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Preface

Figure 1. Discrete differential geometry re-imagines classical
ideas from differential geometry without reference to differential
calculus. For instance, surfaces parameterized by principal cur-
vature lines are replaced by meshes made of circular quadrilater-
als (top left), the maximum principle obeyed by harmonic func-
tions is expressed via conditions on the geometry of a triangula-
tion (top right), and complex-analytic functions can be replaced by
so-called circle packings that preserve tangency relationships (bot-
tom). These discrete surrogates provide a bridge between geome-
try and computation, while at the same time preserving important
structural properties and theorems.
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1. Overview

The emerging field of discrete differential geometry (DDG) studies discrete ana-
logues of smooth geometric objects, providing an essential link between analytical
descriptions and computation 1. In recent years it has unearthed a rich variety
of new perspectives on applied problems in computational anatomy/biology, com-
putational mechanics, industrial design, computational architecture, and digital
geometry processing at large.

The basic philosophy of discrete differential geometry is that a discrete object
like a polyhedron is not merely an approximation of a smooth one, but rather a
differential geometric object in its own right. In contrast to traditional numerical
analysis which focuses on eliminating approximation error in the limit of refinement
(e.g., by taking smaller and smaller finite differences), DDG places an emphasis on
the so-called “mimetic” viewpoint, where key properties of a system are preserved
exactly, independent of how large or small the elements of a mesh might be. Just
as algorithms for simulating mechanical systems might seek to exactly preserve
physical invariants such as total energy or momentum, structure-preserving models
of discrete geometry seek to exactly preserve global geometric invariants such as
total curvature. More broadly, DDG focuses on the discretization of objects that
do not naturally fall under the umbrella of traditional numerical analysis.

The Game. The spirit of discrete differential geometry is well-illustrated by a
“game” often used to develop discrete analogs of a given smooth object:

(1) Write down several equivalent definitions in the smooth setting.
(2) Apply each smooth definition to an object in the discrete setting.
(3) See which properties of the original smooth object are preserved by each

of the resulting discrete objects, which are invariably inequivalent.

Most often, no discrete object preserves all the properties of the original smooth
one—a so-called no free lunch scenario. Nonetheless, the properties that are pre-
served often prove invaluable for particular applications and algorithms. Moreover,
this activity yields some beautiful and unexpected consequences—such as a con-
nection between conformal geometry and pure combinatorics, or a description of
constant-curvature surfaces that requires no definition of curvature! These notes
provide an incomplete overview of several contemporary topics in DDG—a broad
overview can also be found in the recent Notices article, “A Glimpse Into Discrete
Differential Geometry” by Crane & Wardetzky.

1.1. Geometry and Finitism. There is a long debate in mathematics about
the meaning and implications of various notions of infinity, dating back at least
to Aristotle, and brought to a head in the late 19th century by Cantor. Finitists
take the view that (in one way or another) the only “real” objects are those that
have finite descriptions (perhaps allowing for “potential infinities,” like the natural
numbers). For some, limiting mathematics to discrete or finite objects is a deep
philosophical conviction; for others, it is an entertaining game. In the context of
computation, the search for finite descriptions has a more pragmatic motivation:
Turing’s abstract model of computation is discrete; real physical computing devices

1This introduction is adapted from Crane and Wardetzky, “A Glimpse into Discrete Differ-
ential Geometry”, Notices of the American Mathematical Society, Vol. 64 No. 10, pp. 1153–1159,
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are necessarily finite. If one wishes to use machines to analyze geometry, one must
therefore have good finite models2.

Since one knows a priori that geometry must have a finite description, it seems
worthwhile to consider geometric models that directly represent the way geome-
try behaves in nature, rather those that converge to the true behavior only in an
unattainable limit. In fact, this situation leads to a natural question: is some no-
tion of infinity strictly required to faithfully model nature? Or can the basic things
we want to say about natural geometry be captured by purely discrete models?
The differential calculus of Leibniz and Newton has proven to be an unreasonably
effective tool for modeling the natural world. For this reason it is tempting to feel
that models based on differential equations are the true, canonical Platonic forms,
and anything discrete and finite is a mere approximation. Yet nobody denies that
even beloved continuum models (say, the Navier-Stokes equations) break down at
very small scales, where nature looks increasingly like quantized packets of matter
and energy. From this point of view, one might also be justified in feeling like na-
ture is inherently discrete, and that continuum models are perceived as “correct”
only because they closely approximate observed behavior at the macroscopic scale.
Moreover, infinity can creep into geometry in ways that betray our experience of
nature. For instance, the Banach-Tarski paradox allows (by sly use of infinity) a
solid ball to be decomposed into finitely many pieces, then reassembled into two
balls—each of the same volume as the original one!

The purpose of mentioning such examples is not to ridicule the use of infinity,
but rather to say: in order for a discrete model to be a “first class” description of
an object, it need not duplicate all the strange behavior found in the continuous
setting. One should instead ask, on both the smooth and discrete side: which
phenomena are fundamental, and which are purely artifacts of the language in
which the model is expressed? In fact, the dual perspectives offered by smooth and
discrete differential geometry help to distill which phenomena are fundamental and
which are superficial, since the most fundamental properties tend to arise naturally
and easily on both sides. (Say, conservation laws in classical mechanics, or global
topological invariants in Riemannian geometry.) In other words, geometry is neither
inherently smooth nor discrete; rather, it is comprised of all the ideas that persist
independent of the particular language used to write them down.

One can also tell this story from an analytical point of view: by considering only
finite, discrete models, one obtains a degree of regularity that naturally excludes
certain strange examples and behaviors. A nice example is the question of whether
a 2-sphere embedded in R3 always divides space into two simply-connected regions.
Intuitively, the answer is “yes,” since the 2-sphere is simply connected, and embed-
dings preclude any change in global topology. Yet one can construct a topological
embedding (again by sly use of infinity) called Alexander’s horned sphere, where
a loop around one of the “horns” can never be contracted. On the other hand,
Alexander himself showed that if one restricts the question to discrete, or more
precisely, piecewise linear embeddings, then no such example is possible. In other
words, working in the simplicial category yields a result that is perhaps more in line
with the kind of behavior that we would expect to encounter in nature. (Likewise,
Banach-Tarski has no analogue in the finite, simplicial setting.)

2Note that even the symbolic expressions used to reason about geometry in a computer
algebra system—or with pen and paper—are finite expressions in a formal grammar!
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A more negative point of view—encapsulated by the no free lunch situation—is
that discrete models are ultimately too rigid to describe all the geometric behavior
observed in nature. The question of rigidity is a central and ongoing question
in discrete differential geometry, and a major theme of these notes. On the one
hand, it is often true that no single discrete object in a certain class can faithfully
reproduce a given list of properties from the smooth setting (see for instance our
discussion of discrete Laplace operators). Are such results the end of the story,
or does one simply need to consider an alternative approach to discretization? By
adopting a different point of view, as outlined in The Game, situations that initially
look hopeless sometimes give way to rich and flexible theories that capture much of
the structure found in the smooth setting (such as conformal equivalence of triangle
meshes). A major goal of discrete differential geometry is to see how far we can
push the “finitist” point of view, not only to enable practical computation, but also
to obtain clearer descriptions and a deeper understanding of the way shape behaves
in nature.

—Keenan Crane


