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ABSTRACT

We propose an algorithm for segmenting multispeaker
meeting audio, recorded with personal channel micro-
phones, into speech and non-speech intervals for each mi-
crophone’s wearer. An algorithm of this type turns out
to be necessary prior to subsequent audio processing be-
cause, in spite of close-talking microphones, the channels
exhibit a high degree of crosstalk due to unbalanced cali-
bration and small inter-speaker distance. The proposed al-
gorithm is based on the short-time crosscorrelation of all
channel pairs. It requires no prior training and executes in
one fifth real time on modern architectures. Using meeting
audio collected at several sites, we present error rates for
the segmentation task which do not appear correlated with
microphone type or number of speakers. We also present
the resulting improvement in speech recognition accuracy
when segmentation is provided by this algorithm.

1 Motivation

Automatic transcription of meetings and the study of
multispeaker meeting audio has recently become very
popular. A first processing step in almost all tasks in this
field is utterance segmentation.

This problem is hard for two main reasons:

1. In uninstrumented rooms, speakers are recorded
using personal microphones.  Both lapel micro-
phones and headset microphones exhibit a consider-
able amount of crosstalk, or backchanneling.

2. In unstructured meetings, multiple speakers may
speak simultaneously, leading to a considerable
amount of speech overlap.

Addressing both problems successfully is therefore a func-
tional prerequisite for subsequent analysis. In particular,
speaker adaptation techniques for speech recognition call
for clean, single-speaker audio segments.

Additional problems arising during segmentation are
due to unbalanced calibration of all microphone channels,
possibly changing meeting topology, and speaker breathing
and (head) motion, resulting in low frequency noise.

Work described here contributes to the overall effort at the
Interactive Systems Labs in the NIST Rich Transcription
2004 Spring Meeting Recognition Evaluation (RT-04S).

2 Data

All experiments reported here were conducted on the
RT-04S meeting data. Each meeting was recorded with
personal microphones for each participant (a mix of head-
set and lapel microphones), as well as room microphones
placed on the conference table. In this work we focus on the
task of automatic segmentation of all personal microphone
channels, that is, the discovery of portions where a partici-
pant is speaking in his/her personal microphone channel.
The algorithm we propose does not require knowledge of
the microphone type.

3 Algorithms

3.1 Conceptual Framework

The audio for a single meeting consists of N time-aligned
mono channels, where N is the number of speakers.

The response at microphone M;, y;[n], is a combination
of signals z;[n] from every acoustic source S; in the
room, both delayed and attenuated. We assume that
the mouth-to-microphone distance for each speaker is
negligible compared to the minimum inter-microphone
distance; ie. M; ~ S;. This assumption is patently false
but it allows for a simplified analysis involving the rel-
ative positions of only NV points in a two-dimensional plane.

Each z;[n] is delayed and attenuated as a function of the
distance d;; between its source S; and microphone M;. The
delay An;;, measured in samples, is linearly proportional to
the distance,
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where f, is the sampling frequency and c¢ is the speed of
sound. For simplicity, we assume that y;[n] is a linear com-
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where 7); is a noise term.

In the general case, all «;; are positive, ie. all microphones
pick up all speakers to some extent.

3.2 Baseline

A strightforward approach to this problem is to use energy
thresholding, independently on each personal channel. We
implement this in our baseline. The energy threshold is
equal to the average of the 200 lowest energies multiplied
by a factor of 2. Any frame that has energy beyond the
threshold will be considered as the participant’s speech in
that channel. As we will show in the experimental results
section, the baseline system yields very poor performance.
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3.3 Inter-microphone Time Differences (IMTD)

In our first experiment, we consider the use of inter-
microphone time differences much as humans use inter-
aural time differences to lateralize sources of sound. In
contrast to a single interaural lag in the latter, the meeting
scenario offers an ensemble of N - (N — 1)/2 lags given N
microphones/speakers.

If only one person S, speaking during the current anal-
ysis frame, then for each pair of microphone signals
{yi[n),y;[n]}, i # j, the short-time crosscorrelation
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exhibits a distinct peak at a lag corresponding to the
difference in distance Adl(g) = d;q — djq.

Given N points, we can compute N - (N —1)/2 > N dis-
tance differences. If the noise term, 7, is both small and
white, then this (overdetermined) system of equations will
be (almost) consistent, that is, for any three microphones

{wilnl, y;[nl, ye[n]},
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This defines an implicit transformation into polar coor-
dinates, with speakers arranged radially around a single
sound source (we assume radially symmetric microphone
responses). After placing the origin arbitrarily in this single
dimension, we solve for the positions of the listeners’
microphones relative to that origin using a weighted least
squares approximation.

The microphone whose abscissa is smallest is hypothesized
as being worn the speaker.

3.4 Joint Maximum Crosscorrelation

In a second algorithm, we consider the peak magnitude of
the crosscorrelation.

After locating the peak in the crosscorrelation spectrum
max ¢;; between two microphone signals {y;[n], y;[n]}, we
compute the quantity

max ¢;;
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where the ¢;; is the power of y;[n] in the current analysis
frame.

If speaker S; is speaking and speaker S; is silent, then &;;
will be positive, since max ¢;; will be due to the power in
yi[n], not the distant, attenuated copy y;[n)].

For every speaker S;, we compute the sum
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Per analysis frame, we hypothesize that S; is speaking only
if Z; > 0. Otherwise, we assume that the power in y;[n] is
due entirely to some other distant speaker(s) S;.;, whose
microphone signal y;[n] contains more power.

4 Experimental Results

4.1 Segmentation

In the following table we show the segmentation results on
the development set, using miss rate (MS) and false alarm
rate (FA), for all three algorithms, with and without smooth-

ing.

System || no smoothing (| smoothing
MS | FA MS | FA
baseline || 7.2 66.2 — —
IMTD 548 | 238 38.0 | 30.6

JMXC 33.2 4.2 16.9 | 13.0

We also split the data into lapel microphone and headset
microphone channels, and show JMXC segmentation per-
formance separately for both below:

Mic Type || no smoothing || smoothing

MS | FA MS | FA
lapel 32.0 35 16.5 | 13.1
headset || 34.4 49 17.2 | 129

These results demonstrate that for the RT04s data, the per-
formance of the JMXC algorithm is relatively independent
of microphone type.

4.2 Speech Recognition

In the following table we compare the first pass speech
recognition performance on segments produced by the
different segmentation systems. We also compute the
performance gap in word error rate relative to the ideal.

System || Word Error Rate | Performance Gap
baseline 49.6% 25.3%
IMTD 68.6% 73.2%
JMXC 13.6% 10.1%
human 39.6% —

5 Discussion and Conclusions

The baseline algorithm suffers from a high false alarm rate
due to crosstalk and speech overlap.

The IMTD algorithm reduces the false alarm rate, but at
the expense of an increase in the miss rate. This is due to its
inability to postulate simulataneous speakers. Also, where
there is very little crosstalk, the algorithm suffers because
there are no clear peaks in the crosscorrelation.

JMXC significantly reduces both types of error. In contrast
to IMTD, it can posit simultaneous speakers; furthermore,
the peak crosscorrelation value is a more robust feature
than the sample lag at which it occurs.

Recognition accuracy using the JMXC algorithm for seg-
mentation is fairly close to that obtained using human
segmentation, for a wide variety of meetings and different
microphone types.




