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1 SUMMARY

This supplemental document details the dataset and the methods

that were used in the evaluation. The datasets and results them-

selves can be found in the KnotDatasets and Results directories,

resp.

1.1 Dataset

In order to generate random embeddings of knots with fixed iso-

topy classes, we used KnotPlot [Scharein 1998] to randomly perturb

knots in a nonintersecting manner, starting from the canonical em-

beddings provided in KnotPlot’s “knot zoo.” A strong thermal en-

ergy combined with a weak elastic energy was used to randomize

the initial configurations; KnotPlot prevents collisions, preserving

the initial isotopy class. The exact KnotPlot script that was used

can be seen in Figure 1.

Initially, we created 128 randomly embedded knots of distinct

knot classes, corresponding to the first 128 entries of KnotPlot’s

knot zoo. We then additionally sampled 100 distinct trefoil knots,

for a set of 228 randomly embedded knots total. All of these knots

were intentionally sampled to be difficult in terms of geometric

complexity; this was achieved by setting a minimum threshold on

the file size (which is almost directly proportional to the vertex

count) of the curves exported by KnotPlot and resampling all gen-

erated knots until they exceeded this threshold. The threshold cho-

sen was 60 KB, which corresponds to about 1500 vertices.

1.2 Experiments

We implemented a set of 19 different optimization methods (in-

cluding ours) to minimize the tangent-point energy E2
4.5 in Math-

ematica; specific details about the set of methods are deferred to

Section 2. All experiments were run single-threaded on an Intel

Xeon E5-2690 processor with 196 GB of RAM. All derivatives were

computed exactly using symbolic differentiation; no numerical ap-

proximations were used. We tested the full battery of 19 methods

on examples at multiple resolutions. We used UMFPACK for sparse

linear solves and LAPACK for dense linear solves. We selected the

Freedman unknot, a random knot of a nontrivial knot class (num-

bered 96), and a random trefoil knot, and generated samplings of

these knots ranging from about 250 up to about 4000 vertices via

subdivision. Graphs of the results of these comparisons are shown

in the article, and the data are also available in other supplemental

materials.
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Fig. 1. A KnotPlot script for randomly generating knot embeddings.

To save on runtime for the full dataset, we cut several poorly

performing methods, leaving only the most competitive methods

to be run on all 228 knots. The results of this experiment have been

aggregated into scatter plots in the article, and the complete data

have also been included in the supplemental materials. We found

a small number of knots (less than 20) were so complex that none

of the methods we tested were able to make progress without be-

coming stuck due to collisions; these examples provided no useful

comparisons, so we did not include them in our scatter plots, but

their data is also in the supplemental materials to leave the door

open for comparisons against future work.

1.3 Stopping Criteria

For all experiments in this dataset, all optimization methods con-

tinued to run until either of the following two conditions was met:

(1) The L2 norm of the preconditioned gradient is below a fixed

tolerance ϵ = 10−4, or

(2) A fixed amount of wall-clock time has elapsed since the

method began running.

Condition (1) is identical to the one described in the main body of

the article. Condition (2) was imposed simply because some meth-

ods exhibit such poor convergence that they would require days

to satisfy the first condition. The time limit for condition (2) was

24 minutes per example for everything except the finest multires-

olution examples, for which it was 2 hours.

2 METHODS OVERVIEW

We implemented 19 different optimization methods to examine the

effectiveness of our proposed H s strategy. These methods cover
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a broad range of optimization techniques, including second-order

methods and quasi-Newton methods using a variety of precondi-

tioning strategies. We group these methods into categories based

on the high-level approach; while differences between categories

are significant, methods within each category vary by relatively

small implementation changes such as choice of inner product.

Unless otherwise indicated, all gradient flows are integrated us-

ing explicit (forward Euler) timestepping with line search; the spe-

cific line search strategy is described in the main article.

2.1 Choices of Preconditioner

Methods within a category are mostly differentiated by the choice

of inner product. While the application of the inner product differs

between categories, within each category, the inner product is es-

sentially used the same way, and different inner products (repre-

sented by different matrices A) can more or less serve as drop-in

replacements for each other. The inner products we consider are:

• L2 – the Euclidean inner product, corresponding to the mass

matrix M of the curve.

• H1 – the stiffness matrix L of the weak Laplacian.

• H2 – the curve Laplacian squared, i.e., LM−1L.

• H s – our fractional Sobolev-Slobodeckij inner product, as-

sembled using the technique described in the article.

• Convexified Hessian – the sum of all positive semidefinite

projections of local Hessians from all edge-edge pairs. Gradi-

ent descent using this preconditioner is also sometimes called

“projected Newton’s method,” but we do not use that term

here to avoid confusion with constraint projection methods.

See Section 3.6 for more details.

2.2 Hard Constraints and Soft Penalties

As mentioned in the article, some methods enforce hard con-

straints on, e.g., edge lengths, while other methods are not de-

signed to do so, and instead enforce these constraints using soft

penalty terms. The projected gradient method described in the

article falls in the former category, while the latter category in-

cludes well-known methods like L-BFGS and nonlinear conjugate

gradients.

The performance of methods enforcing hard constraints cannot

be compared directly to those using soft constraints, as minimizers

reached using soft constraints are generally not feasible under

hard constraints, and energy values also differ due to the presence

or absence of penalty terms. Therefore, in addition to the H s

projected gradient method we describe in the article, we also

implemented several H s -preconditioned soft constraint methods,

in order to obtain an apples-to-apples comparison with other

soft constraint methods. We plot these two types of methods

separately, with H s projected gradient descent acting as “our”

representative method using hard constraints, and H s nonlinear

conjugate gradients acting as “ours” using soft constraints. We

note that methods using soft penalty constraints should be

expected to perform better than similar methods using hard

constraints, since allowing trajectories to leave the constraint

manifold can only result in more direct paths to minimizers than

requiring trajectories to remain on the manifold.

Throughout our comparison, for all methods capable of enforc-

ing hard constraints, we used fixed barycenter and fixed edge

length constraints. The barycenter constraint factors out global

translations that do not affect the energy, while the edge length

constraints ensure that a minimizer exists. Without constraining

edge lengths, the curve is free to expand infinitely; this allows

curves to simply grow infinitely without ever untangling, mak-

ing the optimization problem ill-defined. For problems that cannot

handle hard constraints, we only require the gradient to be orthog-

onal (in the L2 sense) to the space of constant vector fields, while

replacing the edge length constraint with Hencky strain terms in

the objective for each edge, weighted by edge lengths of the ini-

tial configuration; this is a standard nonlinear model of elasticity

whose linearization corresponds to standard linear elasticity.

3 SPECIFIC METHODS

3.1 Projected Gradient Descent (Hard Constraints)

Projected gradient descent methods follow the exact framework

outlined in the main article. Given an energy function E, an inner

product A, and a constraint function whose differential is stored

in the matrix C, a projected gradient method solves the saddle

problem [
A CT

C 0

] [
д
λ

]
=

[
dE
0

]

to obtain the projected descent direction д. The only difference be-

tween methods in the category is the choice of inner productA. We

implemented versions of this method under theH s ,H1,H2, L2, and

convexified Hessian inner products. For H s and L2, we also imple-

mented variants that used implicit timesteps rather than explicit.

3.2 Nonlinear Conjugate Gradients (Soft Constraints)

This category consists of implementations of the method of non-

linear conjugate gradients (NCG); a comprehensive introduction

to this method is beyond the scope of this document, but several

overviews exist [Shewchuk 1994; Hager and Zhang 2006]. Vari-

ous heuristics exist for updating the conjugate direction in each

timestep; we use that of Polak and Ribiere [1969] for all of our

comparisons. We apply standard unconstrained NCG to the penal-

ized version of the tangent-point energy.

NCG methods are generally formulated assuming the L2 inner

product. Using a different inner product A amounts to evaluating

all gradients and inner products in the NCG algorithm using the

new inner product; this essentially serves as preconditioning for

NCG. We implemented versions of NCG using H s , H1, H2, L2, and

convexified Hessian inner products.

3.3 L-BFGS (Soft Constraints)

This category consists of implementations of the limited-memory

BFGS method [Liu and Nocedal 1989]. We used a memory size of

30 for all L-BFGS methods we tested.

All L-BFGS methods use the same update rule. The only differ-

ence between them lies in the initial approximation of the inverse

Hessian. Standard L-BFGS uses a “frozen” initial approximation of

the Hessian, taken as the inverse of the inner product of the ini-

tial curve. We tested both this standard method and a “dynamic”

method where the initial approximation is not static, but is taken to
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be the inverse of the inner product of the current curve. Through

testing, we found that the “dynamic” methods performed much

better, so we only report these methods in our plots. L-BFGS with

H1 in particular is sometimes called “Sobolev-initialized L-BFGS.”

All L-BFGS methods use soft penalties. We implemented ver-

sions of L-BFGS using H s , H1, and L2 inner products.

3.4 Nesterov Methods (Soft Constraints)

The methods in this category are implementations of Nesterov’s

accelerated gradient method [Nesterov 1983]. This is essentially

a “heavy ball” momentum method, with the stipulation that the

gradient step is taken after the momentum step, rather than

the two steps occurring simultaneously. All of these methods

also implement “adaptive restarting” [O’Donoghue and Candès

2015], where momentum is reset whenever it causes the objective

function to increase. Momentum steps can often be nonmono-

tonic due to the lack of line search, and this modification aims

to prevent such steps. As with nonlinear conjugate gradients,

running a Nesterov method under a different inner product A

equates to using that inner product to evaluate all gradients and

inner products between vectors.

In general, it is difficult to force momentum steps to respect hard

constraints while still obtaining any acceleration from them, so our

Nesterov methods also use soft penalty constraints. Additionally,

momentum steps can easily cause curve edges to “tunnel” through

each other, since they ignore self-intersections. We therefore used

collision detection to prevent this. We implemented versions of

this Nesterov method using H s , H1, and L2 inner products.

3.5 Accelerated Quadratic Proxy (Soft Constraints)

This category implements the method of Kovalsky et al. [2016].

AQP bears many similarities to the Nesterov methods from the

previous section; the primary differences are:

(1) the inner product is frozen to be that of the curve on the

first timestep, instead of recomputed after every step, and

(2) the Nesterov momentum step size is prescribed as 1−
√

κ−1

1+
√

κ−1
,

where κ is the condition number of a matrix that can be

derived from the inner product.

In practice, κ is estimated rather than analytically computed. We

use κ = 1000, which was also used in the original AQP imple-

mentation. AQP only supports linear constraints, while our con-

straints are nonlinear, so we implemented our constraints using

soft penalty terms. We also impose the same collision detection on

the momentum step to prevent “tunnelling,” which is otherwise

frequent.

We first implemented AQP exactly as described in the original

article, which uses the H1 inner product; this is the version we

refer to by “AQP” in our comparisons. We then additionally imple-

mented a version that differs only by using our H s inner product

instead of the H1 inner product. We call this method “H s (frac-

tional) AQP” in our comparisons.

3.6 Convexified Hessian

While the two methods using the “convexified Hessian” inner

product have already been mentioned in other categories, the inner

product is different enough to warrant further exposition. The goal

of these two methods is to run Newton’s method using the projec-

tion of the Hessian onto the positive semidefinite cone. However,

performing this projection on the full Hessian is prohibitively ex-

pensive. Therefore, the projection is instead done per term. For

each energy term, we compute its local Hessian, project it to be

positive semidefinite, and then add it to the appropriate indices of

a global Hessian. In our case, every pair of distinct edges produces a

distinct energy term, so there areO ( |E |2) local Hessians to project.

Assuming that the HessianH is real-valued, its positive semidef-

inite projection under the mass matrix M can be found by comput-

ing the generalized eigendecomposition HQ = MQΛ, clamping all

of the negative eigenvalues in Λ to 0, and multiplying the matrices

back together again.

The two convexified Hessian methods we implemented were a

version of the projected gradient method and a version of nonlin-

ear conjugate gradients; details about what these methods do after

the inner product has been computed can be found in the respec-

tive sections.

4 RESULTS

We visualized the results of our comparison in several ways.

Firstly, for all examples, we directly plotted the objective value at-

tained by each method against both elapsed wall-clock time and

iteration count. This resulted in 4 plots per example, showing both

wall-clock time and iteration counts for both hard constraints and

soft constraints.

Next, to better capture the relative performance of methods on

the full dataset of 228 knots, we aggregated the performance for

all methods on all examples into 4 log-log scatter plots, again cor-

responding to wall-clock time and iteration count for hard and

soft constraints. Each scatter plot has a chosen “reference” method,

and the plotted points indicate the time taken for the reference to

reach a certain energy threshold on a given example, versus the

time it took for another method to reach the same threshold on

the same example. Each example has a separate threshold, which

was chosen to be 1.1× the minimal energy reached by the refer-

ence method on that example. As a result, the points for the ref-

erence method are always on the line y = x , and points above this

diagonal for competing methods indicate that those methods were

slower, while points below the diagonal indicate that those meth-

ods were faster.

Along the top of the scatter plots, there is a line for each method

showing instances where that method failed to reach the target

threshold. This can be for one of two reasons. Firstly, the method

may become unable to progress due to its line search step size

collapsing to zero, a failure mode that we call “stuck”; this gener-

ally happens because the method produces a search direction that

would cause an existing near-collision to become a collision, which

no amount of backtracking can resolve. Or, secondly, the method

may continue to make progress, but still fail to reach the target

energy threshold within the time limit (see Section 1.3) that we set

for each experiment, a failure mode that we call “nonconvergent.”

The reference method cannot be nonconvergent, since the target

energy threshold is based on the minimum energy attained by the

reference; however, the reference method can still become stuck,

which we record. In this case, we still set the target energy based
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Fig. 2. Top: A log-log scatter plot illustrating the wall-clock performance of

all hard constraint methods, relative to that of our H
s projected gradient

method. Lines are drawn that indicate 0.5×, 2×, and 4× the time of our

method. Bottom: Same as on top, but for iteration counts.

on the minimum value it attained before getting stuck, which can

theoretically be a large “win” for methods that do not get stuck on

the same instance. But in practice, when the reference seldom gets

stuck, most other methods also get stuck.

Overall, the results show a considerable speedup in both wall-

clock time and iteration counts in favor of our fractional H s meth-

ods. We note that, due to the limitations of Mathematica, no spatial

acceleration is applied; further, our H s methods are using dense

linear solvers, while other metrics such as H1 are able to use far

more efficient sparse solvers. That our methods are already out-

performing others using dense linear algebra shows the power of

our fractional operators; adding in the accelerations we describe

in the article can only improve our performance further.

4.1 Hard Constraint Methods

Aggregate scatter plots for the hard constraint methods are shown

in Figure 2. The chosen reference method was H s projected gradi-

ent descent. The wall-clock plots show that H s projected gradient

descent is considerably faster in real time than all other hard con-

straint methods we tested; the next-best method was H1 projected

gradient descent, which was generally 2 to 4 times slower on meth-

ods where it reached the threshold. Equally if not more notable,

however, is the fact that the non-H s methods are frequently unable

to reach the target energy, due to being either stuck or nonconver-

gent. The best-performing competitor is again H1, whose failure

rate is 64.5% from all causes, including a stuck rate of 47.2%; in

contrast, H s gets stuck on only 6.5% of plotted examples. (These

percentages exclude the 14 knots that were so difficult that all

hard constraint methods became stuck.) The advantage in itera-

tion counts is even more apparent, with only convexified Newton

coming close in this metric on the few examples where it success-

fully reached the target.

The plots of energy versus time from the multiresolution ex-

periments confirm this advantage and show that the difference is

more pronounced with more vertices. Figure 3 shows plots for the

same curve at 1024, 2048, and 4096 vertices. H s outperforms all

other methods at all three of these resolutions, but H1 is quite

competitive for the first two. At the highest resolution, however,

H1 worsens significantly, leaving H s as the clear leader. Simi-

lar patterns hold for the other multiresolution experiments, with

other methods suffering far more from increased resolution than

H s .

This reflects our discussion of matching the inner product to

the energy; our H s inner product matches the order of the energy

and therefore does not suffer limitations from increased resolu-

tion, unlike other inner products such as H1. This is corroborated

by plots of iteration counts on the same examples (Figure 4), which

show thatH s takes nearly the same number of iterations at all res-

olutions, while other methods require many more iterations as the

vertex count increases. The exception is convexified Newton, since

the Hessian also matches the order of the derivatives by definition;

however, the PSD projection of n2 local Hessians is so prohibi-

tively expensive that the method is not competitive in wall-clock

time.

4.2 Soft Constraint Methods

The same general trends observed in the hard constraint meth-

ods also hold true for soft constraint methods (Figure 5). Among

soft constraint methods, H s NCG and H s L-BFGS both use our

fractional inner product. We used H s NCG as the reference, since

both perform roughly equally well, butH s L-BFGS gets stuck more

often: 14.8% of the time, compared to 3.3% for H s NCG. (Note

that these percentages exclude the 18 examples where all soft con-

straint methods became stuck.) In contrast, H1 NCG and H1 L-

BFGS (i.e., “Sobolev-initialized L-BFGS”) both take about twice as

long to reach the same thresholds on instances where they succeed,

but also get stuck over 50% of the time. Meanwhile, AQP [Kovalsky

et al. 2016] fares even worse, getting stuck 85.7% of the time, and

often taking nearly 4 times as long when it succeeds. Once again,

these advantages only grow wider when iteration counts are con-

sidered instead of wall-clock time.

Again, the plots of objective values over time for multireso-

lution experiments are consistent with these observations; the
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Fig. 3. A plot of objective value over time for all hard constraint methods

on one of the multiresolution examples: the knot 96 at 1024, 2048, and 4096

vertices (from top to bottom). Note the different x-axis bounds per plot.

H s methods are generally faster, and this advantage persists or

even grows with increased resolution (Figure 6). On examples

such as this one where it succeeds, H1 L-BFGS does a some-

what better job of keeping up with the H s methods, but it is still

about twice as slow to reach a comparable energy value at the

bottom.

4.3 Discussion

Our fractional H s inner product provides a significant speedup

over other methods, whether used with hard constraints or soft

Fig. 4. An analogous set of plots to Figure 3, but showing iteration counts

instead of wall-clock time. Note the different x-axis bounds per plot.

penalties. Notably, we achieve this speedup despite using dense

linear algebra for the H s methods, versus the faster sparse rou-

tines used by other methods. Beyond raw speed, our fractional

method is more robust to geometrically complex examples: while

other methods either become stuck entirely due to collisions or fail

to make satisfactory progress within a reasonable time, our meth-

ods rarely become stuck—and only on extremely difficult examples

where all or nearly all other methods also fail. Of all the methods

we tested, the H s method thus appears to be best suited to the

problem of minimizing tangent-point energy.
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Fig. 5. Top: A log-log scatter plot illustrating the wall-clock performance of all soft constraint methods, relative to that of H
s NCG. Lines are drawn that

indicate 0.5×, 2×, and 4× the time of our method. Bottom: Same as on top, but for iteration counts.

Fig. 6. A plot of objective value over time for all soft constraint methods on one of the multiresolution examples: the knot 96 at 1024, 2048, and 4096 vertices

(from top to bottom). Note the different x-axis bounds per plot.

Fig. 7. An analogous set of plots to Figure 6, but showing iteration counts instead of wall-clock time. Note the different x-axis bounds per plot.
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