
Chapter 30

30.1 Introduction 633

30.1 Introduction
Physically based animation of fluids such as smoke, water, and fire provides some of the
most stunning visuals in computer graphics, but it has historically been the domain of
high-quality offline rendering due to great computational cost. In this chapter we show
not only how these effects can be simulated and rendered in real time, as Figure 30-1
demonstrates, but also how they can be seamlessly integrated into real-time applica-
tions. Physically based effects have already changed the way interactive environments
are designed. But fluids open the doors to an even larger world of design possibilities.

In the past, artists have relied on particle systems to emulate 3D fluid effects in real-time
applications. Although particle systems can produce attractive results, they cannot match
the realistic appearance and behavior of fluid simulation. Real time fluids remain a chal-
lenge not only because they are more expensive to simulate, but also because the volumet-
ric data produced by simulation does not fit easily into the standard rasterization-based
rendering paradigm.

Real-Time Simulation and
Rendering of 3D Fluids
Keenan Crane
University of Illinois at Urbana-Champaign

Ignacio Llamas
NVIDIA Corporation

Sarah Tariq
NVIDIA Corporation

Copyright NVIDIA Corporation. All rights reserved.

634

In this chapter we give a detailed description of the technology used for the real-time
fluid effects in the NVIDIA GeForce 8 Series launch demo “Smoke in a Box” and dis-
cuss its integration into the upcoming game Hellgate: London.

The chapter consists of two parts:

● Section 30.2 covers simulation, including smoke, water, fire, and interaction with
solid obstacles, as well as performance and memory considerations.

● Section 30.3 discusses how to render fluid phenomena and how to seamlessly inte-
grate fluid rendering into an existing rasterization-based framework.

30.2 Simulation

30.2.1 Background
Throughout this section we assume a working knowledge of general-purpose GPU
(GPGPU) methods—that is, applications of the GPU to problems other than conven-
tional raster graphics. In particular, we encourage the reader to look at Harris’s chapter
on 2D fluid simulation in GPU Gems (Harris 2004). As mentioned in that chapter,
implementing and debugging a 3D fluid solver is no simple task (even in a traditional
programming environment), and a solid understanding of the underlying mathematics

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

Figure 30-1. Water Simulated and Rendered in Real Time on the GPU

Copyright NVIDIA Corporation. All rights reserved.

and physics can be of great help. Bridson et al. 2006 provides an excellent resource in
this respect.

Fortunately, a deep understanding of partial differential equations (PDEs) is not re-
quired to get some basic intuition about the concepts presented in this chapter. All
PDEs presented will have the form

which says that the rate at which some quantity x is changing is given by some function
f, which may itself depend on x and t. The reader may find it easier to think about this
relationship in the discrete setting of forward Euler integration:

In other words, the value of x at the next time step equals the current value of x plus
the current rate of change f (xn, t n) times the duration of the time step Δt. (Note that
superscripts are used to index the time step and do not imply exponentiation.) Be
warned, however, that the forward Euler scheme is not a good choice numerically—we
are suggesting it only as a way to think about the equations.

30.2.2 Equations of Fluid Motion
The motion of a fluid is often expressed in terms of its local velocity u as a function of
position and time. In computer animation, fluid is commonly modeled as inviscid (that
is, more like water than oil) and incompressible (meaning that volume does not change
over time). Given these assumptions, the velocity can be described by the momentum
equation:

subject to the incompressibility constraint:

where p is the pressure, ρ is the mass density, f represents any external forces (such as
gravity), and ∇ is the differential operator:

∂
∂

∂
∂

∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥x y z

T

.

x x f x t tn n n n+ = + ()1 , .Δ

∂
∂

= ()
t

x f x t, ,

∇ ⋅ =u 0,

∂
∂

= − ⋅ ∇() − ∇ +
u

u u f
t

p
1

ρ
,

30.2 Simulation 635

Copyright NVIDIA Corporation. All rights reserved.

636

To define the equations of motion in a particular context, it is also necessary to specify
boundary conditions (that is, how the fluid behaves near solid obstacles or other fluids).

The basic task of a fluid solver is to compute a numerical approximation of u. This
velocity field can then be used to animate visual phenomena such as smoke particles or
a liquid surface.

30.2.3 Solving for Velocity
The popular “stable fluids” method for computing velocity was introduced in Stam 1999,
and a GPU implementation of this method for 2D fluids was presented in Harris 2004.
In this section we briefly describe how to solve for velocity but refer the reader to the cited
works for details.

In order to numerically solve the momentum equation, we must discretize our domain
(that is, the region of space through which the fluid flows) into computational
elements. We choose an Eulerian discretization, meaning that computational elements
are fixed in space throughout the simulation—only the values stored on these elements
change. In particular, we subdivide a rectilinear volume into a regular grid of cubical
cells. Each grid cell stores both scalar quantities (such as pressure, temperature, and so
on) and vector quantities (such as velocity). This scheme makes implementation on the
GPU simple, because there is a straightforward mapping between grid cells and voxels
in a 3D texture. Lagrangian schemes (that is, schemes where the computational ele-
ments are not fixed in space) such as smoothed-particle hydrodynamics (Müller et al.
2003) are also popular for fluid animation, but their irregular structure makes them
difficult to implement efficiently on the GPU.

Because we discretize space, we must also discretize derivatives in our equations: finite
differences numerically approximate derivatives by taking linear combinations of values
defined on the grid. As in Harris 2004, we store all quantities at cell centers for peda-
gogical simplicity, though a staggered MAC-style grid yields more-robust finite differ-
ences and can make it easier to define boundary conditions. (See Harlow and Welch
1965 for details.)

In a GPU implementation, cell attributes (velocity, pressure, and so on) are stored in
several 3D textures. At each simulation step, we update these values by running compu-
tational kernels over the grid. A kernel is implemented as a pixel shader that executes on
every cell in the grid and writes the results to an output texture. However, because

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

Copyright NVIDIA Corporation. All rights reserved.

GPUs are designed to render into 2D buffers, we must run kernels once for each slice
of a 3D volume.

To execute a kernel on a particular grid slice, we rasterize a single quad whose dimen-
sions equal the width and height of the volume. In Direct3D 10 we can directly render
into a 3D texture by specifying one of its slices as a render target. Placing the slice index
in a variable bound to the SV_RenderTargetArrayIndex semantic specifies the
slice to which a primitive coming out of the geometry shader is rasterized. (See Blythe
2006 for details.) By iterating over slice indices, we can execute a kernel over the entire
grid.

Rather than solve the momentum equation all at once, we split it into a set of simpler
operations that can be computed in succession: advection, application of external
forces, and pressure projection. Implementation of the corresponding kernels is detailed
in Harris 2004, but several examples from our Direct3D 10 framework are given in
Listing 30-1. Of particular interest is the routine PS_ADVECT_VEL: this kernel imple-
ments semi-Lagrangian advection, which is used as a building block for more accurate
advection in the next section.

Listing 30-1. Simulation Kernels

struct GS_OUTPUT_FLUIDSIM
{
// Index of the current grid cell (i,j,k in [0,gridSize] range)
float3 cellIndex : TEXCOORD0;

// Texture coordinates (x,y,z in [0,1] range) for the
// current grid cell and its immediate neighbors
float3 CENTERCELL : TEXCOORD1;
float3 LEFTCELL : TEXCOORD2;
float3 RIGHTCELL : TEXCOORD3;
float3 BOTTOMCELL : TEXCOORD4;
float3 TOPCELL : TEXCOORD5;
float3 DOWNCELL : TEXCOORD6;
float3 UPCELL : TEXCOORD7;
float4 pos : SV_Position; // 2D slice vertex in

// homogeneous clip space
uint RTIndex : SV_RenderTargetArrayIndex; // Specifies

// destination slice
};

30.2 Simulation 637

Copyright NVIDIA Corporation. All rights reserved.

638

Listing 30-1 (continued). Simulation Kernels

float3 cellIndex2TexCoord(float3 index)
{
// Convert a value in the range [0,gridSize] to one in the range [0,1].
return float3(index.x / textureWidth,

index.y / textureHeight,
(index.z+0.5) / textureDepth);

}

float4 PS_ADVECT_VEL(GS_OUTPUT_FLUIDSIM in,
Texture3D velocity) : SV_Target

{
float3 pos = in.cellIndex;
float3 cellVelocity = velocity.Sample(samPointClamp,

in.CENTERCELL).xyz;

pos -= timeStep * cellVelocity;
pos = cellIndex2TexCoord(pos);

return velocity.Sample(samLinear, pos);
}

float PS_DIVERGENCE(GS_OUTPUT_FLUIDSIM in,
Texture3D velocity) : SV_Target

{
// Get velocity values from neighboring cells.
float4 fieldL = velocity.Sample(samPointClamp, in.LEFTCELL);
float4 fieldR = velocity.Sample(samPointClamp, in.RIGHTCELL);
float4 fieldB = velocity.Sample(samPointClamp, in.BOTTOMCELL);
float4 fieldT = velocity.Sample(samPointClamp, in.TOPCELL);
float4 fieldD = velocity.Sample(samPointClamp, in.DOWNCELL);
float4 fieldU = velocity.Sample(samPointClamp, in.UPCELL);

// Compute the velocity’s divergence using central differences.
float divergence = 0.5 * ((fieldR.x - fieldL.x)+

(fieldT.y - fieldB.y)+
(fieldU.z - fieldD.z));

return divergence;
}

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

Copyright NVIDIA Corporation. All rights reserved.

Listing 30-1 (continued). Simulation Kernels

float PS_JACOBI(GS_OUTPUT_FLUIDSIM in,
Texture3D pressure,
Texture3D divergence) : SV_Target

{
// Get the divergence at the current cell.
float dC = divergence.Sample(samPointClamp, in.CENTERCELL);

// Get pressure values from neighboring cells.
float pL = pressure.Sample(samPointClamp, in.LEFTCELL);
float pR = pressure.Sample(samPointClamp, in.RIGHTCELL);
float pB = pressure.Sample(samPointClamp, in.BOTTOMCELL);
float pT = pressure.Sample(samPointClamp, in.TOPCELL);
float pD = pressure.Sample(samPointClamp, in.DOWNCELL);
float pU = pressure.Sample(samPointClamp, in.UPCELL);

// Compute the new pressure value for the center cell.
return(pL + pR + pB + pT + pU + pD - dC) / 6.0;

}

float4 PS_PROJECT(GS_OUTPUT_FLUIDSIM in,
Texture3D pressure,
Texture3D velocity): SV_Target

{
// Compute the gradient of pressure at the current cell by
// taking central differences of neighboring pressure values.
float pL = pressure.Sample(samPointClamp, in.LEFTCELL);
float pR = pressure.Sample(samPointClamp, in.RIGHTCELL);
float pB = pressure.Sample(samPointClamp, in.BOTTOMCELL);
float pT = pressure.Sample(samPointClamp, in.TOPCELL);
float pD = pressure.Sample(samPointClamp, in.DOWNCELL);
float pU = pressure.Sample(samPointClamp, in.UPCELL);
float3 gradP = 0.5*float3(pR - pL, pT - pB, pU - pD);

// Project the velocity onto its divergence-free component by
// subtracting the gradient of pressure.
float3 vOld = velocity.Sample(samPointClamp, in.texcoords);
float3 vNew = vOld - gradP;

return float4(vNew, 0);
}

30.2 Simulation 639

Copyright NVIDIA Corporation. All rights reserved.

640

Improving Detail
The semi-Lagrangian advection scheme used by Stam is useful for animation because it
is unconditionally stable, meaning that large time steps will not cause the simulation to
“blow up.” However, it can introduce unwanted numerical smoothing, making water
look viscous or causing smoke to lose detail. To achieve higher-order accuracy, we use a
MacCormack scheme that performs two intermediate semi-Lagrangian advection steps.
Given a quantity φ and an advection scheme A (for example, the one implemented by
PS_ADVECT_VEL), higher-order accuracy is obtained using the following sequence of
operations (from Selle et al. 2007):

Here, φn is the quantity to be advected, and are intermediate quantities, and
φn+1 is the final advected quantity. The superscript on AR indicates that advection is
reversed (that is, time is run backward) for that step.

Unlike the standard semi-Lagrangian scheme, this MacCormack scheme is not uncon-
ditionally stable. Therefore, a limiter is applied to the resulting value φn+1, ensuring that
it falls within the range of values contributing to the initial semi-Lagrangian advection.
In our GPU solver, this means we must locate the eight nodes closest to the sample
point, access the corresponding texels exactly at their centers (to avoid getting interpo-
lated values), and clamp the final value to fall within the minimum and maximum
values found on these nodes, as shown in Figure 30-2.

Once the intermediate semi-Lagrangian steps have been computed, the pixel shader in
Listing 30-2 completes advection using the MacCormack scheme.

Listing 30-2. MacCormack Advection Scheme

float4 PS_ADVECT_MACCORMACK(GS_OUTPUT_FLUIDSIM in,
float timestep) : SV_Target

{
// Trace back along the initial characteristic – we’ll use
// values near this semi-Lagrangian “particle” to clamp our
// final advected value.
float3 cellVelocity = velocity.Sample(samPointClamp,

in.CENTERCELL).xyz;

φ̂nφ̂n+1

ˆ

ˆ ˆ

ˆ ˆ .

φ φ

φ φ

φ φ φ φ

n n

n R n

n n n n

A

A

+

+

+ +

= ()

= ()

= + −()

1

1

1 1 1

2

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

Copyright NVIDIA Corporation. All rights reserved.

Listing 30-2 (continued). MacCormack Advection Scheme

float3 npos = in.cellIndex – timestep * cellVelocity;

// Find the cell corner closest to the “particle” and compute the
// texture coordinate corresponding to that location.
npos = floor(npos + float3(0.5f, 0.5f, 0.5f));
npos = cellIndex2TexCoord(npos);

// Get the values of nodes that contribute to the interpolated value.

// Texel centers will be a half-texel away from the cell corner.
float3 ht = float3(0.5f / textureWidth,

0.5f / textureHeight,
0.5f / textureDepth);

float4 nodeValues[8];
nodeValues[0] = phi_n.Sample(samPointClamp, npos +

float3(-ht.x, -ht.y, -ht.z));
nodeValues[1] = phi_n.Sample(samPointClamp, npos +

float3(-ht.x, -ht.y, ht.z));
nodeValues[2] = phi_n.Sample(samPointClamp, npos +

float3(-ht.x, ht.y, -ht.z));
nodeValues[3] = phi_n.Sample(samPointClamp, npos +

float3(-ht.x, ht.y, ht.z));

30.2 Simulation 641

Figure 30-2. Limiter Applied to a MacCormack Advection Scheme in 2D
The result of the advection (blue) is clamped to the range of values from nodes (green) used to get
the interpolated value at the advected “particle” (red) in the initial semi-Lagrangian step.

Copyright NVIDIA Corporation. All rights reserved.

642

Listing 30-2 (continued). MacCormack Advection Scheme

nodeValues[4] = phi_n.Sample(samPointClamp, npos +
float3(ht.x, -ht.y, -ht.z));

nodeValues[5] = phi_n.Sample(samPointClamp, npos +
float3(ht.x, -ht.y, ht.z));

nodeValues[6] = phi_n.Sample(samPointClamp, npos +
float3(ht.x, ht.y, -ht.z));

nodeValues[7] = phi_n.Sample(samPointClamp, npos +
float3(ht.x, ht.y, ht.z));

// Determine a valid range for the result.
float4 phiMin = min(min(min(min(min(min(min(

nodeValues[0], nodeValues [1]), nodeValues [2]), nodeValues [3]),
nodeValues[4]), nodeValues [5]), nodeValues [6]), nodeValues [7]);

float4 phiMax = max(max(max(max(max(max(max(
nodeValues[0], nodeValues [1]), nodeValues [2]), nodeValues [3]),
nodeValues[4]), nodeValues [5]), nodeValues [6]), nodeValues [7]);

// Perform final advection, combining values from intermediate
// advection steps.
float4 r = phi_n_1_hat.Sample(samLinear, nposTC) +

0.5 * (phi_n.Sample(samPointClamp, in.CENTERCELL) -
phi_n_hat.Sample(samPointClamp, in.CENTERCELL));

// Clamp result to the desired range.
r = max(min(r, phiMax), phiMin);

return r;
}

On the GPU, higher-order schemes are often a better way to get improved visual detail
than simply increasing the grid resolution, because math is cheap compared to band-
width. Figure 30-3 compares a higher-order scheme on a low-resolution grid with a
lower-order scheme on a high-resolution grid.

30.2.4 Solid-Fluid Interaction
One of the benefits of using real-time simulation (versus precomputed animation) is
that fluid can interact with the environment. Figure 30-4 shows an example on one
such scene. In this section we discuss two simple ways to allow the environment to act
on the fluid.

Chapter 30 Real-Time Simulation and Rendering of 3D Fluids

Copyright NVIDIA Corporation. All rights reserved.

A basic way to influence the velocity field is through the application of external forces.
To get the gross effect of an obstacle pushing fluid around, we can approximate the
obstacle with a basic shape such as a box or a ball and add the obstacle’s average velocity
to that region of the velocity field. Simple shapes like these can be described with an
implicit equation of the form f (x, y, z) ≤ 0 that can be easily evaluated by a pixel shader
at each grid cell.

Although we could explicitly add velocity to approximate simple motion, there are
situations in which more detail is required. In Hellgate: London, for example, we
wanted smoke to seep out through cracks in the ground. Adding a simple upward ve-
locity and smoke density in the shape of a crack resulted in uninteresting motion. In-
stead, we used the crack shape, shown inset in Figure 30-5, to define solid obstacles for
smoke to collide and interact with. Similarly, we wanted to achieve more-precise inter-
actions between smoke and an animated gargoyle, as shown in Figure 30-4. To do so,
we needed to be able to affect the fluid motion with dynamic obstacles (see the details
later in this section), which required a volumetric representation of the obstacle’s inte-
rior and of the velocity at its boundary (which we also explain later in this section).

30.2 Simulation 643

Figure 30-3. Bigger Is Not Always Better!
Left: MacCormack advection scheme (applied to both velocity and smoke density) on a 128×64×64
grid. Right: Semi-Lagrangian advection scheme on a 256×128×128 grid.

Figure 30-4. An Animated Gargoyle Pushes Smoke Around by Flapping Its Wings

Copyright NVIDIA Corporation. All rights reserved.

