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Fig. 1. A telescoping lizard in various stages of extension approximates an input surface (right). We parameterize telescoping structures as networks of smooth
space curves with special geometric properties, allowing users to rapidly explore the space of telescoping designs.

Telescoping structures are valuable for a variety of applications where mech-
anisms must be compact in size and yet easily deployed. So far, however,
there has been no systematic study of the types of shapes that can be mod-
eled by telescoping structures, nor practical tools for telescopic design. We
present a novel geometric characterization of telescoping curves, and ex-
plore how free-form surfaces can be approximated by networks of such
curves. In particular we consider piecewise helical space curves with tor-
sional impulses, which signi�cantly generalize the linear telescopes found
in typical engineering designs. Based on this principle we develop a system
for computational design and fabrication which allows users to explore the
space of telescoping structures; inputs to our system include user sketches
or arbitrary meshes, which are then converted to a curve skeleton. We pro-
totype applications in animation, fabrication, and robotics, using our system
to design a variety of both simulated and fabricated examples.
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1 INTRODUCTION
A pirate’s telescope, consisting of straight,
nested cylinders, is a familiar sight com-
monly associated with tales of seafarers and explorers. The sim-
ple telescoping mechanism behind these so-called spyglasses has
endured over the centuries, owing to its simple e�ectiveness for
compact storage and rapid deployment, and is still widely used in
modern engineering (Garrette and Ryan 1969; McCord and Williford
1966). Deployable structures have more broadly become important
in applications where an unwieldy object must be stored in or trans-
ported through a smaller vessel, e.g., large solar panels carried by
space-bound vessels (Stinson 2014), or arterial stents that must travel
through narrow passages during surgery (Kuribayashi et al. 2006).
Generalized telescoping mechanisms likewise hold great promise
for deployable design, providing a fundamentally new kind of joint
that can be reshaped in surprising and entertaining ways. The de-
sign space of telescoping structures, however, remains relatively
unexplored. This paper is a �rst foray into mathematical and com-
putational models for generalized telescopes and their applications.

At the most basic level, a telescoping structure consists of a se-
quence of nested units that can be extended and retracted. Most
modern instances of such structures consist of a linear sequence of
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identical and parallel cylindrical shells. Traditionally, the linearity
of telescopes may have arisen from optical considerations (as with
the spyglass), but for purely mechanical applications, telescoping
structures are capable of achieving a much broader and more varied
range of shapes and motions. However, designing more complex
telescoping mechanisms by hand would require considerable e�ort:
factors such as shell shapes, dimensions, and orientations, that af-
fect compactness and mechanical feasibility have to be taken into
account for each of potentially numerous shells, making it di�cult
to iterate on design and explore the large space of possibilities.

In this paper, we therefore take a computational approach to
telescoping design. The starting point is a novel geometric param-
eterization of telescoping structures—the key insights are that (i)
in�nitesimally, a telescoping motion must be a screw motion, mean-
ing that each shell must follow a path of constant curvature and
constant torsion (i.e., a helix), and (ii) in a fully extended con�gu-
ration, telescopes have additional �exibility that can be modeled
as �nite impulses of torsion. The problem of designing a telescope
based on an arbitrary space curve then becomes the problem of
approximating the curve by a G1 piecewise helical curve. We for-
mulate an optimization problem to compute such curves, which can
then be segmented into telescoping shells.

We also present schemes for combining a network of such curves
into larger telescoping structures. Using mesh skeletonization, we
are able to semi-automatically produce telescoping approximations
of a given input surface mesh, especially e�ective for tree-like sur-
faces. Finally, we develop a design tool that enables novice users to
create telescoping structures, and use this tool to create a wide vari-
ety of examples, showcasing the �exibility of our parameterization
to applications in animation, fabrication, and robotics.

2 RELATED WORK
Deployable structures. While the design of telescoping structures

has not received much attention thus far, deployable structures in
general are an active area of research in mechanical and civil en-
gineering (Pellegrino 2002; Puig et al. 2010). While space�ight has
remained a primary motivator for such research, developments have
also occurred in applications such as deployable robots (Salemi et al.
2006) and bridges (Rhode-Barbarigos et al. 2012), among other things.
Recent work on the design side has also focused on ensuring that
the motion undergone by a deployable or recon�gurable structure
is physically feasible (Garg et al. 2016; Zheng et al. 2016).

Compact storage. A major motivation for telescoping structures
is to enable objects to be collapsed into a compact form for storage
or transportation. This also motivated earlier work by Li et al. on
stackabilization (2012) and foldabilization (2015). Both approaches
focus on modifying object geometry to enable a desired compact
con�guration – of a stack of objects in the former, and of a single
folded object in the latter. These build upon previous work on design
systems for 3D printable furniture (Saul et al. 2011; Umetani et al.
2012), where collapsibility and portability are often desirable traits.

Computational folding. Similar problems have also been studied
in the area of computational origami and folding. One widely studied
problem is to compute an origami folding pattern that produces a
papercraft facsimile of an input 3D model (Tachi 2010). There have

also been recent advances in origami deployable structures (Cheung
et al. 2014), as well as design of origami structures that are able to
fold themselves, via exposure to heat (An et al. 2014) or microwaves
(Yasu and Inami 2012).

Geometry of space curves. Space curves are a natural choice for
modeling rod- or strand-like phenomena (Bergou et al. 2008). In
this work, we model telescoping structures using piecewise he-
lical curves with G1 continuity; these so-called super-helices and
their generalizations (Bertails-Descoubes 2012; Casati and Bertails-
Descoubes 2013) have previously been used for hair simulation
(Bertails et al. 2006). Although the problem of �tting super-helices
to arbitrary curves has been studied before (Derouet-Jourdan et al.
2013), we are far more constrained in our ability to vary curvature
along a path, motivating our need for a di�erent method. In con-
trast, in the limit as we add more shells, our designs approximate
space curves of constant curvature but arbitrary torsion. Beyond
circular arcs and helices, special curves of constant curvature in-
clude Salkowski curves which have continuous (rather than constant)
torsion (Monterde 2009); importantly, a theorem of Ghomi (2007) im-
plies that anyC∞ curve is well-approximated by a curve of constant
curvature, which helps to justify their use here.

Mesh skeletonization. As a starting point for approximation of
general surface meshes, we use a 1D mesh “skeleton” which can be
computed by approximating an analytic description (Dey and Sun
2006), or by iterative mesh contraction (Au et al. 2008; Tagliasacchi
et al. 2012). Mesh skeletons are used as a 1D proxy for the surface in
applications such as automatic segmentation and skinning (Au et al.
2008), or �tting of axially-oriented elements such as beads (Raab
et al. 2004) or generalized cylinders (Zhou et al. 2015).

3 THE SPACE OF TELESCOPES
What shapes can a telescope have? Although our telescopes will
ultimately be constructed from discrete collections of shells, we will
consider this question from dual discrete and continuous viewpoints.
This duality allows us to leverage di�erential geometry to under-
stand the space of possibilities, and leads to e�cient optimization
problems that can incorporate free-form geometry.

3.1 Geometry of telescoping shells
At a high level, a telescoping structure can be thought of as a sequence
of extensible components, referred to as telescoping shells. Intuitively,
each shell represents a rigid piece of material with an interior cavity
shaped to accommodate subsequent, smaller shells which we call
children. Our de�nitions are guided by three common-sense axioms:

(A1) Telescoping shells are rigid.
(A2) Each shell has a continuous, collision-free motion between

distinct retracted and extended con�gurations.
(A3) In the retracted state, each shell is tightly contained in its

parent (no space in-between).
Property (A1) is motivated by common manufacturing consider-

ations, (A2) ensures deployability, and (A3) codi�es the desire for
compactness in the closed state. To develop a geometric characteri-
zation of shells, consider two closed connected sets B ( A ⊆ R3, so
that B and cl(A\B) represent the child and parent shell in a retracted

ACM Transactions on Graphics, Vol. 36, No. 4, Article 83. Publication date: July 2017.



Computational Design of Telescoping Structures • 83:3

Fig. 2. The fundamental shape for a telescoping shell is a solid (top) swept
along a helical path called the medial curve. Any such shape (bo�om) can
slide along itself via a continuous screw motion.

state (respectively); these sets satsify (A3) by construction. Without
loss of generality we can assume thatA is �xed and B moves relative
to A. We then seek geometries for B that allow (A1) and (A2) to
hold, i.e., that admit a feasible rigid trajectory between closed and
open states. Any such motion must also satisfy these properties in-
stantaneously: at each moment we must have an in�nitesimal rigid
motion that maps B to itself “almost everywhere,” i.e., away from
boundary points where the child makes contact with open space.
Typically there is only one feasible in�nitesimal motion, which we
can express as a vector ξ ∈ se(3), i.e., a screw motion combining an
in�nitesimal translation and rotation. Until the child is separated
entirely from its parent, constraints on its motion are identical;
hence, the vector ξ remains �xed throughout some interval of time
0 ≤ t ≤ T . Sweeping out any subset B along ξ then yields a helical
solid H :=

⋃
t ∈[0,T ] exp(tξ )B, which is the generic shape for our

telescoping shells (Fig. 2).

Fig. 3. A few basic axioms determine the possible shapes for a telescoping
shell. Here we provide a classification for shells in R3: linear, toroidal, helical
(which subsumes the first two), and spherical (which we generally omit).

Classi�cation of Telescoping Shells. In the case of pure translation,
shells are linear; for pure rotation about an axis, they are toroidal
(Fig. 3, top). For shapes with a high degree of symmetry there may
also be more than one feasible screw motion, though these shells are
not as useful for design—for instance, nested spherical shells admit
any rotational trajectory (Fig. 3, bottom-left); stacks of planar slabs
have two translational degrees of freedom. Noncompact shapes like
the in�nite helical tube in Fig. 2 also exhibit the desired motion,
but do not have distinct “open” and “closed” states as required by
(A2). Apart from these degenerate cases, the only shell geometries
that satisfy our basic axioms are compact regions of R3 swept along
helical trajectories (Fig. 3, bottom-right).

By no means do these axioms
provide the only possible de�-
nition for a “telescope”—for in-
stance, any foliation of a planar
region can be used to generate
a sort of telescoping structure
(inset, top), albeit one that may
not comprise a single sequence
of shells; likewise, more designs
are possible if we do not require
that shells �t tightly inside each
other, at the cost of size and physical stability. One can consider
telescopes that extend in alternating directions (Fig. 11b) or branch
into multiple pieces (Fig. 11a), though the latter comes again at the
cost of size. Finally, the axioms above can be used to de�ne “tele-
scopes” on other spaces: in the plane for instance, one obtains only
circular or linear telescopes; on the sphere the only isometries are
rotations, producing equatorial telescopes (inset, bottom).

Arbitrary Torsion. Though a helical shell with any cross section
admits a telescoping motion (see inset), we will restrict our de-
signs to circular cross sections. A crucial reason for this choice is
that a circular shell in its fully-extended con�guration can freely
twist around its parent. Geometrically, this additional freedom
provides impulses of torsion that
greatly expand the space of pos-
sibilities beyond helices: in the
limit of smaller and smaller shells,
we can approximate curves with
constant curvature and arbitrary
torsion (Sec. 3.3).

For design and optimization we work primarily with the medial
curve γ of the telescope (Fig. 2). The fundamental theorem of space
curves states that any arc-length parameterized curveγ (s ) : R→ R3
is determined up to rigid motion by its curvature κ (s ) : R→ R and
torsion τ (s ) : R→ R, i.e., by integrating “bend” and “twist” along
the curve, one can recover its position in space. (Concretely, one can
recover γ by integrating the Frenet-Serret formulas.) Throughout,
each shell will therefore be parameterized by a tuple of �ve scalars
Si := (li , ri ,κi ,τi ,θi ), where the �rst two determine the length and
the radius (i.e., “width”), respectively; the �nal parameter θi is a
torsional impuslse that will be discussed in Sec. 3.3.
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Fig. 4. Anatomy of a shell. Le�: κ and τ determine the medial curve (in red);
r and l determine the geometry of the shell surface. Center, right: retracted
and open states of parent S1 and child S2. In between, the motion slides the
medial curve of S2 along the endpoint of S1 while keeping frames aligned.

3.2 Telescoping chains
We de�ne a telescoping chain as a sequence of shells {S0, . . . , Sn }. A
chain satis�es the nesting condition if each child Si+1 is contained
in its parent Si when in the retracted state, i.e., in the unique con�g-
uration where:

• The �nal points of the medial curves of parent and child
are coincident, and

• The Frenet frames of the medial curves at their �nal points
are also aligned.

(See Fig. 4, center.) A child Si is contained in its parent Si−1 if every
point of the parent is at least a distance ri + ϵ from the medial axis
of the child, where ϵ > 0 is the wall thickness.

The extended con�guration is given by aligning centerlines of
consecutive shells such that the �rst point on the centerlinemi+1
of Si+1 coincides with the last point on the centerline mi of Si , and
the frames at these two points match. The telescoping motion is
likewise generated by sliding Si+1 along the terminal point of Si
while keeping frames aligned.

For a given trajectory, we must also determine a suitable shell
geometry. To determine radii ri that satisfy the nesting condition
we can iterate backward over the shells: for each shell Si , compute
the maximum distance dmax between the medial curve of Si and any
point on the surface of the child shell Si+1, then assign ri = dmax+ϵ .
Although we do not impose any hard restrictions on the values of li ,
κi , and τi , large variations in these values may have a detrimental
e�ect on the compactness of the retracted structure. As seen in
Fig. 4 and Fig. 7, a mismatch between consecutive shell pro�les
yields a large increase in the radius ri , and regions of wasted space.
Generally speaking, this behavior occurs whenever there is a large
change in shell parameters. On the other hand, if li , κi , and τi are
held constant, then the interior and exterior pro�les are identical,
and the radius need only increase by a minimal amount ϵ > 0
corresponding to wall thickness.

Overall, the design of telescoping structures is therefore a balance
between optimization of the telescope trajectory (to provide good
geometric approximation), and uniformity of shell parameters (to
encourage compactness).

Fig. 5. Top: A unique feature of shells with circular cross sections is that in
a fully-extended configuration they can be rotated relative to their parent.
This additional degree of freedom greatly expands the space of possible
shapes, such as the curve shown at bo�om.

3.3 Torsional impulses
Shells with circular cross sections provide additional geometric �exi-
bility by allowing each child Si to rotate by an angle θi relative to its
parent Si−1 around their shared tangent (Fig. 5, top). This additional
rotation is applied only in the fully extended con�guration (since
otherwise there would be collisions; likewise, collisions preclude
this kind of motion for non-circular cross sections). The curve in
Fig. 5, bottom provides an illustrative example, requiring an instan-
taneous �ip in the curvature normal at the in�ection point. In this
case we augment the telescoping motion by applying a “twist” at
the end of every shell extension; as a result, only tangents (and not
whole frames) will agree in the fully extended con�guration.

Geometrically, this motion is encoded by impulses in the torsion
τ of the medial curve. In particular, we get a torsion distribution
τ (s ) = τ0 (s ) +

∑n
i=1 θiδsi (s ) for some collection of impulse angles

θ1, . . . ,θn ∈ R and parameters s1, . . . , sn along the curve (where δ
denotes the Dirac delta distribution). Note that torsional impulses
have no e�ect on the nesting condition—they simply add free pa-
rameters that facilitate better geometric approximation.

If κi and τi are identical for all shells then the extended path has
continuous scalar curvature, but may not be G2 since the curvature
normal can jump. For general design tasks we sometimes relax this
restriction (as in Fig. 4), in which case the curve is only G1.

Throughout the remainder we consider piecewise helical curves
with circular cross sections and torsional impulses. Generalizations
of the kind discussed in Sec. 3.1 provide interesting directions for
future work.

4 PIECEWISE HELICAL APPROXIMATION
While piecewise helical curves are quite expressive, they can be
di�cult to manipulate directly. We therefore devise a method for ap-
proximating any given curve—while keeping in mind our secondary
goal of compactness. A rough outline of our strategy is:

(1) Approximate the given curve as a densely-sampled polyline.
(2) Smooth its curvature via heat �ow.
(3) Partition it into segments and compute the best approxima-

tion of its torsion by a constant plus impulses.
(4) Convert each segment into a telescoping shell.

Rather than work directly with vertex positions, optimization is
framed directly in terms of (discrete) curvature and torsion. The
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fundamental theorem of space curves ensures that a good approx-
imation of these functions will yield a close approximation of the
given curve geometry—while making it easier to satisfy the condi-
tions needed for telescoping motion. Moreover, since there is no
dependence of κ on τ (and vice versa), these functions can be opti-
mized separately. We can avoid drift in the curve endpoints (which
may need to connect to other curves) by �nding a rotation and uni-
form scaling that aligns the endpoints of the helical approximation
with the endpoints of the given curve.

4.1 Curve discretization
Given an arc-length parameterized input curve γ (s ), we �rst sample
vertex positions γ0, . . . ,γm at regular intervals of size d > 0. The
associated (discrete) Frenet frame is then given at each vertex by

Ti =
ei+1
‖ei+1‖

Bi =
ei × ei+1
‖ei × ei+1‖

Ni = B × T

where ei := γi+1 − γi is an edge vector. Curvature and torsion
are then discretized as values κi ,τi per vertex, equal to the rotation
angles around the binormal and tangent (resp.) between previous and
current frames. (If ei and ei+1 are parallel we simply let Bi = Bi−1 so
that τi = 0.) When necessary, this data can be integrated to recover
vertex positions γi , using the position and frame from the �rst point
of the input curve as the initial data.

We next optimize the curvature and torsion functions on the
�nely-sampled curve; we then partition the curve into n helical
segments which provide the centerlines for individual shells.

4.2 Curvature optimization
To obtain more uniform curvature, we apply a simple heat �ow
d
dt κ =

∂2

∂s2κ directly to the curvature function itself. The right-hand
side is discretized via standard �nite di�erences to obtain a matrix
L ∈ Rm×m . We then use backward Euler to integrate the �ow, via

(I − hL)κk+1 = κk ,

where I is the identity, h is the step size, and κk ∈ Rm is the vector
of curvatures at step k . Terminating this �ow before we arrive at a
constant κ provides a tradeo� between uniformity and �delity. To
obtain the �nal curvature value for each helical segment, we simply
take the average over all �ne vertices contained in that segment.

4.3 Torsion optimization
Optimizing torsion is not as straightforward, since we must simul-
taneously determine helical torsions τi and twist angles θi . Directly
minimizing the di�erence of torsion functions is not meaningful due
to impulses; we instead consider the cumulative torsion function

T (s ) =

∫ s

0
τ (x ) dx . (1)

For our piecewise helical curve “with impulses” this function has
a very particular shape: it is a (typically discontinuous) series of
a�ne segments, as pictured in Fig. 6, top left. The slope of each
segment determines the torsion of the corresponding shell, and the
(signed) height of each discontinuity determines the twist angle in
the extended con�guration. The problem is then to �nd the best
piecewise approximation T ∗ (s ) of the cumulative torsion T0 (s ) of
the original curve.

Fig. 6. Top le�: The cumulative torsion functionT (s ) for a helical curve with
torsional impulses θi . Top right: Best approximation T ∗ of a given torsion
function T0 (using constant slope m), shown in yellow and green (resp.) on
bo�om le�. Bo�om right: resulting telescope.

Let p0, . . . ,pn be the segment endpoints, with p0 = γ0 and pn =
γm ; for i = 1, . . . ,n − 1 letmi be the slope of the ith interval and let
σi = T ∗ (pi ) determine the height of the left endpoint. Any other
point s ∈ [pi ,pi+1] can then be written as T ∗ (s ) = σi +mi (s − pi ),
giving us a per-segment torsion approximation error of

Ei =

∫ pi+1

pi

(
T0 (x ) −T

∗ (x )
)2 dx ,

whose sum de�nes an energy E�delity =
∑n−1
i=0 Ei . From a minimizer

of this energy one can recover the impulses θ1, . . . ,θn−1 via

θi = (σi−1 + lmi−1) − σi ,

where l is the segment length and σ0 = 0.

4.3.1 Complexity and Compactness. Minimizers of E�delity are
typically unsatisfactory for two reasons. First, all impulse values
θi are typically nonzero. In physical fabrication, torsional impulses
typically demand additional complexity (e.g., additional mechanical
actuators or more elaborate shell geometry). We therefore add an
L1 term to encourage sparsity:

Esparsity =
n−1∑
i=1
|θi | (2)

Second, there may be large variations in the segment torsions (de-
termined by the slopes mi ), which reduces the compactness of the
retracted con�guration (Fig. 7). Here we either add a penalty

Eregularity =
n−1∑
i=1

(mi −mi−1) , (3)

or simply use a single degree of freedomm to control the slope of all
segments (as in Fig. 6, top right). While the latter choice may seem
restrictive, the torsional impulses alone can still do a surprisingly
good job of approximating the given torsion function (as seen in
most examples throughout). Our overall energy is then

E = E�delity + αiEsparsity + αuEregularity (4)

where αs and αr in�uence the number of impulses and the compact-
ness (resp.), and Eregularity is often omitted in lieu of a single slope
degree of freedom (m).
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Fig. 7. Both telescopes approximate the constant-curvature curve on the le�.
Middle: Varying torsion on the shells leads to large shell sizes. Right: Using
only impulses improves compactness while remaining nearly as accurate.

4.4 Telescope Generation
The only undetermined parameters remaining are the shell radii ri ,
which determine the overall “thickness” of the telescope. Since the
radius of each parent is uniquely determined by the radius of its
child (Sec. 3.2), the only degree of freedom is the radius of the �nal,
innermost shell. We allow this value to be speci�ed by the user; if
no radius is speci�ed, a default value of twice the wall thickness ϵ is
used. These radii will satisfy the nesting condition by construction.
All that remains now is to generate the explicit shell geometry.

4.4.1 Curvature/torsion parameterization of helix. To construct
centerlines, we need an expression for a helix with given curvature
and torsion. Let a = κ/(κ2 + τ 2), b = τ/(κ2 + τ 2), and c =

√
a2 + b2.

One can then easily show that

h(t ) =

(
a cos

t

c
,a sin

t

c
,
bt

c

)
is an arc-length parameterized helix with curvature κ and torsion τ .

4.4.2 Shell geometry generation. The exterior pro�le of shell Si
can now be expressed as

f (s,φ) = h(t ) + ri cos(φ)Nh (t ) + ri sin(φ)Bh (t ),

for s ∈ [0, li ], where Nh and Bh denote the unit normal and binormal
(resp.) of a helix h with torsion τi and curvature κi (in practice we
sample this function at regular intervals to contruct a mesh). For
the inner pro�le we substitute the radius ri − ϵ for ri . Annular caps
at either end yield a closed surface delineating the boundary of the
solid shell.

3D printing considerations. Mathematically, child and parent shells
make only tangential contact in the extended state. In practice, we
use a linear tapering of shell radii (along their length) to keep shells
connected; we also slightly extend the length of each shell. As a
result, each shell gets “stuck” inside its parent, preventing the tele-
scope from disconnecting. To realize given torsional impulses we
carve a channel into the interior pro�le of each parent, and add
small protrusions at the base of each child (Fig. 8, left). Together,
this geometry guides the extension motion of the child, and allows
the child to twist as far as necessary but no further. Finally, we
add a small gap between consecutive shells, both to give room for
extended shells to rotate, and to accommodate tolerances of 3D
printers.

Fig. 8. Le�: Shell geometry with protrusions and interior channels. The
circular arc at the rim of the shell controls the rotation from the torsional
impulse. Right: An example of a fused juncture piece.

5 NETWORKS AND JUNCTURES
To fabricate more interesting structures, we connect a network of
telescoping chains via junctures. These junctures are simply �xed
objects to which multiple curves are rigidly attached, as shown in
Fig. 9; each juncture has one “parent” curve, and any number of
“child” curves. In our system, junctures are created in the initial
spline drawing phase, and are preserved through all subsequent
phases. Curve networks with tree topology ensure that our tele-
scoping structures can always extend without locking, though in
principle loops are possible (Fig. 11). Globally, all telescoping motion
is expressed relative to some �xed root object.

5.1 Juncture geometry
We give junctures simple geom-
etry; either (i) the convex hull of
the bases of all incident chains,
or (ii) a sphere with radius suf-
�cient to contain all bases of in-
cident chains (see inset), where the base of a chain is the circular
cross section nearest to the juncture. One can of course substitute a
custom mesh for any juncture, providing additional functionality
or better geometric approximation. To ensure feasible motion, each
retracted chain is subtracted from its incident junctures. In practice,
juncture geometry unioned with the outermost parent of each inci-
dent chain (Fig. 8, right); to determine globally feasible attachment
points for each chain we iteratively check and resolve collisions
until there are none (see accompanying video).

5.2 Radius interpolation
Apart from the nesting condition, shell radius has a signi�cant
e�ect on the bulk geometry of the extended structure. Judicious
choice of radii helps to further improve geometric approximation.
In particular, for a chain attached to two junctions, we have target
radii r < R at the two endpoints (determined, for instance, by the
input geometry). If L is the arc length of the centerline and mt is
the tapering slope, then R − r − Lmt is the amount by which the
radius must decrease along the chain. Since shell radius decreases
by ϵ per shell, we set the number of shells to

max (d(R − r − Lmt )/ϵe , 2)

which approximates the desired decrease to within ϵ . Smaller wall
thickness yields more shells per chain, resulting in greater com-
pactness; it also provides more torsional impulses, and hence better
approximation of the given path (Fig. 10). Real fabrication processes
of course dictate a minimum possible wall thickness (which can be
mitigated by increasing the size of the structure itself).
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6 MESH SKELETONIZATION
For complex geometry, it may be di�cult or time consuming to
design a curve network by hand. We partially automate this process
via mesh skeletonization; any such method can be used as long as the
�nal skeleton consists of 1D curves rather than 2D regions (as with
the medial axis). We use a variation of the method of Tagliasacchi et
al. (2012), where vertices are pushed along the normal direction until
the mesh degenerates into such a skeleton. We then perform edge
collapses until no triangles remain (only edges), using the quadric
error metric to guide simpli�cation (Garland and Heckbert 1997).
The resulting polygonal curves are then converted into Catmull-
Rom splines, and junctures are placed wherever multiple curves
meet. This network represents a starting point for optional user
cleaning and tweaking, after which the network can be run through
the rest of our optimization pipeline. An overview of this process is
shown in Fig. 9.

7 RESULTS
We prototype several possible use cases for telescoping structures
across a variety of domains, using both virtual and physical mod-
els. Here we stick to purely telescoping structures, though using
telescopes in conjunction with other deployable mechanisms (e.g.,
folding or scissor joints) may also prove useful. Physical prototypes

Fig. 9. Overview of the skeletonization process. The vertices of the original
model are collapsed first to the skeleton and then to a spline network. A�er
cleaning, the spline network can be discretized and ultimately converted to
a telescoping structure.

Fig. 10. Telescoping armadillos created from the same curve network, but
with varying wall thicknesses t . Shell count increases as thickness decreases.

are shown in Fig. 12. We use basic consumer-level FDM 3D printing,
which already allows for some fairly sophisticated designs (in spite
of requiring a somewhat large wall thickness ϵ). Examples (a)–(c)
show typical chains and junctures; Fig. 12c partially embeds the
middle chain in the hull of the juncture. Fig. 12d shows the printed
armadillo model from Fig. 9. Here one might modify the geometry
of the junctures and outermost shells to better mimic the original
surface appearance (e.g., by adapting bas relief methods (Schüller
et al. 2014)). Additional simulated examples are shown in Fig. 13a–n;
the smaller relative wall thickness in these models likely demands
a more sophisticated fabrication technique than FDM (or larger
overall scale).

Fig. 13o–q shows the frame for a deployable shelter, attached
to a �exible tarp; a larger, thinner version of such a shelter might
be carried on one’s back and rapidly deployed at a camp site. In
robotics, telescoping joints can be used to design vehicles that must
pass through di�cult terrain—as depicted in Fig. 13i–j where pieces
of a vehicle retract in order to pass through a narrow passageway.
Likewise, actuated torsional impulses would provide a robotic joint
that is highly controllable, allowing (for instance) an end e�ector to
be �exibly manipulated. To explore this idea, we implemented basic
inverse kinematics (IK) where the di�erence between the endpoint
position x and a goal position x∗ is di�erentiated with respect to
the impulse angles θi . This IK scheme is used in Fig. 13k–l to fetch
objects with a telescoping claw, and in Fig. 13g–h to build a “hexapus”
robot with six retractable arms which exhibit highly organic motion.

Fig. 11. Many possible generalizations remain to be explored. Le�: a hy-
pothetical “helical spli�er” for connecting two telescoping chains. Right: a
telescope with cyclical rather than tree-like structure.
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Fig. 12. Le�: Telescopes designed using our pipeline. Right: 3D printed physical prototypes.

8 FUTURE WORK
Our basic model for telescoping structures provides a jumping-o�
point for a variety of generalizations, some of which are discussed in
Sec. 3.1. One is to improve the quality of geometric approximation,
either by augmenting the appearance of the exterior surface (as
discussed in the previous section), or by incorporating non-circular
pro�les in parts of the structure where torsion impulses are not
needed. Likewise, we currently optimize only the extended shape—
simultaneously optimizing the retracted geometry might provide
more meaningful aesthetics or additional functionality in the re-
tracted state (e.g., improved packability). Replacing rigid junctures
with telescoping “splitters” (à la Fig. 11, left) would help to im-
prove the compactness of the retracted form (at the cost of more
rapid shrinking of shell size). It is also interesting to consider the
conditions under which a cyclical telescope (Fig. 11, right) or net-
work of such cycles admits feasible extension/contraction. Finally,
mechanical actuation of extension and torsional impulses would
yield automatic deployability and controllability, facilitating the
aforementioned applications in engineering and robotics.
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