI and the CI
models; the DEVSET was used to select optimal smoothing param-
eters for the N -gram models, but was not used for anything other
than model scoring in the NN cases.

It is seen that NNs with a single hidden layer unit are outper-
formed by the corresponding UI and CI baseline models. However,
as the number of hidden units grows, NN performance asympotically
approaches that of the baselines. By J = 8, the UI NN achieves near-
identical performance to the UI N -gram (the difference is < 0.00005

bits); in the CI case, the difference is negligible (< 0.0002 bits), and
likely to narrow further for still-larger values of J .

It is worth mentioning that whereas the N -gram models at τ =
10 must explicitly store all probabilities, and therefore consist of
210 = 1024 and 220 = 1048576 free parameters for the UI and CI
cases, respectively, the comparable NN models are much smaller.
For the UI NN with τ = 10 and J = 8, the number of free parameters
is J ⋅ (10 + 1) + 1 ⋅ (J + 1) = 97; for the CI NN, it is J ⋅ (20 + 1) +
1 ⋅ (J + 1) = 177. This parsimony comes of course at the cost of the
much higher time complexity of iterative parameter estimation.

5.3. Loudness Features

The next experiments contrast the performance of speech activity
features with that of loudness features, using the NN approach of
the preceding subsection. Energies are computed using Equation 2
independently for both channels in each conversation, and the re-
sulting E is used in place of Q. For expediency, NNs are not trained

1 Popular variations include window shape, the ratio W/N , window nor-
malization to unity sum squared amplitude, and choice of multiplicative fac-
tor; for example, a factor of 10 would nominally result in the popular dB scale
of sound pressure level. Most of these variations are affine transformations of
Equation 2, and therefore lead to equivalent NN models whose hidden-layer
activation function is a biased dot product.

2Effectively, to underflow in IEEE 64-bit floating-point precision.
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Fig. 1. DEVSET cross entropy (along the y-axis, in bits) as a function
of the size of the conditioning context in 100-ms frames (along the
x-axis), for the N -gram and for several neural network (NN) models,
using only binary reference speech activity. J represents the number
of NN hidden units.

to completion; instead, 100 iterations of search are executed for in-
creasingly larger subsets of TRAINSET. The 1st subset consists of
every 1024th exemplar, the 2nd of every 512th exemplar, and so on
until the 11th subset, which consists of all TRAINSET exemplars.

All NNs are exposed to a conditioning history of τ = 10 100-ms
frames, with J ∈ {1,2,4,8,16,32,64}. The optimal value of J is
selected by minimizing cross entropy on DEVSET. The achieved UI
and CI cross entropies, of 0.481 and 0.381, respectively, are shown
in the second row of Figure 2 as “E”. The performance of Q fea-
tures, using the same training regimen, is shown in the first row as
“Q”. As can be seen, raw energy features yield substantially worse
performance that do speech activity features. Evidently, although E

contains dynamic loudness information, the NNs are unable to infer
which context frames are speech and which are non-speech, based
on the context energies alone.

To assess whether this is due to channel differences among the
conversations, the above experiment is repeated after computing sev-
eral standard per-channel normalizations of et. Among these are:
e′t ≡ et − µ (mean subtraction), where µ is the global channel mean;
e′t ≡ et − minτ eτ (minimum subtraction), where minτ eτ is the
global channel minimum; e′t ≡ et−maxτ eτ (maximum subtraction),
where maxτ eτ is the global channel maximum; and e′t ≡ et/σ−µ/σ
(Z-normalization), where µ and σ are the global channel mean and
global standard deviation, respectively3.

The felicity of normalization, relative to the performance of the

3These normalizations are acausal, since the minimum, maximum, mean,
and standard deviations are computed using all of the channel audio, includ-
ing instants beyond the current instant t < T . The estimation of these quan-
tities, in a truly on-line setting, is deferred to future work.
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Fig. 2. DEVSET cross entropies (along the x-axis, in bits) for se-
lected feature types. UI and CI models are shown in white and black,
respectively.

raw, unnormalized et, is shown in the third through sixth rows of
Figure 2. Minimum subtraction appears to unacceptably degrade
performance, most likely due to the effect of zeroing out intervals
of conversation sides upon a participant’s request. For UI mod-
els, all three of the remaining methods improve performance, with
mean subtraction offering the lowest cross entropies. However, for
CI models, per-channel normalization hurts. This may be due to
channel coupling [18], potentially calling for normalization schemes
which treat the two channels jointly.
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5.4. Normalizing Loudness Features Using Speech Activity

To eliminate the dependency on arbitrary signal energy floors, mean
subtraction and Z-normalization are carried out using means and
standard deviations computed over only speech frames. This con-
ditions the normalized E on Q. The DEVSET results are shown
in the 7th and 8th rows of Figure 2, as E − ave∎ and Z∎ (E), re-
spectively. They demonstrate that statistics computed while ignor-
ing non-speech frames are more robust than global statistics, as both
normalization types lead to both UI and CI improvement relative to
unnormalized energy, as well as relative to rows 3 and 6.

Finally in this subsection, Z∎-normalization is modified to help
the NNs infer Q from E. Namely, energies below a predefined num-
ber of standard deviations σ∎ are zeroed, while simultaneously en-
suring that all other energies are positive:

e
′

t ≡ { α + et

σ∎
−

µ∎
σ∎

if et ≥ µ∎ + α ⋅ σ∎

0 otherwise
. (3)

The results of this manipulation, referred to here as Zα
∎ -normalization,

are shown in rows 9 through 15 of Figure 2, corresponding to
α ∈ {0,1,2,3,4,5,6}.

It appears that E is not sufficiently well correlated with Q, on
average, to allow NNs to recover the performance observed in the
first row of Figure 2. As fewer and fewer frame energies are zeroed,
performance asympotically approaches that of the Z∎ (E) normal-
ization in row 8, for both UI and CI models. The utility of loudness
(present in E) appears to be smaller than that of speech/non-speech
(present in Q but evidently not inferrable from E alone).

5.5. Combining Loudness and Speech Activity Features

Loudness and speech/non-speech information can be more directly
combined by modifying Equation 3 to explicitly contain Q:

e
′

t ≡ { δ (qt,∎) ⋅ (α + et

σ∎
−

µ∎
σ∎
) if et ≥ µ∎ + α ⋅ σ∎

0 otherwise
,(4)

where δ (⋅) is the Kronecker delta. The performance of the resulting
E′ is shown as Q×Zα

∎ (E) in rows 16 through 22 in Figure 2. Rows
16 through 22 should be compared to rows 9 through 15, which differ
only in multiplication by δ (qt,∎).

Equation 4 is seen to yield dramatically improved results. At α =
2 (row 18), when all speech frames whose et is 2σ∎ below µ∎ and
all non-speech frames are zeroed, performance is nearly identical to
that in the first row, for Q alone. Increasing α and thereby retaining
more of the frames whose et is below µ∎ asymptotically leads to an
improvement of approximately 0.021 bits (bigger than the 0.015-bit
gap between UI and CI models for Q alone, in row 1). It appears that
exploitable loudness information is found in speech frames which
are quieter than 99% of speech frames, namely those most easily
confounded with non-speech frames.

5.6. Combining Loudness and Speech Activity Models

Second, Q and E information is combined using model fusion, by
linearly interpolating the probabilities returned by the Q models
and the normalized- or unnormalized-E models. DEVSET cross en-
tropies are minimized to select the optimal interpolation weights in
each pair-wise fusion case. The results are indicated by a ⊕ symbol
in rows 23 through 33 in Figure 2.

Interpolation with Q appears to improve the performance of E

(row 2 versus row 23), E−ave (row 3 versus row 24), E−ave∎ (row

7 versus row 25), and Z∎ (E) (row 8 versus 26), yielding cross en-
tropies which are below that achieved with Q alone (in row 1) by ap-
proxmately 0.01 bits. When interpolating Q with Zα

∎ -normalization,
performance approaches that achieved for α = 6 (in row 33), but
does not exceed that achieved by Zα

∎ -normalization alone.

5.7. Concatenating Loudness and Speech Activity Features

Finally, feature fusion as opposed to model fusion is attempted, by
concatenating Q and E and training new (and twice as large) models.
Because of the higher computational complexity, feature fusion with
Q was performed for only a select number of E-derived feature sets,
shown in rows 34 through 39 of Figure 2.

Feature fusion is seen to yield the best results of all. For UI
models, fusion of Q with E − ave∎ yields an improvement over the
first row in the figure of 0.033 bits; for CI models, the best combina-
tion is of Q with Zα

∎ -normalized E, using α = 5, and resulting in an
improvement over the first row of 0.032 bits. Interestingly, combin-
ing Q with Z5

∎ (E) is better than combining Q with Q × Z5

∎ (E).
This suggests that the NNs are exploiting loudness dynamics during
non-speech frames. These could be informative of inspiration or ex-
piration systematically surrounding speech [19], of other systematic
non-verbal vocalizations from each channel’s speaker [20, 21], or of
crosstalk from the interlocutor channel [18].

6. DISCUSSION

6.1. Generalization

Of importance to the establishment of any claim is whether the per-
formance observed for DEVSET generalizes to unseen data. DE-
VSET was used to select the optimal number of hidden units as well
as the interpolation parameters in Subsection 5.6, and the observed
gains may be optimistic indicators of performance.

Figure 3 indicates that this is not so. Virtually all qualitative
observations made in the preceding section apply equally well to
the completely held-out TESTSET. Overall, TESTSET appears to
be slightly easier. Feature fusion via concatenation yields the best
results: for UI models, the best performance in row 36 is 0.033 bits
below that in the first row. For CI models, the best performance is
found in row 38, and is lower than that in the first row by 0.034 bits.

6.2. What Loudness-Sensitive Models Learn

NN models are easy to visualize via Hinton diagrams [22]. Fig-
ure 4 compares the first-layer weights in two sample UI NNs (with
and without loudness) with J = 4 hidden units; first-layer biases
and second-layer weights and biases are not shown. First-layer basis
functions are shown from top to bottom in order of importance.

The figure shows that the better performing model, in (b), ob-
serves a sparser first-layer weight matrix, and that large-magnitude
weights are concentrated on the most recent events. Despite ignor-
ing very many of the instants that the NN in (a) is sensitive to, (b) is
better performing. This suggests that sensitivity to loudness allows
turn-takers to be less attentive: they can afford to make decisions
without paying attention to and retaining longer historical contexts.

6.3. An Alternative Model Assessment Methodology

Throughout this paper, models have been quantized in terms of cross
entropy in bits per 100 ms, and in terms of the number of bits fewer
than is required by the baseline models which use only Q. These
measures are difficult to interpret by themselves, but they do allow
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Fig. 3. TESTSET cross entropies (along the x-axis, in bits) for se-
lected feature types. UI and CI models are shown in white and black,
respectively.

for strict comparison between models. In particular, it is possible to
ablate the capability of a better-performing model until it achieves
performance quantitatively comparable to a baseline model. If the
capability in question is the amount of historical context, a differ-
ence in cross entropies can be converted to the savings in requisite
attentiveness and response latency.

Figure 5 shows just such an experiment, in which the best per-
forming feature types for UI and CI models (feature-level fusion with
Q of E−ave∎ and Z5

∎ (E), respectively) are exposed to shorter trun-

(a) E

(b) Q ×Z5

∎ (E)
Fig. 4. Hinton diagrams of the first-layer weights in two UI NN
models with τ = 10 100-ms frames of context and J = 4 hidden
units. Black indicates positive weights, white negative weights; dots
correspond to near-zero values. Basis functions shown from top to
bottom in order of importance (as indicated by the magnitude of the
corresponding second layer weights); biases not shown. Rows are
normalized such that the largest-valued weight in each row has a
fixed size. Age of context shown from left to right: the rightmost
column corresponds to the most recent frame (100 ms ago), the left-
most column to the least recent (1 s ago).

cations of the conditioning history, e.g. τ ∈ {1,2,3,4,5,6,7,8,9} <
10. The results are shown for DEVSET, but the trends for TESTSET

are the same; all NNs employ J = 64 hidden units. Also shown are
the baseline UI and CI model performance, with J = 64 and τ = 10,
with speech/non-speech features alone.

1 2 3 4 5 6 7 8 9 10

0.24

0.26

0.28

0.3

UI baseline, τ = 10

CI baseline, τ = 10

UI
CI

Fig. 5. DEVSET cross entropy (along the y-axis, in bits) as a function
of the size of the conditioning context in 100-ms frames (along the x-
axis), for the best-performing combined speech activity and loudness
models. The baselines shown are for a conditioning context of 10
frames, achieved with a NN model using speech activity only.

What is apparent is that even a single frame (τ = 1) of both
speech/non-speech and normalized energy yield lower cross en-
tropies than do τ = 10 frames of speech/non-speech context alone,
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in both the UI and CI cases. This means that conversational agents
needing to predict incipient speech will be less surprised with 5
times less storage of historical data. Similarly, by paying attention
to loudness, conversational agents urgently needing to say some-
thing need only wait for 100 ms of context rather than for 1 s, in
order to do as well if not better. Of course, they can do far better
still by attending to more than just the most recent frame, as can be
observed in Figure 54.

7. CONCLUSIONS

This work has demonstrated that traditional stochastic turn-taking
models, namely N -grams over past speech activity, can be success-
fully implemented using neural networks (NNs). NN models were
shown to yield asympototically identical performance, as the number
of hidden units is increased, with considerably fewer parameters.

More importantly, NNs open up the possibility of condition-
ing predictions on continuous-valued quantities, such as loudness,
pitch, and spectral content. Experiments showed that augmentation
with sensitivity to loudness contours, approximated by standard log-
energy estimates, reduces average cross entropy on unseen data by at
least 0.031 bits per 100 ms frame. It was argued that this reduction
entails savings in requisite attentiveness for conversants, by reducing
memory capacity requirements by a factor of at least 5. Similarly,
sensitivity to loudness enables participants to be at least 10 times
more responsive, needing to wait only a tenth of the time to produce
better predictions than when loudness is ignored.
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