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Abstract

Stripe patterns are ubiquitous in nature, describing macroscopic
phenomena such as stripes on plants and animals, down to ma-
terial impurities on the atomic scale. We propose a method
for synthesizing stripe patterns on triangulated surfaces, where
singularities are automatically inserted in order to achieve user-
specified orientation and line spacing. Patterns are characterized
as global minimizers of a convex-quadratic energy which is well-
defined in the smooth setting. Computation amounts to finding
the principal eigenvector of a symmetric positive-definite matrix
with the same sparsity as the standard graph Laplacian. The
resulting patterns are globally continuous, and can be applied to
a variety of tasks in design and texture synthesis.
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1 Introduction

A diverse collection of natural phenomena exhibit the same char-
acteristic pattern: unoriented stripes of uniform width that bifur-
cate at isolated points called edge dislocations [Kalpakjian and
Schmid 2009, pp. 44–46]. Why does this bifurcation occur? Sur-
faces of revolution (Fig. 3) provide an instructive example: for
any given stripe width there is a maximum integer number of
stripes that can fit around the circumference at each height h. As
the radius r grows or shrinks this number can suddenly jump—
stripes must therefore branch or coalesce in order to maintain a
continuous transition between neighboring regions.

Figure 1: In general, patterns without singularities exhibit uneven
spacing, and patterns with even spacing must have singularities.

(Photo courtesy Joshua Hill)

Figure 2: Natural phenomena like cacti (left) exhibit characteristic
branching patterns in an effort to maintain evenly-spaced features.
Right: Our algorithm allows one to quickly and automatically
synthesize similar patterns that seamlessly cover arbitrary surfaces.

Our approach to stripe pattern synthesis is closely related to ex-
isting methods for field-aligned parameterization (Sec. 1.1). The
main point of departure is that existing algorithms try to prevent
singularities that were not specified as part of the input, whereas
we intentionally allow new singularities, which are essential to
modeling natural phenomena. In particular, we use a formulation
akin to Ray et al. [2006], but omit both the curl correction step
and the unit-norm constraint. As a result, we can formulate our
problem via a simple convex quadratic energy; the practical pay-
off is an algorithm about an order of magnitude faster than those
based on nonconvex constraints or mixed integer programming
(Sec. 5.1). The final algorithm is simple to implement (App. C)
requiring no global cutting or integer jumps, is robust to errors
in the input (Fig. 16), and requires little work beyond factoring
a single sparse matrix. The output is an angle α at each triangle
corner which can be used to drive a periodic texture or shader.
We also introduce a novel interpolation scheme (Sec. 4.3) that
ensures the pattern is globally continuous (C0) away from a finite
collection of isolated singular points.

Figure 3: To maintain constant stripe width, each “level” of this
surface of revolution must exhibit a different number of stripes.
Judiciously placed branch points are therefore essential to keeping
the pattern continuous. Inset: each pair of stripes from the second
level perfectly branches into three.



Figure 4: An arbitrary vector field (left) drives stripe orientation
and spacing (right); there are no special conditions on the input.

1.1 Related Work

Synthesis of stripe patterns has a long history due to the preva-
lence of these patterns in nature (Figs. 2, 5, 7, 8, and 20). Place-
ment of evenly-spaced stripes is also essential in vector field visu-
alization [Jobard and Lefer 1997; Mebarki et al. 2005; Spencer
et al. 2009] and nonphotorealistic rendering [Hertzmann and
Zorin 2000]. Methods based on reaction-diffusion equations
can generate stripe patterns aligned with nonorientable fea-
tures [Turk 1991; Witkin and Kass 1991], but must solve the full
time evolution of a nonlinear parabolic PDE whose parameters
can be difficult to control; moreover, these methods solve directly
for the color function rather than a parameterization, precluding
more complex shaders like Fig. 2, right. Image-based texture syn-
thesis can also produce patterns aligned with orientable [Praun
et al. 2000; Lefebvre and Hoppe 2006] and nonorientable vector
fields [Ying et al. 2001; Wei and Levoy 2001; Turk 2001], but
features in such patterns result from, e.g., statistical similarity of
image features rather than geometric phenomena. Input to these
methods can be generated using a variety of techniques [Hertz-
mann and Zorin 2000; Palacios and Zhang 2007; Fisher et al.
2007; Ray et al. 2008; Bommes et al. 2009; Crane et al. 2010;
Knöppel et al. 2013; Diamanti et al. 2014].

Field-aligned parameterization is also a key component of global
remeshing algorithms, where there are two popular represen-
tations: either angle-valued coordinate functions with discrete
period jumps [Bommes et al. 2009], or vector-valued functions
whose angular components provide the final coordinates [Ray
et al. 2006; Zhang et al. 2010]. Both choices traditionally lead to
difficult nonconvex problems: the former due to integer variables;
the latter due to a quartic unit-norm constraint at each point. The
unit constraint implicit in both representations also leads to en-
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Figure 5: We can mimic real fingerprints (left) by using a field with
prescribed singularities (center) to guide our stripe pattern (right).

Figure 6: Our method handles line spacing that varies spatially
(left), even if the target spacing function is discontinuous (right).

ergies that do not converge under refinement and are therefore
unstable with respect to tessellation [Knöppel et al. 2013, Fig. 4].
Nonorientable features are handled using either matchings [Ray
et al. 2006; Tong et al. 2006; Bommes et al. 2009], or a branched
covering [Kälberer et al. 2007; Kälberer et al. 2010], though
in retrospect these two approaches are essentially equivalent:
matchings determine a covering space, and optimization on a
covering is no more costly than on the original domain, as long
as one respects conjugate symmetry (App. A). The advantage of
the covering space perspective is that it allows for a meaningful
formulation in the smooth setting (Sec. 2.3), helps to simplify
implementation (Sec. 4.1), and clarifies interpolation—especially
near branch points (Sec. 4.3). Finally, several quadrangulation
methods automatically insert singularities, but cannot be used for
stripe patterns since they do not align to a given field [Ling et al.
2014] or do not generalize to arbitrary n-direction fields [Myles
and Zorin 2012; Myles and Zorin 2013]; moreover, these meth-
ods do not guarantee anything about global optimality.

Our method adopts the same energy as Ray et al. [2006], but
differs in several important ways: (i) dropping quartic (unit-
norm) constraints improves performance by about 10x (Sec. 5.1);
(ii) permitting new singularities during parameterization allows
us to directly handle nonintegrable input (Sec. 2.2); (iii) a new
sub-triangle interpolation scheme (Sec. 4.3) means that pattern
frequency is not limited by mesh resolution. We also provide an
interpretation of the energy in the smooth setting (Sec. 2) and
show new applications to texture synthesis and design (Sec. 5.3).

(Inset photo courtesy Lauren Edgar)

Figure 7: Randomly perturbing a constant vector field yields a pat-
tern reminiscent of real aeolian wind ripples (inset), here rendered
as a displacement map over a flat plane.



2 Smooth Formulation

Given a surface M , we seek a scalar function α that varies along
a given unit vector field X at a given rate ν . There are two
principal challenges having to do with (i) the integrability of
the vector field Z := νX and (ii) the representation of α itself.
Roughly speaking, Z is integrable if it is locally expressible as
the gradient of a scalar potential, but if we simply adopt a real-
valued representation then we may not be able to find a potential
that is globally continuous. Later, we also address nonorientable
patterns by formulating the same problem on a double cover of M
(Sec. 2.3). Throughout we use 〈·, ·〉 and |·| to denote the real inner
product and norm on vectors, || · || for the L2 norm on functions,
dA for the usual area measure, and ı for the imaginary unit. We
also make occasional use of (discrete) differential forms—see
Crane et al. [2013, Chapter 3] for a brief introduction.

2.1 Periodic Functions

A key challenge in computing globally con-
tinuous parameterizations is choosing a suit-
able representation for the coordinate func-
tions. As a motivating example, consider
a smooth unit tangent field X on the cir-
cle α 7→ (cosα, sinα). Locally we can think
of X as the derivative of the angle α, but
globally it cannot be expressed as the derivative of a smooth
function since any such function would have to increase in-
definitely as we walk multiple times around the circle. We
therefore adopt an alternative representation: rather than a
real function α, we work with a complex function ψ whose
argument argψ := atan2(Imψ, Reψ) ∈ [−π,π) serves as a
proxy for α. Although argψ is not globally continuous when
viewed as a real-valued function, it still has a well-defined rate
of change when viewed as a map to the unit circle, namely
dargψ := 〈dψ, iψ〉/|ψ|2. Hence, we obtain a representation
of angle that is globally continuous and differentiable away from
zeros (in the case of the circle, we have just ψ= cosα+ ı sinα).
For surfaces, nothing changes except that the domain ofψ is now
a surface rather than a curve. Importantly, we do not need to cut
the surface into a topological disk since coordinates are globally
continuous by construction.

2.2 Integrability

Vector fields with nonzero curl are noninte-
grable, i.e., even on small, simply-connected
patches they cannot be expressed as the gra-
dient of any scalar function. A common tech-
nique is to reduce or eliminate curl prior to
parameterization via curl correction [Ray et al.
2006] or Helmholtz-Hodge decomposition [Käl-

berer et al. 2007]. We instead work directly with nonintegrable
input by allowing new singularities during parameterization—
empirically, these singularities tend to appear in regions where
there is significant curl, or where stripe spacing changes quickly
(see Figs. 1, 3, 4, and 6). More explicitly, consider the complex
function ψ (Sec. 2.1)—since we care only about its argument
α := argψ (and not its magnitude), we initially consider opti-
mization over functions ϕ := eıα with unit norm at each point.
Conceptually, we want the angle α to change at rate ν along the
direction X , and remain constant along the orthogonal direction.
In other words, we want dα(Y ) = ν〈X , Y 〉 for all vector fields Y ,
or equivalently, dα=ω for ω := 〈νX , ·〉= 〈Z , ·〉. Differentiating
ϕ we get dϕ = ıdαϕ, which means we can achieve the desired
angular velocity dα by solving

dϕ = ιωϕ. (1)
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Figure 8: Naturally-occurring stripe patterns (top) often include
nonorientable singularities, i.e., features that do not follow any
continuously varying vector field (bottom).

Unless Z is exactly integrable, this equation admits only the trivial
solution ϕ ≡ 0. We therefore consider its L2 residual

ℰ(ϕ) :=

∫

M

|(d − ιω)ϕ|2. (2)

Since the operator e∇ := d − ιω defines a connection on M , ℰ can
be viewed as a Dirichlet energy on complex functions. However,
this energy is not well-defined for unit functions ϕ that encode
the type of features we observe in natural stripe patterns (e.g.,
Fig. 2, left), since the angular velocity dα approaches infinity
as we approach an edge dislocation. Following the approach
advocated in Knöppel et al. [2013, Sec. 3], we therefore define
the energy of a unit function ϕ as the minimum Dirichlet energy
among all possible rescalings by a real-valued function a ≥ 0:

ℰ̂(ϕ) := min
a≥0,||a||=1

∫

M

|e∇(aϕ)|2 dA.

The constraint ||a||= 1 prevents the solution a ≡ 0. Minimizing
this energy over unit functions ϕ is then equivalent to minimizing
Dirichlet energy over all complex functions ψ:

min
|ϕ|=1

ℰ̂ = min
|ϕ|=1,a≥0,||a||=1

ℰ(aϕ) = min
||ψ||=1

ℰ(ψ). (3)

In the case of parameterization, it is precisely the ability to scale
ψ down to zero that allows us to form new singularities, thereby
improving alignment in nonintegrable regions. Just as with stan-
dard Dirichlet energy, minimizers of this energy among functions
ψwith unit L2-norm are eigenfunctions associated with the small-
est eigenvalue of the corresponding Laplace operator [Mullen
et al. 2008]—discretization of this operator is discussed in Sec. 3.

2.3 Nonorientable Patterns

The formulation above is suitable in the orientable case, but in
general we want to produce stripe patterns with nonorientable
features, which often appear in nature (Fig 8). Another common
geometric example is a principal direction field—see for instance
Fig. 17, left. In general, such features can be encoded as a line
field, i.e., a choice of unoriented line in each tangent plane. A



Figure 9: To deal with a nonorientable singularity (top left), one
can make two oppositely oriented copies (top right), and cut and
glue along opposite edges to obtain a branched double cover (bot-
tom right). Untwisting this figure into the plane reveals that the
new vector field has a globally consistent orientation (bottom left).

useful way to work with such fields, pioneered in geometry pro-
cessing by Kälberer et al. [2007; 2010], is as a vector field on
a branched double cover of the original surface. Consider for
instance Fig. 9 (top left)—here it is impossible to give the inner-
most stripe an orientation that is consistent across the dashed
line. Yet by gluing together two oppositely-oriented copies of the
surface, we obtain a consistently-oriented vector field eZ on a new
surface eM called the double cover. Away from singularities, a dou-
ble cover looks like two identical copies of the original surface M
(Fig. 10). In practice we never explicitly construct the cover, but
will use this mental image to turn algorithms which are naturally
expressed on eM into algorithms that can be implemented using
standard data structures on the original surface M .

The key idea behind this construction is that features in a given
line field determine the topology of a corresponding covering
space. In particular, suppose that lines vary continuously except
at a collection of isolated branch points {p1, . . . , pk} around which
the field is nonorientable (Fig. 8). At each such point the “trick”
demonstrated in Fig. 9 can be used to produce an orientable
vector field eZ on the double cover eM of bM := M \ {p1, . . . , pk}.
Away from these points the double cover has two points x1, x2 ∈
eM “above” each point x ∈ bM which are mapped back “down”
to the base by the projection map π(x1) = π(x2) = x; the sheet
interchange function τ(x1) = x2 swaps these two points (Fig. 10).

Figure 10: Away from singularities, an unoriented line field on a
patch of M can be expressed as a pair of oppositely and consistently-
oriented vector fields on two identical copies of this patch in eM. The
map τ switches between the two copies, and the map π takes us
back down to the original surface.

Conjugate Symmetry We now have an oriented vector field eZ
on a surface eM which—at least conceptually—could be param-
eterized precisely as described in Sec. 2.3, since we can simply
forget that this data comes from a double cover. However, we ulti-
mately need texture coordinates on the base surface M . Suppose
for a moment that the minimizer ψ on eM is conjugate symmetric,
meaning that it gets conjugated under sheet interchange:

ψ ◦τ=ψ. (4)

The coordinate function α = argψ is then antisymmetric with
respect to sheet interchange, i.e., α◦τ=−α, and plugging it into
any even 2π-periodic function (like cosine) hence yields the same
color value whether we use arg(ψx1

) or arg(ψx2
). An arbitrary

minimizer ψ will not in general satisfy Eq. 4, but as shown in
App. A, one of the energy minimizers will always be conjugate-
symmetric. We can therefore always obtain a stripe pattern that is
globally continuous away from isolated branch points. Moreover,
the algorithm can be implemented on the base mesh without
doubling the memory or computation cost, since we need only
store a single value to represent both ψ and ψ.

3 Discretization

As in the smooth setting we begin with oriented vector fields,
then use a double cover to reduce the nonorientable case to
the orientable one. The ultimate goal is to compute a value of
α ∈ R at each triangle corner—plugging interpolated values of
α into any even periodic function will then produce a pattern of
oscillating stripes orthogonal to X . The input to our algorithm
is a manifold simplicial 2-complex K and positive edge lengths
`ij satisfying the triangle inequality on each face, along with a
unit tangent vector X i and target line frequency νi ∈ R+ which
together define a (not necessarily unit) vector Zi := νi X i at each
vertex i ∈ V . Overall, the algorithm consists of four basic steps:

1. Project Z onto each edge to get angular displacements ω.
2. Build a Laplace-like matrix A with entries determined by ω.
3. Find an eigenvector ψ of A with smallest eigenvalue.
4. In each face, compute texture coordinates α from ψ and ω.

Notation For any simplicial complex K , we use V, E, F to denote
its vertices, edges, and faces, respectively. Individual simplices
are expressed as a list of incident vertices, e.g., ijk ∈ F denotes
the face with vertices i, j, k ∈ V . The orientation of a simplex
is determined by the order of its indices, and an edge ij ∈ E
is canonically oriented if i < j. An expression of the form x i =
∑

ij∈E yij indicates that a value x i associated with vertex i is
obtained by summing the quantity yij over all edges incident on i.
Likewise, x i =

∑

ijk∈F yijk denotes a sum over all incident faces.

3.1 Discrete Tangent Spaces

Rather than thinking of tangent vectors
X i as elements of R3, we view them as
angles φi ∈ [−π,π) relative to a refer-
ence edge ij0 ∈ E chosen at each vertex
i ∈ V , effectively adopting polar coor-
dinates. This intrinsic setup simplifies
the rest of our algorithm, and does not
require us to define normals at vertices.

Moreover, let θ̂ jk
i denote the angle at corner i of triangle ijk, and

let Θi :=
∑

ijk∈F θ̂
jk

i be the sum of all angles incident on vertex i.
For each oriented edge ija incident on i, we store the angle



θija
:= 2π

Θi

a−1
∑

p=0

θ̂
jp jp+1

i ,

where the jp are indexed counter-clockwise around vertex i, and
p+ 1 is taken modulo the degree of the vertex. These rescaled
angles are effectively the polar coordinates of the edges, starting
at θij0 = 0 (see Knöppel et al. [2013, Sec. 6] for further interpre-
tation). Hence, given any unit vector X i encoded by an angle φi ,
the parallel vector at a neighboring vertex j can be computed via

φi 7→ φi−θij + (θ ji +π)
︸ ︷︷ ︸

=:ρij

, (5)

i.e., by using the shared edge ij as a common frame of reference
(see inset below). For convenience, we store the values ρij , noting
that ρ ji =−ρij .

Complex Representation In many
cases, we will instead encode tan-
gent vectors as complex numbers
to avoid the difficulty of compar-
ing angles modulo 2π. An expres-
sion like Eq. 5 can then be writ-
ten as X i 7→ eıρij X i , which in com-
plex arithmetic expresses a counter-
clockwise rotation of X i by the an-
gle ρij . It is important to note, how-
ever, that these complex values still
only carry meaning relative to the
reference edge chosen at each ver-
tex, which we identify with the real
axis 1+ 0ı ∈ C.

3.2 Discrete Energy

As discussed in Sec. 2.2, we ideally want an angle-valued func-
tion α such that dα = ω, i.e., such that the angular velocity dα
matches our input field. To discretize this relationship, we lin-
early interpolate Z and integrate along each edge ij ∈ E, yielding

α j −αi =

∫

ij

dα=

∫

ij

ω= 1
2
(〈eij , Zi〉+ 〈eij , Z j〉) =:ωij . (6)

The resulting quantity ωij = −ω ji ∈ R determines a discrete
1-form [Crane et al. 2013, Sec. 3.6] that describes the target
angular displacement as we move from i to j; we will use

Pij(X ) := eıωij X

to denote the transport of a vector X from i to j viaω. If extrinsic
data is available (i.e., vectors and edges in R3) then this quantity
can be computed as above. If only intrinsic data is available (i.e.,
lengths and angles), one can just as easily write ω as

ωij =
1
2
`ij(νi cos(φi − θij) + ν j cos(φ j − θ ji)). (7)

Recalling that argψ is used as a proxy for α (Sec. 2.1), we there-
fore ask that the rotated value of ψi agrees exactly with ψ j ,
providing a discrete version of Eq. (1):

eıωijψi =ψ j ∀ij ∈ E.

As in the smooth setting we cannot expect to satisfy this relation-
ship exactly, since not every discrete vector field is integrable.
Hence, we instead minimize the L2 residual

ℰ(ψ) :=
∑

ij∈E

wij |ψ j − eıωijψi |2, (8)

where wij := (cotβij + cotβ ji)/2 and βij , β ji are
the two angles opposite edge ij; these cotan-
gent weights account for the shape of mesh el-
ements [MacNeal 1949, Sec. 3.2]. For boundary
edges we set the unknown cotan to zero, corre-
sponding to zero-Neumann boundary conditions.
Likewise, we effectively omit branch triangles
(Sec. 3.3) by simply setting their weights to zero.

3.3 Discrete Double Cover

To handle nonorientable input, we now define the double cover
eK = (eV , eE, eF) induced by vectors Zi at the vertices of our original
mesh K , as well as an orientable vector field eZ on eK (Fig. 11).
Note that at no point do we actually build eK—this description
merely serves to clarify implementation.

Vertices: For each vertex i ∈ V , eV contains a pair of vertices i1, i2,
which we associate with vectors Zi and −Zi , respectively.

Edges: For each edge ij ∈ E, let the quantity

sij :=

¨

+1 if φ j − (φi +ρij) ∈ [−π/2,π/2),

−1 otherwise

encode the relative orientation of Zi and Z j . If sij = +1 then eE
contains edges i1 j1 and i2 j2; otherwise, it contains i1 j2 and i2 j1.

Faces: For each face ijk ∈ F , let sijk := sijs jkski . If sijk = +1
then ijk is regular, and the six corresponding edges in eE form
two distinct triangles which we include in eF . Otherwise, ijk is a
branch triangle and these edges form a hexagon which we omit
from eF . We will use B ⊂ F to denote the set of branch triangles.

We also define a 1-form eω on eK corresponding to eZ , given by

eωi1 j2 =− eωi2 j1 =
1
2
(〈eij , Zi〉 − 〈eij , Z j〉) if sij =−1, and

eωi1 j1 =− eωi2 j2 =
1
2
(〈eij , Zi〉+ 〈eij , Z j〉) if sij =+1,

along with a corresponding parallel transport map eP pq(Z) :=
eı eωpq Z . Notice that eω ◦ τ = − eω, i.e., switching sheets flips the
sign of eω. For convenience, we define

bωij =

¨

eωi1 j2 , if sij =−1,

eωi1 j1 , if sij =+1,

and use P̂ij(Z) := eı bωij Z to denote parallel transport by bω.

Figure 11: The double cover of a triangle is determined by the
relative orientation of vectors Z along each edge. Left: If the vector
field can be locally oriented, we simply make two copies of the
original triangle. Right: Otherwise we have a branch triangle, and
use the six corresponding edges to form a hexagonal boundary cycle.



3.4 Conjugate Symmetric Energy

We now formulate an expression for the discrete energy (Eq. 8)
on eK , restricted to conjugate-symmetric functions eψ (Sec. 2.3).
To do so, we store a single value ψi ∈ C at each vertex i ∈ V of
our original mesh, and define (but do not explicitly store)

eψi1
:=ψi , eψi2

:=ψi .

For a given edge ij ∈ E, one then observes that the two corre-
sponding edges on the double cover make identical contributions
to the energy. For example, when sij =+1, we have terms

wij |ψ j − eι eωi1 j1ψi |2 and wij |ψ j − eι eωi2 j2ψi |
2,

which are identical in magnitude since eı eωi2 j2 = e−ı eωi1 j1 = eı eωi1 j1 ,
and conjugation does not affect the norm (likewise for sij =−1).
The energy associated with a given edge ij ∈ E is therefore

ℰ̃ij :=

¨

2wij |ψ j − eı bωijψi |2, sij =−1,
2wij |ψ j − eı bωijψi |2, sij =+1,

(9)

yielding a total energy ℰ̃ :=
∑

ij∈E ℰ̃ ij . Notice that this energy is
defined entirely in terms of a single value ψ per vertex and a
single value bω per edge of our original mesh K: we do not need
to double the degrees of freedom.

4 Implementation

We now describe essential aspects of implementation; detailed
pseudocode can be found in App. C.

4.1 Matrix Representation

Although ℰ̃ is expressed using complex variables, it must be
encoded as a real matrix in order to represent conjugation of
the stored values of ψ, which is not a complex-linear operation.
In particular, for complex numbers u = a + bı, v = c + dı and
z = x + yı the following relations are easily verified:

〈zu, v〉= (a b)
�

z
�

(c d)T, 〈zu, v〉= (a b)
�

z
�

(c d)T,

where

�

z
�

:=
�

x y
−y x

�

and
�

z
�

:=
�

x −y
−y −x

�

.

Expanding Eq. 9 and applying these expressions then allow us to
express ℰ̃ as a matrix A ∈ R2|V |×2|V | with diagonal blocks

Aii =
∑

ij∈E

�

wij
�

for each vertex i ∈ V , and off-diagonal blocks

Aij =

¨

−wij
�

eı bωij
�

, sij =−1
−wij

�

eı bωij
�

, sij =+1
, A ji = AT

ij

for each canonically oriented edge ij ∈ E. The resulting matrix is
symmetric positive-definite with the same structure as the usual
cotan-Laplace matrix. Finally, letting 𝒜ijk denote the area of
triangle ijk, we encode the usual L2 norm on functions via the
block diagonal lumped mass matrix B ∈ R2|V |×2|V | with entries

Bii =
1
3

∑

ijk∈F

𝒜ijk,

i.e., one-third the total area of triangles incident on vertex i.

4.2 Global Optimization

We now seek values ψi = ai + bi ı that minimize ℰ̃ , which we
encode as a vector x ∈ R2|V | of interleaved values ai , bi ∈ R. To
avoid the trivial solution ψ ≡ 0, we ask that ψ have unit L2

norm—using the matrices above, this problem can be stated as

min
x∈R2|V |

xTAx s.t. xTBx= 1. (10)

Differentiating the Lagrangian of this problem yields the general-
ized eigenvalue problem Ax= λBx for an eigenvector x associated
with the smallest eigenvalue λ, which we solve by factoring A and
applying the inverse power method (Alg. 6). Hence, the total cost
of our algorithm is dominated by a single matrix factorization.

4.3 Texture Coordinates

After computing ψ, we still need to extract our final texture coor-
dinates α. However, simply using the values arg(ψi) is less than
ideal since (i) we will experience aliasing if the target frequency
ν is greater than the mesh spacing (Fig. 12) and (ii) linear in-
terpolation will produce discontinuities along the boundaries of
triangles containing zeros or branch points (Fig. 13, 14). We
therefore adjust α as described below. On eK these coordinates
are antisymmetric with respect to sheet interchange and encode
a globally continuous map to the unit circle, as shown in App. B.
Hence, for any given base triangle we can use coordinates from
either of the two covering triangles to obtain a globally continu-
ous stripe pattern. Note that for sufficiently fine meshes one can
often ignore singular triangles and simply use linear interpolation
everywhere, as done in Figs. 2, 5, 19, 20, 21, and 7.

The Spinning Form Along each edge
pq ∈ eE we had a target angular dis-
placement eωpq, which in general we
cannot achieve due to nonintegrabil-
ity. The spinning form eσ is the angular
displacement closest to eω that agrees
with the obtained minimizer of ℰ̃ , i.e.,
for which arg(eıeσpq eψp) = arg( eψq). These values will be used to
adjust our texture coordinates. In particular, let

δpq := arg(eP pq( eψp)/ eψq)

be the smallest angular distance from the obtained vector eψq at
vertex q to the desired vector eP pq( eψp). Then

eσpq := eωpq −δpq.

Note that, like eω, eσ is a discrete 1-form on eK , i.e., eσpq =−eσqp.

Figure 12: Left: for coarse meshes or high frequency stripes, naïve
interpolation of angles leads to severe aliasing. Right: by augment-
ing the angles according to the target frequency, we can render
stripes far above the resolution of the mesh.



Figure 13: In triangles containing zeros, piecewise linear interpo-
lation (left) can be substantially improved (middle) by using a
closed-form, nonlinear interpolant (right).

Frequency Adjustment We first adjust the texture coordinates
locally in each triangle to properly account for the target fre-
quency ν . More explicitly, let α̃qr

p denote the coordinate at corner
p of a triangle pqr ∈ eF . We let α̃qr

p := arg( eψp) at the first corner,
and use the spinning form to define coordinates at the other two
corners: α̃rp

q := α̃qr
p + eσpq and α̃pq

r := α̃qr
p + eσpr . To render a

given base triangle ijk ∈ F we need only extract the coordinates
from one of its two covering triangles, which we can do using
the values ψ and bω stored on our original mesh K . In particular,
if we let

δ̂ij :=

¨

arg(P̂ij(ψi)/ψ j), sij =−1,
arg(P̂ij(ψi)/ψ j), sij =+1,

and σ̂ := ω̂+ δ̂, then our local coordinates are just

α
jk
i := arg(ψi),
αki

j := arg(ψi) + σ̂ij ,

α
ij
k := arg(ψi) + σ̂ik.

In nonsingular regions, α can then be interpolated linearly over
each triangle. In general, however, we must account for singular-
ities due to either (i) zeros of the function ψ or (ii) branch points
arising from the field Z; each of these cases is treated below.

Zeros As we walk around the boundary of any regular triangle
ijk ∈ F \ B covered by a triangle i1qr ∈ eF , the spinning form
describes a net change in angle of

eσi1q + eσqr + eσri1 =: 2πnijk

for some integer nijk ∈ Z which we refer to as the index of ψ.
If nijk 6= 0, this means that the angle α on the base domain
must “jump” somewhere and hence cannot be interpolated by
any continuous function (including a linear one). We instead use
an interpolant that mimics the behavior of the complex function
z 7→ arg(z), but remains linear along the boundary so that it
agrees with interpolants in adjacent triangles. Explicitly, let

lArgn(t i , t j , tk) :=







πn
3

�

1+
t j−ti

1−3tk

�

, tk ≤ t i and tk ≤ t j ,
πn
3

�

3+
tk−t j

1−3ti

�

, t i ≤ t j and t i ≤ tk,
πn
3

�

5+ ti−tk
1−3t j

�

, t j ≤ tk and t j ≤ t i ,
(11)

where t i , t j , tk ∈ R are barycentric coordinates (Fig. 13, right).
One can easily check that the function lArg is piecewise linear
along the boundary, and describes a continuous map to the unit
circle away from an isolated singularity at the barycenter m. To
get our final interpolant, we first subtract the value of lArgnijk
from our texture coordinates α jk

i at all three triangle corners
(Alg. 7, lines 22–24). Texture coordinates are then computed by
evaluating Eq. 11 in a fragment shader and adding the result to
the usual linearly interpolated values of α.

Figure 14: Left: stripe pattern on a coarse mesh of 708 vertices.
Center: tip of the nose with a branch point in the middle and nearby
triangles containing zeros of index 1 and 3. Right: piecewise linear
texture coordinates used to draw branch points.

Branch Points Finally, we extend our texture coordinates to
any branch triangle ijk ∈ B, which on the double cover eK cor-
responds to a hexagonal boundary cycle (p, q, r, s, t, u) starting
at p = i1 (Fig. 11, right). Conceptually, we imagine triangulat-
ing the hexagon by inserting a new vertex em at the middle and
extending coordinates linearly over each face. In practice, we
simply draw the barycentric subdivision of the base triangle ijk
(Fig. 14, right) using texture coordinates

βi := arg(ψi) β j := βi + eσpq
βm := βi + (eσpq + eσqr + eσrs)/2 βk := β j + eσqr

βl := βk + eσrs

with linear interpolation in each sub-triangle. (See App. B for
further discussion; an explicit implementation is given in Alg. 7.)

5 Results

5.1 Performance

We implemented our method in C++ using SuiteSparse [Chen
et al. 2008]; performance was measured on a single core of a
2.6 GHz Intel Core i7. Typical run times were less than a second;
for example, we required 591ms, 14ms, 804ms, and 386ms to
generate patterns in Figs. 2, 12, 18, and 21 on meshes with
28k, 1k, 44k, and 39k faces (resp.). This level of performance
makes it possible to interactively edit or even animate patterns.
We also compared the performance of our eigenvector scheme
to the quartic penalty scheme suggested by Ray et al. [2006,
Sec. 2.5] using the same matrix for the quadratic term and their
suggested solver parameters. Across a broad range of examples
our eigenvector method performed over an order of magnitude
faster (Fig. 15); moreover, the penalty scheme sometimes gets
trapped in local minima, yielding unwanted distortion.

5000 1 ×104 5 ×104 1 ×105

0.05

0.50

5

50

Figure 15: Our method (blue) produces results of comparable
quality to expensive, nonlinear optimization (yellow), yet is on
average 10.54 times faster across a broad collection of examples.



Figure 16: Due to the elliptic nature of our problem, the method is
robust to noise, holes, and other severe errors in the input.

5.2 Robustness

In Fig. 16 we severely distort the input mesh, yet still obtain a
well-behaved stripe pattern; this type of behavior is a hallmark
of elliptic variational problems based on Laplace-like operators.
The method also has no trouble handling sharp discontinuities
in the input vector field Z (Fig. 6, right); likewise, outliers and
noise in Z are handled gracefully (Fig. 7.)

5.3 Applications

Figures throughout show applications of stripe patterns to de-
sign and texture synthesis. For real-time hatching [Rost 2005],
a precomputed stripe pattern pattern circumvents the need to
trace integral curves, etc.(Fig. 17). In Fig. 21 we used marching
triangles to generate geometric stripes. In Figs. 2 and 18, we
combined two orthogonal stripe patterns to drive a 2D displace-
ment map with bilateral symmetry across each axis. In Fig. 19
we mimic the artistic style of a ceramic mug. All of the preceding
examples used optimally smooth or curvature-aligned fields as
input [Knöppel et al. 2013], but in principle any technique can
be applied—Fig. 4 shows an example where Z is described by
artist-driven input; Fig. 5 uses the smoothest field with prescribed
singularities [Crane et al. 2010] to emulate fingerprints.

6 Conclusion

Remarkably, many disparate natural phenomena are well-
captured by one simple energy (Eq. 2), making stripe patterns a
versatile tool for design. More broadly, stripe patterns contribute
to a growing collection of tasks in geometry processing and sim-
ulation where singular features and sparse approximations are
efficiently obtained by minimizing Dirichlet energy on a partic-
ular Hermitian line bundle—other recent examples include the
design of smooth vector fields [Knöppel et al. 2013], extraction
of smoke rings [Weißmann et al. 2014], and conformal volume
deformation [Chern et al. 2015]. A better understanding of this
phenomenon will no doubt lead to valuable future developments.
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Figure 17: Minimum principal curvature directions with either
nonuniform (left) or uniform spacing (center) provide a natural
pattern orientation. Right: this kind of pattern can be used to
automatically drive a real-time hatching shader, requiring no user
input apart from a single global scale parameter.

Figure 18: Two orthogonal stripe patterns (red and blue) are com-
puted separately and combined to drive a displacement map with
bilateral symmetry across both axes.

(Photo courtesy DJ Crane)

Figure 19: Left: Photograph of a real mug with uniform, branching
stripes. Right: Virtual mug synthesized using our method.

(Photo courtesy Carl Clifford)

Figure 20: Stripe patterns are ubiquitous in nature—here we cari-
cature a real angelfish (left) using a stripe pattern (right).



Figure 21: Stripe patterns can also be used to achieve a variety of
artistic effects, here inspired by the work of M.C. Escher.
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A Conjugate Symmetry

Here we show that the energy ℰ on eM always has a global mini-
mizer ψ that is conjugate symmetric, i.e., such that

ψ= Tψ :=ψ ◦τ.

Notice that T(ιψ) = −ιTψ, in other words, T is complex anti-
linear. Hence, we can decompose ψ as

ψ= 1
2
(Id+ T )ψ
︸ ︷︷ ︸

=:ψ1

+ 1
2
(Id− T )ψ=ψ1 + ι (

1
2
(Id+ T )(−ιψ))

︸ ︷︷ ︸

=:ψ2

,

i.e., ψ =ψ1+ ιψ2. Since T 2 = Id, one easily checks that both ψ1
and ψ2 are conjugate symmetric and Tψ =ψ1 − ιψ2. Moreover,
since ψ1 and ιψ2 are orthogonal ((Id− T )(Id+ T ) = 0) we get

‖ψ‖2 = ‖ψ1‖2 + ‖ψ2‖2.



Further, ℰ(ψ) = ℰ(Tψ), i.e., conjugation does not change the
energy. Applying the polarization identity then yields

ℰ(ψ) = 1
2
(ℰ(ψ) + ℰ(Tψ))

= 1
2
(ℰ(ψ1 + ιψ2) + ℰ(ψ1 − ιψ2))

= ℰ(ψ1) + ℰ(ψ2).

Suppose now thatψwith ‖ψ‖2 = 1 solves (Eq. (3)). Then for any
other nonzero function φ we have ℰ(φ)/‖φ‖2 ≥ ℰ(ψ), which
when applied to ψ1 (resp. ψ2) implies

ℰ(ψ1)≥ ℰ(ψ)‖ψ1‖2 ℰ(ψ2)≥ ℰ(ψ)‖ψ2‖2.

But these inequalities must actually be equalities, otherwise sum-
ming them would yield a contradiction. Hence, there will al-
ways be some unit, conjugate symmetric function ψ1/‖ψ1‖ or
ψ2/‖ψ2‖ with the same energy as ψ. In other words, restricting
optimization to conjugate symmetric functions will still yield a
global minimizer.

B Texture Coordinates

We now show that the coordinate function α̃ : eM → R/2πZ
on the double cover is (i) antisymmetric with respect to sheet
interchange, i.e.,

α̃ ◦τ=−α̃, (12)

and (ii) encodes a globally continuous map to the unit circle,
away from isolated singularities. Together, these properties guar-
antee that α̃ can be used to draw a continuous stripe pattern.
More formally, they ensure that for any even 2π-periodic func-
tion u : R→ R, there exists a function c : K \ B → R such that
away from branch triangles B,

u ◦ α̃= c ◦π,

i.e., u(α̃) descends to some function c on the base. We will first
define α̃ on edges, and then extend it to triangle interiors.

To begin, let eψ be a minimizer of our discrete energy (Eq. 9),
which is conjugate-symmetric by construction, and let ϕ :=
eψ/| eψ|. If eσ is the corresponding spinning form (Sec. 4.3), one
easily checks that eıeσpqϕp = ϕq along any edge pq ∈ eE. Hence,
for any path γ̃ from p to q along edges of eK , we have

eı
∫

γ̃
eσϕp = ϕq, (13)

where the integral is just the sum of eσ over all the oriented edges
of γ̃. From Eq. (13) it follows that the integral of eσ over any
closed path (p = q) has a value in 2πZ. Thus, if we integrate
eσ over the whole domain (starting at an arbitrary vertex), we
obtain a piecewise-linear function α̃ on edges such that

eıα̃p = ϕp. (14)

at each vertex p. By conjugate symmetry of eψ, and since eω
changes sign under τ, we see that eσ also changes sign under τ.
Together with Eq. (14) this yields Eq. (12).

We now extend α̃ to triangle interiors. For triangles pqr ∈ eF
where the index ñpqr := (eσpq + eσqr + eσrp)/2π equals zero (i.e.,
where eψ is regular), we can simply extend α̃ linearly—clearly
Eq. (12) stays valid in this case. When ñpqr is nonzero, we interpo-
late boundary values using the nonlinear function lArg described
in Sec. 4.3. Here Eq. 12 follows from the behavior of eσ under τ:
changing sheets flips the sign of ñpqr and thus of lArgñpqr

.

Finally, consider any branch triangle ijk ∈ B, which corresponds
to a hexagonal boundary cycle on the double cover eK (Sec. 3.3).
We will extend α̃ over a triangulation connecting each boundary
vertex to a “middle” vertex m. In particular, consider a path
γ̃= (p, q, r, s) on eK between vertices τ(p) = s that projects to the
path γ= (i, j, k, i) on K . Let ξ :=

∫

γ̃
eσ, and assume γ̃ is oriented

such that α̃s = α̃p + ξ. From Eq. (13) we have

eı
∫

γ̃
eσ
ϕp = ϕs = ϕp,

which implies that ξ + α̃s = −α̃s + 2aπ for some a ∈ Z, or
equivalently that the texture coordinate α̃m := α̃s + ξ/2 equals
aπ. Hence, u(α̃p) = u(aπ− ξ/2) = u(aπ+ ξ/2) = u(α̃s), which
means that the piecewise linear extension of α̃ satisfies Eq. 12.

C Pseudocode

The input to the main algorithm STRIPEPATTERN is a simplicial
surface K = (V, E, F), a collection of edge lengths ` ∈ R|E| satis-
fying the triangle inequality in each face, unit vectors X ∈ C|V |
describing the desired pattern orientation, and positive values
ν ∈ R|V | giving the target line frequency. The output is a collec-
tion of coordinates α ∈ R3|F |+2|B| (one for each triangle corner,
and two more for the midpoint m and duplicate vertex l of each
branch triangle), along with indices nijk, Sijk ∈ Z|F | for each trian-
gle indicating whether one should apply nonlinear interpolation
or draw the barycentric subdivision (resp.).

Algorithm 1 The main stripe pattern algorithm (Sec. 2).

1: procedure STRIPEPATTERN(K ,`, X ,ν) . K = (V, E, F)
2: θ ← VERTEXANGLES(K ,`)
3: ω, s← EDGEDATA(K ,`,θ , X ,ν)
4: A← ENERGYMATRIX(K ,`,ω, s)
5: B←MASSMATRIX(K ,`)
6: ψ← PRINCIPALEIGENVECTOR(A, B)
7: α, n, S← TEXTURECOORDINATES(K ,ψ,ω, s)
8: return α, n, S
9: end procedure

Algorithm 2 Computes polar coordinates of outgoing halfedges
around each vertex (Sec. 3.1).

1: procedure VERTEXANGLES(K ,`)
2: for each i ∈ V do
3: Θi ← 0 . cumulative angle
4: for p← {0, . . . , DEGREE(K , i)− 1} do
5: θijp ←Θi

6: Θi ←Θi + TIPANGLE(K ,`, i, jp, jp+1) . returns θ̂ jk
i

7: end for
8: for p← {0, . . . , DEGREE(K , i)− 1} do
9: θijp ← 2πθijp/Θi

10: end for
11: end for
12: return θ
13: end procedure



Algorithm 3 Initializes basic edge data (Sec. 3.1).

1: procedure EDGEDATA(K ,`,θ , X ,ν)
2: for each ij ∈ E do . canonically oriented (i < j)
3: ρij ←−θij + θ ji +π
4: sij ← sgn(〈eıρij X i , X j〉)
5: φi ← arg(X i)
6: φ j ← arg(sij X j)

7: ωij ←
`ij

2
(νi cos(φi − θij) + ν j cos(φ j − θ ji))

8: end for
9: return ω, s

10: end procedure

Algorithm 4 Builds the matrix defining the energy (Sec. 4.1).

1: procedure ENERGYMATRIX(K ,`,ω, s)
2: A← 0 ∈ R2|V |×2|V | . start with all zeros
3: for each ij ∈ E do . canonically oriented (i < j)
4: βi ,β j ← OPPOSITEANGLES(K ,`, ij)
5: wij ←

1
2
(cotβij + cotβ ji)

6: Aii ← Aii + [wij]
7: A j j ← A j j + [wij]
8: if sij ≥ 0 then
9: Aij ←−wij[eıωij ]

10: else
11: Aij ←−wij[eıωij ]
12: end if
13: A ji ← AT

ij

14: end for
15: return A
16: end procedure

Algorithm 5 Builds the mass matrix associated with vertices
(Sec. 4.1).

1: procedure MASSMATRIX(K ,`)
2: B← 0 ∈ R2|V |×2|V | . start with all zeros
3: for each ijk ∈ F do
4: 𝒜ijk ← TRIANGLEAREA(K ,`, ijk)
5: Bii ← Bii +𝒜ijk/3
6: B j j ← B j j +𝒜ijk/3
7: Bkk ← Bkk +𝒜ijk/3
8: end for
9: return B

10: end procedure

Algorithm 6 Computes an eigenvector corresponding to the
smallest eigenvalue via the inverse power method (Sec. 4.2).

1: procedure PRINCIPALEIGENVECTOR(A, B)
2: L← CHOLESKYFACTOR(A)
3: x← UNIFORMRAND(SIZE(A))
4: for i = 1, . . . , N do
5: x← BACKSOLVE(L, Bx)
6: x← x/

p
xTBx

7: end for
8: return x
9: end procedure

Algorithm 7 Computes final texture coordinates. (Sec. 4.3).

1: procedure TEXTURECOORDINATES(K ,ψ,ω, s)
2: for each ijk ∈ F do
3: cij ← i < j ? 1 :−1 . is each edge canonical?
4: c jk ← j < k ? 1 :−1
5: cki ← k < i ? 1 :−1
6: zi , z j , zk ←ψi ,ψ j ,ψk . get local copies of edge data
7: υij ,υ jk,υki ← cijωij , c jkω jk, ckiωki
8: Sijk ← sijs jkski . compute branch index
9: if Sijk < 0 then . branch triangle

10: υki ←−υki . want transport to τ(i1), not i1
11: end if
12: if sij < 0 then . make values at j consistent w/ i
13: z j ← z j
14: υij ← cijυij
15: υ jk ←−c jkυ jk
16: end if
17: if Sijkski < 0 then . make values at k consistent w/ i
18: zk ← zk
19: υki ←−ckiυki
20: υ jk ← c jkυ jk
21: end if
22: α

jk
i ← arg(zi) . compute angles at triangle corners

23: αki
j ← α

jk
i +υij − arg(eıυij zi/z j)

24: α
ij
k ← α

ki
j +υ jk − arg(eıυ jk z j/zk)

25: α
ijk
l ← α

ij
k +υki − arg(eıυki zk/zi)

26: αijk
m ← α

jk
i + (α

ijk
l −α

jk
i )/2 . midpoint coordinate

27: nijk ←
1

2π
(αijk

l −αi) . compute zero index
28: αki

j ← α
ki
j − 2πn/3 . adjust zeros

29: α
ij
k ← α

ij
k − 4πn/3

30: end for
31: return α, n, S
32: end procedure

The remaining routines are standard, but are defined here for
completeness:

• DEGREE(K , i) - returns the degree of vertex i ∈ V .
• TIPANGLE(K ,`, i, j, k) - returns the angle at vertex i ∈ V in

triangle ijk ∈ F .
• OPPOSITEANGLES(K ,`, ij) - returns the two angles opposite

edge ij ∈ E (Sec. 3.2).
• TRIANGLEAREA(K ,`, ijk) - returns area of triangle ijk ∈ F .
• CHOLESKYFACTOR(A) - returns Cholesky factor of matrix A.
• UNIFORMRAND(n) - returns a vector of n numbers in the

interval [−1,1], picked uniformly at random.
• SIZE(A) - returns the dimension of a square matrix A.
• BACKSOLVE(L, b) - if L is a Cholesky factor of A, solves the

linear system Ax= b.

Figure 22: Two independent stripe patterns (left, center left) ori-
ented along orthogonal fields are combined (center right) to drive
the periodic texture and displacement maps (right) used in Fig. 2.


